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Abstract

This paper generalizes inverse optimization for multi-objective linear programming where we

are looking for the least problem modifications to make a given feasible solution a weak

efficient solution. This is a natural extension of inverse optimization for single-objective linear

programming with regular “optimality” replaced by the “Pareto optimality”. This extension,

however, leads to a non-convex optimization problem. We prove some special characteristics of

the problem, allowing us to solve the non-convex problem by solving a series of convex problems.
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1. Introduction

Multi-objective linear programming (MOLP) deals with multi-objective optimization

problems where all the objectives and constraints are linear. These problems arise in many

fields, including engineering, finance, and medicine [3, 12, 21]. When it comes to multi-

objective optimization, a typical optimality concept used in single-objective optimization is

replaced with the Pareto optimality. A feasible solution is Pareto optimal if it is impossible

to improve some objective functions without compromising others.

Inverse optimization (IO), studied by Burton and Toint [6] in 1992, is a new field of

optimization dealing with problems in which some of the parameters may not be precisely

known, only estimates of these parameters may be known. Instead, it is possible that

some information about the problem, such as some solutions or some values for objective

function, are given from experience or from some experiments. Thus, the aim is to determine
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values of the parameters by using this information. In the past years, several types of IOs

have been studied by the researchers [7, 13, 16, 23].

This paper deals with an important type of IO in which we are looking for the least problem

modifications in order to make a given feasible solution of the problem an optimal solution.

In another words, if x is a feasible solution of the problem, how can we modify the problem,

for example by changing the cost function, as least as possible according to some metrics

so that x becomes an optimal solution. This problem has been well studied for different

types of single-objective optimization problems including linear programming [1, 2, 22, 23],

combinatorial optimization [13], conic programming [14], integer programming [19], and

countably infinite linear programming [11]. Roland et al. [18] studied inverse optimization

for a special class of multi-objective combinatorial optimization problems where the least

modification of the criteria matrix is sought to turn a set of feasible points to a set of

Pareto optimal points. They demonstrated that the inverse multi-objective combinatorial

optimization under some norms can be solved by algorithms based on mixed integer

programming. This paper deals with inverse multi-objective linear programming (IMOLP)

where the least criteria matrix modification is sought to turn a given feasible solution into a

Pareto optimal solution.

For IO problems studied in this paper, and all the aforementioned papers, while a feasible

point x could be in principle an interior point of feasible region, this would turn the IO

problem into an evident problem where the cost function is modified to zero so that all

feasible solutions, including x, would become weakly efficient. There is a new type of IO,

inspired by noisy data appear in some applications, that has been recently studied by Chan

et al. [9] where x could be an interior point of the feasible region. For this type of IO, both

cost vector and x are modified to achieve the optimality. Chan et al. [7,8] have also studied

a very special multi-objective version of their IO, inspired by application in radiotherapy

cancer treatment, where the criteria matrix is remained unchanged and the objective weights

are sought to turn a given point x, that could be an interior point or even infeasible point,

into a near-optimal solution. This paper deals with the natural extension of a classical IO

problem, introduced earlier, for multi-objective programs where the least perturbations in

criteria matrix is sought to turn a feasible solution into a Pareto optimal solution.

The paper is organized as follows. Section 2 includes some preliminaries. Section 3 reviews

inverse linear programming (ILP), and Section 4 generalizes ILP to inverse multi-objective

linear programming (IMOLP) and discusses the non-convexity of the problem. Afterwards,

some special characteristics of IMOLP are proved, providing necessary tools to develop

an efficient convex-optimization-based algorithm. A simple numerical example and a

geometrical interpretation are also provided in Section 4. And finally, Section 5 concludes

the paper.

2. Preliminaries

In this paper, the row and column vectors are distinguishable from each other by text. Let ℝn

and ℝm × n denote the set of all real n-vectors and m × n matrices respectively, and ai denotes
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the i-th row of the matrix A. For x ∈ ℝn, ‖x‖p denotes the ℓp-norm of the vector x. Consider

the following two problems:

min cx ∣ x ∈ S , (LP(c))

min Cx = c1x, …, ckx ∣ x ∈ S , (MOLP(C))

where A ∈ ℝm × n, C ∈ ℝk × n, c ∈ ℝn, b ∈ ℝm, and S = x ∈ ℝn ∣ Ax ≥ b  is the feasible

region. A feasible point x ∈ S is called weak efficient or weak Pareto optimal of MOLP(C)

if there exists no x ∈ S such that Cx < Cx. All the ordering in this paper are component-

wise. The set of all weak efficient points of MOLP(C) is denoted by Swe(C). The set of all

optimal solutions of LP(c) is denoted by So(c).

For a set y = y1, …, yl ⊆ ℝn, cone(y) and conv(y) denote the conic and convex hull of y

defined as:

cone (y) = x ∈ ℝn ∣ x = ∑
i = 1

l
βiyi, βi ≥ 0 ,

conv(y) = x ∈ ℝn ∣ x = ∑
i = 1

l
βiyi, ∑

i = 1

l
βi = 1, βi ≥ 0 .

For a feasible point x ∈ S, let I(x) = i ∣ aix = bi  be the set of all active constraints indices at

x. The conic hull of the set ai ∣ i ∈ I(x)  is:

K = cone ai ∣ i ∈ I(x) = x ∈ ℝn ∣ x = ∑
i ∈ I(x)

βiai, βi ≥ 0 .

As we would see in the next sections, K plays an important role in the optimality of x for

LP(c) and MOLP(C).

Definition 1

The distance between two non-empty sets A, B ⊆ ℝn is defined as:

d(A, B) = inf x − y p ∣ x ∈ A, y ∈ B .

It is well-known that for a compact set A and a closed set B, we have [5]:

i. d(A,B)= min{‖x−y‖p |x ∈ A,y ∈ B}.

ii. A∩B = ∅ if and only if d(A,B) > 0.
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3. Inverse single-objective linear programming

This section reviews an inverse single-objective linear programming (ILP) problem under

ℓp-norm with the cost vector modification. This problem has been initially studied by Zhang

and Liu [22, 23] under ℓ1-norm and ℓ∞-norm, and later been extended to the weighted norms

by Ahuja and Orlin [1].

An ILP problem under ℓp-norm for LP(C) looks for the minimal modification in the cost

vector in order to make a given feasible point x an optimal solution. This can be formulated

as follows:

min c − c p
s . t . x ∈ So(c),

c ∈ ℝn .
ILP(c,^x)

Using the Karush-Kuhn-Tucker (KKT) optimality conditions of LP [4], ILP(c,^x) can be

re-written as:

min c − c p
s . t . y(Ax − b) = 0, (complementary slackness),

yA = c, (dual feasibility),
y ≥ 0, (dual feasibility),
c ∈ ℝn .

(1)

Problem (1) is a convex non-linear optimization problem which could be transferred into LP

for p = 1, and ∞ [1,22,23]. The problem is always feasible with an optimal solution, and

(y∗,c) is an optimal solution if and only if x ∈ So(c).

Yet another equivalent formulation of ILP(c,^x) can be obtained, based on the conic hull

concept introduced in the last section, by employing the following Lemma.

Lemma 1

[4, 17] Let x ∈ S be a feasible point of LP(c). Then, x ∈ So(c) if and only if c ∈ K.

Using Lemma 1, we can replace the constraint x ∈ So(c) in ILP(c,^x) with c ∈ K, which

would result into the following equivalent problem:

min c − c p

s . t . c ∈ K,
c ∈ ℝn .

(2)

Naghavi et al. Page 4

Optim Lett. Author manuscript; available in PMC 2022 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Inverse multi-objective linear programming

This section provides a natural extension of inverse single-objective linear programming

provided in the previous section for multi-objective programs. In the following subsections,

we first introduce the inverse MOLP (IMOLP) and then prove two special characteristics of

IMOLPs. Afterwards, we introduce the new algorithm followed by a numerical example and

a geometric interpretation.

4.1 Problem formulation and characteristics

Given that optimality for LP is replaced by Pareto optimality in MOLP and the cost vector is

replaced by the criteria matrix, it then makes sense to define the inverse MOLP as a minimal

modifications in the criteria matrix in order to make a given feasible solution x a weak

efficient solution. This leads to the following problem:

min C − C
s . t . x ∈ Swe(C),

C ∈ ℝk × n,

IMOLP(C,^x)

where Swe(C) is a set of all weak efficient points of MOLP(C), and ‖.‖ denotes a matrix norm

on ℝk × n, gauging the modifications between two matrices C and C. It is worth mentioning

that IMOLP(C,^x) is simply reduced to ILP(c,^x) if there is only one objective function.

Now we take advantage of the following weighted-sum theorem to make connection

between ILPs and IMOLPs.

Theorem 1

[10, 15, 20] x ∈ S is a weak efficient solution of MOLP(C) if and only if there exists a

vector w ∈ W = {w ∈ ℝk ∣ ∑i = 1
κ wi = 1, wi ≥ 0} such that x is an optimal solution of the

weighted-sum LPmin wCx ∣ x ∈ S .

Let conv(C) denotes the convex hull of the rows of the matrix C. The following lemma can

be immediately obtained from Lemma 1 and Theorem 1.

Lemma 2

The following statements are equivalent.

i. x ∈ Swe(C).

ii. There exists w ∈ W such that wC ∈ K.

iii. (iii)d(conv(C), K) = 0.

By the second part of Lemma 2, IMOLP(C,^x) is equivalent to:
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min C − C
s . t . wC ∈ K,

w ∈ W ,
C ∈ ℝk × n .

(3)

Problem (3) provides an interpretation for IMOLPs. If x is not a weak efficient

solution, then IMOLP looks for the least modification of the criteria matrix C such

that a convex combination of its rows belongs to K which is the convex cone

created by the active constraints at x. We study Problem (3) under the matrix norm

‖C − C‖ = ∑i = 1
k ci − c i p1 ≤ p ≤ ∞, although one may study other norms (e.g., Forbenius,

maximum absolute row sum,...).

Now, by simply injecting the definition of the conic hull K into (3), we obtain:

minρ = ∑
i = 1

k
ci − c i p

s . t . ∑
i = 1

k
wic i − ∑

r ∈ I(x)
βrar = 0,

∑
i = 1

k
wi = 1,

wi ≥ 0, i = 1, …, k,
βr ≥ 0, r ∈ I(x),

c i ∈ ℝn, i = 1, …, k .

(4)

In analogy to ILP(c,x) (1), IMOLP(C,x) (4) is always feasible with an optimal solution. For

instance, an obvious feasible point is (C = 0, wi = 1
k , for i = 1, . . . ,k,β = 0). Furthermore,

by employing Lemma 2, the objective value of IMOLP(C,x) (4) is zero if and only if

x ∈ Swe(C). However, as opposed to ILP(c,x) (1), IMOLP(C,x) (4) is not convex due to the

presence of the variable multiplication wic i.

The following two theorems show that even though IMOLP(C,x) (4) is a non-convex

optimization problem, it can be solved using a series of convex optimization problems.

The first part of Theorem 2 reveals that there always exists an optimal solution for which

only one objective function has been modified, and the second part provides a lower bound

for the optimal objective value of IMOLP(C,x) (4) that can be later on employed in the

algorithm design as a termination criterion.

Theorem 2

For IMOLP(C,x) (4) if d(conv(C), K) > 0, then
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i. IMOLP(C,x) (4) has an optimal solution C * for which c i* = ci for i ∈ {1, . . . ,k},

and i ≠ j.

ii. d(conv(C), K) provides a lower bound for the optimal value of IMOLP(C,x) (4),

i.e.,ρ * ≥ d(conv(C), K).

Proof—Let ξ′ = C′, w′, β′  be an optimal solution of IMOLP(C,x) (4) with the

optimal objective value ρ′. We prove part (i) by constructing a new optimal solution

ξ * = C * , w′, β′  for which C * only differs C in one row. And we prove part (ii), by showing

ρ′ ≥ d(conv(C), K).

i. ⇒ Since ξ′ is a feasible solution of IMOLP(C,x) (4), we have:

∑
i = 1

k
wi′c i′ − ∑

r ∈ I(x)
βr′ar = 0. (5)

Now we define C * as follows:

c i* =
ci i ≠ s

cs + ∑
i = 1

k wi′
ws′

vi i = s
(6)

where vi = c i′ − ci and ws′ = max wi′ ∣ i = 1, …, k > 0. Now we have:

∑
i = 1

k
wi′ci* = ws′cs* + ∑

i = 1
i ≠ s

k
wi′ci*

= ws′ cs + ∑
i = 1

k wi′
ws′

ci′ − ci + ∑
i = 1
i ≠ s

k
wi′ci

= ws′cs + ∑
i = 1

k
wi′ ci′ − ci + ∑

i = 1
i ≠ s

k
wi′ci

= ∑
i = 1

k
wi′ci′ = ∑

r ∈ I(x)
βr′ar (according to (5))

So, ξ∗ is a feasible solution of IMOLP(C,x) (4). Now we just need to show that ξ∗ is at

least as good as ξ′ in terms of objective function:
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‖C − C*‖ = ∑
i = 1

k
‖ci − ci*‖p

= ‖ ∑
i = 1

k wi′
ws′

vi‖
p

(according to (6))

≤ ∑
i = 1

k
‖

wi′
ws′

vi‖p (according to triangle inequality in norms)

= ∑
i = 1

k
(
wi′
ws′

)‖vi‖p

≤ ∑
i = 1

k
‖vi‖p = ‖C − C′‖ . since ws′ ≥ wi′

ii. ⇒ Let us define h and k as follows:

ℎ = ∑
i = 1

k
wi′ci* − ws′ cs* − cs ,

k = ∑
r ∈ I(x)

βr′ar .

Given the definition of C * in (6), we have

ℎ = ∑
i = 1

k
wi′ci* − ws′ cs* − cs = ∑

i = 1
i ≠ s

k
wi′ci* + ws′cs* − ws′cs* + ws′cs

= ∑
i = 1
i ≠ s

k
wi′ci + ws′cs = ∑

i = 1

k
wi′ci

So, h ∈ conv(C). On the other hand, since ξ∗ is a feasible solution of IMOLP(C,x) (4),

∑i = 1
k wi′c i* = ∑r ∈ I(x)βr′ar and so:

d(conv(C), K) ≤ ℎ − k p (according to Definition 1 in Section 2)
= ws′ cs − cs* p
≤ cs − cs* p = C − C * since ws′ ≤ 1

which completes the proof. □

If we assume that only the j-th objective function in IMOLP(C,x) (4) is modified and the rest

are the same, then we reach the following optimization problem:
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min cj − c j p

s . t . wjc j + ∑
i = 1
i ≠ j

k
wici − ∑

r ∈ I(x)
βrar = 0,

∑
i = 1

k
wi = 1,

wi ≥ 0, i = 1, …, k,
βr ≥ 0, r ∈ I(x),

c j ∈ ℝn .

(Pj)

According to the first part of Theorem 2, we just need to solve Pj for all j and then the

problem with the smallest optimal objective value will provide the optimal solution of the

IMOLP(C,^x). There is only one problem. Pj is still a non-convex problem due to the

presence of wjc j, although Pj is already much easier than Problem (4) which has wic i for

all i ∈ {1, . . . ,k}. The following theorem reveals that Pj can be transferred to the equivalent

convex optimization problem. It is worth mentioning that wj > 0 in Pj, otherwise the optimal

objective value of Pj is zero meaning x is already a weak efficient solution.

Theorem 3

If d(conv(C), K) > 0, then Pj is equivalent to the following convex optimization problem, Qj:

ρj* = min cj − c j p

s . t . c j + ∑
i = 1
i ≠ j

k
λici − ∑

r ∈ I(x)
αrar = 0,

λi ≥ 0, i = 1, …, k, i ≠ j,
αr ≥ 0, r ∈ I(x),

c j ∈ ℝn .

(Qj)

Proof—We prove by showing that there is a one-to-one correspondence between the points

in the feasible region of the problem Pj and Qj. Let ξj = c j, w, β  be a feasible point of Pj. By

defining λi =
wi
wj

 (i = 1, . . . ,k,i ≠ j), and αr =
βr
wj

(r ∈ I(x)), ζj = c j, λ, α  is a feasible point of

Qj with the same objective function. □

Now let ζj = c j, λ, α  be a feasible point of Qj. By defining wj = 1
τ , wi =

λi
τ (i = 1, …, k, i ≠ j),

and βr =
αr
τ (r ∈ I(x)) where τ = 1 + ∑i = 1

i ≠ j

k
λi, we obtain ξj = c j, w, β  as a feasible point of Pj

with the same objective function. □
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Now we provide a geometric interpretation of Qj. Let Kj be the conic hull of

ar r ∈ I(x), −ci i = 1, ≠ j
k . Then, Qj can be equivalently re-written as

d cj, Kj = min cj − cj p
s . t . c j ∈ Kj,

cj ∈ ℝn .

So, the optimal solution of Qj is the ℓp-projection of cj onto Kj. This will be demonstrated in

the numerical example in the next section.

4.2 Algorithm and a numerical example

The algorithm consists of two phases. The first phase calculates d(conv(C), K) which could be

used to determine whether or not x is already a weak efficient solution. It can also be served

as a termination criterion by employing the second part of Theorem 2. However, Phase I

could be eliminated if one already knows that x is not weak efficient and looking for the

exact optimal solution.

Phase I: Solve the following convex optimization problem

d(conv(C), K) = min x − y p ∣ x ∈ conv(C), y ∈ K . (7)

Let d * : = d(conv(C), K) be the optimal objective value of Problem (7). If d∗ = 0, it means

x ∈ Swe(C) and go to Step 4, otherwise let j = 1 and go to Step 1.

Phase II: Step 1: Solve Problem (Qj). If ρj* − d* ≤ ε, then let j∗ = j and go to Step 3,

otherwise go to Step 2.

Step 2: If j = k, let j * = argmin
j = 1, …, k

ρj*, and go to Step 3, otherwise let j = j + 1 and go to Step

1.

Step 3: Let ζj* = c j** , λ*, α*  be an optimal solution of Qj*. Then, ξ * = C * , w * , β *  is an

optimal solution of IMOLP(C,x) (4) where w∗ and β∗ defined as follow, and C * and C
agree in all rows except the j∗-th one.

wi* =
λi*

1 + ∑ i = 1
i ≠ j*

k
λi*

, i = 1, …, k, i ≠ j*,
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wj** = 1

1 + ∑ i = 1
i ≠ j*

k
λi*

,

βr* =
αr*

1 + ∑ i = 1
i ≠ j*

k
λi*

, r ∈ I(x) .

Step 4: End.

Example 1 Consider the MOLP problem min {Cx | Ax ≥ b} and its IMOLP(C,x) counterpart

with x = (8, 7) and the following data:

C =
−6 −1.5
−3 0.5
2 1.5

, A =

−2 −1
−3 −4
−1 0
0 −1
1 0
0 1

, and b =

−23
−52
−10
−10

0
0

.

We have I(x) = 1, 2  and K = x ∈ ℝ2 ∣ x = β1a1 + β2a2, β1, β2 ≥ 0 , where a1 = (−2, −1) and

a2 =(−3, −4).

It is obvious from Figure 1a that the distance between K—the hatched area—and conv(C)

—the triangle area—is positive and so x is not weak efficient. The distance is depicted as

d * = ℎ − k p.

IMOLP(C,x) is:

minρ = c1 − c1 p + c2 − c2 p + c3 − c3 p
s . t . w1c1 + w2c2 + w3c3 − β1a1 − β2a2 = 0,

w1 + w2 + w3 = 1,
w1, w2, w3, β1, β2 ≥ 0,

c1, c2, c3 ∈ ℝ2 .

We apply the proposed algorithm for p = 2. We assume that we are looking for the exact

solution with the threshold ε= 0.

Phase I: Solving the convex problem (7) yields d * = ℎ − k
2

= 6
73 , where ℎ = − 18

73 , 48
73

and k = (0, 0) (see Figure 1a). Since d∗ > 0, let j = 1 and go to Step 1.

Phase II: Step 1: We solve Q1 as follows:
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minρ1 = c1 − c1 2
s . t . c1 + λ2c2 + λ3c3 − α1a1 − α2a2 = 0,

λ2, λ3, α1, α2 ≥ 0,

c1 ∈ ℝ2 .

Figure 1b illustrates the geometric interpretation of Q1. This problem finds the minimum

distance between c1 and K1 = cone a1, a2, − c2, − c3 = cone a1, − c2 . The optimal

objective value is ρ1* = 3
5  and since ρ1* − d * > 0, we solve Q2:

minρ2 = c2 − c2 2
s . t . c2 + λ1c1 + λ3c3 − α1a1 − α2a2 = 0,

λ1, λ3, α1, α2 ≥ 0,

c2 ∈ ℝ2 .

Figure 1c corresponds to Q2 and the optimal solution here is the minimum distance

between c2 and K2 = cone a1, a2, − c1, − c3 = cone a1, − c1 . The optimal objective value

is ρ2* = 4
5 > d *, so we need to solve Q3.

minρ3 = c3 − c3 2
s . t . c3 + λ1c1 + λ2c2 − α1a1 − α2a2 = 0,

λ1, λ2, α1, α2 ≥ 0,

c3 ∈ ℝ2 .

Figure 1d corresponds to Q3, and the optimal objective value is ρ3* = 4
17 . Since Q3 has

the smallest objective value among all the problems, j∗= 3. The optimal solution of Q3 is

ζ3* = c3*, λ1*, λ2*, α1*, α2* = (38
17 , 19

34 ), 19
51 , 0, 0, 0 . Therefore, the optimal solution of IMOLP(C,x)

is ξ * = c1*, c2*, c3*, w1*, w2*, w3*, β1*, β2* = c1, c2, c3*, 19
70 , 0, 51

70 , 0, 0 .

Figure 1e illustrates the new criteria matrix C *, obtained by moving c3 to c3*. It is seen

that conv C *  intersects K, which according to Lemma 2 means that x is weakly efficient

for the new criteria matrix. Before we close this session, we would like to show that,

through a simple example, that the results presented in this paper do not necessarily hold

true if there are some constraints on how much the criteria matrix can be changed. In the

above example, let us assume that c3 cannot be modified more than 0.95, according to the

ℓ2-norm (i.e., c3 − c3 2 ≤ 0.95). This is less than what c3 needs to move ( 4
17 ≈ 0.97) in order

for conv C  to intersect K. Now, we show that moving c1 and c3 simultaneously leads to

less modification than moving c1 or c2 individually. If c1 moves to c1 = − 2610
449 , − 1827

898
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and c3 moves to c3 = 1010
449 , 707

898 , then as it can be seen in Figure 1f, conv C  intersects K,

meaning x is a weakly efficient point. Therefore, moving c1 and c3 at the same time, results

in c1 − c1 2 + c3 − c3 2 ≈ 1.32 modification in the criteria matrix which is less than the

modification required by moving only c1(ρ1* = 3
5 ≈ 1.34) or only c2(ρ2* = 4

5 ≈ 1.78). Since

moving c3 alone is not an option due to the imposed restriction on the criteria matrix,

individual modification of neither of the objective functions results in the least required

modification in the criteria matrix to turn x into a weakly efficient point.

5. Conclusion

We generalized the existing inverse linear programming to inverse multi-objective linear

programming. The generalized version specializes to the existing one if there is only one

objective function. We discussed the non-convexity challenge of the resulting problem, and

explained how it could be circumvented by exploiting some very special characteristics of

the problem and taking advantage of the fact that there is always an optimal solution for

which only one objective function is modified. The results only hold true if there is no

constraints on how much the criteria matrix could be modified.
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Fig. 1:
(a)-(d): Different steps of the algorithm for Example 1. (e): The final result of the algorithm.

(f): Changing multiple objective functions could result in less modification if there are

restrictions on the criteria matrix modifications.
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