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Abstract

Multicellular organisms rely on cell–cell communication to exchange information necessary for developmental processes and
metabolic homeostasis. Cell–cell communication pathways can be inferred from transcriptomic datasets based on ligand–receptor
expression. Recently, data generated from single-cell RNA sequencing have enabled ligand–receptor interaction predictions at an
unprecedented resolution. While computational methods are available to infer cell–cell communication in vertebrates such a tool
does not yet exist for Drosophila. Here, we generated a high-confidence list of ligand–receptor pairs for the major fly signaling path-
ways and developed FlyPhoneDB, a quantification algorithm that calculates interaction scores to predict ligand–receptor interactions
between cells. At the FlyPhoneDB user interface, results are presented in a variety of tabular and graphical formats to facilitate
biological interpretation. To illustrate that FlyPhoneDB can effectively identify active ligands and receptors to uncover cell–cell com-
munication events, we applied FlyPhoneDB to Drosophila single-cell RNA sequencing data sets from adult midgut, abdomen, and
blood, and demonstrate that FlyPhoneDB can readily identify previously characterized cell–cell communication pathways.
Altogether, FlyPhoneDB is an easy-to-use framework that can be used to predict cell–cell communication between cell types from
single-cell RNA sequencing data in Drosophila.
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Introduction
Single-cell RNA sequencing (scRNA-seq) is increasingly being

used for high-throughput and high-precision studies to charac-

terize cell states and cell types and, in particular, is quickly be-

coming the method of choice to study developmental and

physiological processes. scRNA-seq avoids the limitation of only

detecting average expression levels of RNAs as in traditional bulk

RNA-seq approaches, and allows studies of sample heterogeneity

at the single-cell level. scRNA-seq methods have also improved

in terms of throughput and scalability, such that it is now possi-

ble to analyze tens of thousands of cells in 1 experiment (Fan

et al. 2015; Klein et al. 2015; Macosko et al. 2015). Further,

improvements in throughput and accuracy have expanded po-

tential applications of scRNA-seq technology. For example,

scRNA-seq is gradually being used to gain a deep understanding

of entire development processes, including, through cluster

analysis of all cells, definition of new subgroups, comparisons of

subgroup heterogeneity, reconstruction of pseudo-time trajecto-

ries, generation of regulatory networks during development

processes, and prediction of cell–cell interactions (Ghosh et al.
2020; Hung et al. 2020; Tattikota et al. 2020).

Several methods have been developed to predict cell–cell com-
munication from scRNA-seq data, including CellPhoneDB,
NicheNet, and CellChat (Browaeys et al. 2020; Efremova et al.
2020; Jin et al. 2021). All of these methods start by generating a
single-cell gene expression matrix of ligand–receptor (L–R) pairs
that is then used to predict the strength of interactions between
cells. Each method has its own strengths. CellPhoneDB in its
predictions of cell–cell communication not only considers L–R
interactions but also considers coexpression of components of
multisubunit L–R complexes (Efremova et al. 2020). NicheNet
adds another layer of complexity as it predicts ligand–target
interactions by integrating L–R information with downstream
signal transduction and gene regulatory network information
(Browaeys et al. 2020). CellChat considers signal cofactors,
including inhibitory and stimulatory membrane-bound corecep-
tors, soluble agonists, and antagonists of cell–cell communica-
tion (Jin et al. 2021). All of these tools rely on the annotation of
ligands and receptors while some also rely on the annotation
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of signaling pathways. Among all the existing resources/tools,
only CellPhoneDB and CellChat are possible to be configured to
analyze Drosophila data if user provides the L–R annotation, how-
ever, it is not easy to use for this purpose. For example, preparing
files in the format needed for analysis requires extra work and
does not provide ways for users to view activities of individual
core pathway components.

Here, we developed FlyPhoneDB, a quantification algorithm
that calculates interaction scores to predict L–R interactions

between cells in Drosophila (Fig. 1a). We first established a high-
confidence list of L–R pairs specific for the major Drosophila sig-
naling pathways and stored the annotation in FlyPhoneDB. Next,
we developed a pipeline that calculates interaction scores in
scRNAseq data, which is then used to make predictions of L–R
interactions between cells. We demonstrate the utility of the tool
by analyzing 3 published scRNAseq datasets from the adult
Drosophila midgut, abdomen, and immune system (Ghosh et al.
2020; Hung et al. 2020; Tattikota et al. 2020). Finally, we

(a)

(d)

(b)

(c)

Fig. 1. Overview of FlyPhoneDB. a) Framework of FlyPhoneDB with input, statistical analysis, and user interface. b) FlyPhoneDB requires users to
provide gene-cell matrix and metadata that contains barcode and cluster information. c) FlyPhoneDB provides various visualization tools to show
ligand–receptor interactions between cell types. d) FlyPhoneDB website contains 4 different sections: (1) Browse the annotation database; (2) Submit
your own annotations; (3) Browse an example; and (4) Analyze new datasets.
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developed a web-based FlyPhoneDB user interface (http://www.
flyrnai.org/tools/fly_phone), where users can browse data, upload
additional L–R pairs, and analyze their own data sets.

Materials and methods
Manual curation of L–R interactions for inclusion
in FlyPhoneDB
To establish a high-confidence list of Drosophila L–R pairs, we
manually curated information in the GLAD database (Hu et al.
2015; Upadhyay et al. 2017; Gontijo and Garelli 2018), FlyBase
(Larkin et al. 2021), and QuickGO (Huntley et al. 2015) and
imported these data into FlyPhoneDB. Other core components of
major signaling pathways, such as transcription factors, were di-
rectly imported from GLAD.

Processing of Drosophila scRNA-seq data
The Drosophila midgut scRNA-seq dataset reported by Hung et al.
(2020) was chosen for this study because a number of signaling
pathways that maintain gut homeostasis have been well charac-
terized, thus allowing us to evaluate the accuracy of FlyPhoneDB.
The gene expression matrix and metadata were retrieved from
GEO (accession code: GSE120537). The gene expression matrix
was stored in the file “GSE120537_counts.csv.gz” in which rows
are genes, columns are barcodes, and values are raw counts. The
metadata was stored in the file “GSE120537_metadata.csv.gz” in
which barcodes and cell type columns were extracted from this
file (Fig. 1b). This information can also be extracted from Seurat
Object with the function GetAssayData and seuratObj@meta.
data (Stuart et al. 2019). The abdomen and blood datasets were
obtained from GEO (GSE147601 and GSE146596, respectively) and
processed similarly. The wild-type condition was analyzed from
abdomen dataset and the wounded condition was analyzed from
the blood dataset.

Calculation of L–R interaction scores and
specificity
Expression values for each gene were normalized by dividing
them by the total expression in each cell and then multiplying by
the scale factor 10,000. Ligand and receptor expression levels
were extracted from this normalized matrix based on the L–R
pair database. Next, the average ligand and receptor expression
values for each cell type were calculated by combining cell type
information from the input metadata with the L–R expression
matrix. The interaction score was calculated as the product of log
transformed average ligand expression plus a pseudocount of 1
in the “sender cell” with the log transformed average receptor ex-
pression plus a pseudocount of 1 in the “receiver cell.” Specificity
was calculated using a permutation test by random shuffling of
the original cell type assignments from the metadata (1,000 times
by default) and then recalculating the interaction scores. P-values
were computed based on the interaction score distribution of
randomly shuffled cell types. P-values <0.05 were considered sig-
nificant.

Construction of the database and website
The L–R pairs and core components information was stored in a
MySQL database. The back end of the website was written in PHP
and the front end was written in HTML. The JQuery JavaScript li-
brary and the DataTables plugin were used in user interface and
displaying tables. Both the database and website are hosted on
the O2 high-performance computing cluster at Harvard Medical
School that is supported by Research Computing group.

Results
Overview of FlyPhoneDB
FlyPhoneDB uses single-cell gene expression matrix and
metadata that contains cell annotation as the input to calculate
interaction scores based on gene expression and L–R pairs. To
implement FlyPhoneDB, we first manually curated signaling
pathway information from GLAD, FlyBase, and QuickGO to gen-
erate a list of high-confidence L–R pairs. This resulted in a set of
196 L–R pairs with the majority representing the EGFR, PVR,
FGFR, Hedgehog, Hippo, Insulin, Notch, JAK/STAT, TGF-b, TNFa,
Wnt, Toll, and Torso signaling pathways. Next, to identify
the specificity of L–R interactions, FlyPhoneDB permutes the
cell annotation and recalculates the interaction score as
background for P-value calculation. The lower P-values (<0.05),
the more specific the interaction between 2 cell clusters is
predicted to be.

The FlyPhoneDB online analysis pipeline as well as the stand-
alone program supports a variety of visualizations, including
circle plots, dot plots, and heatmaps (Fig. 1c). For example, circle
plots are provided for each signaling pathway, which depict all of
the potential cell–cell communication events, with each node
representing a unique cell type and each edge representing a
communication event. The thickness of an edge reflects the in-
teraction strength of the communication event, such that users
can quickly identify cell types of interest for each pathway. In ad-
dition, we calculate the score of each L–R pair from one cell type
to another and vice versa. If the score from one cell type to an-
other is higher than the score from the reverse direction, we infer
the direction accordingly, which is illustrated by the arrowhead
on the edge. Dot plots are designed to provide additional detail.
For example, in cases where there are multiple ligands and/or
receptors involved in a pathway we use 1 dot plot to illustrate the
statistical outputs for all of the L–R pairs between any 2 cell
types. After users identify pathways and related cell types from a
circle plot, users can zoom into more detailed information on the
relevant dot plots. On the other hand, heatmaps, based on the
average expression level of all major components, i.e. other than
ligands and receptors, in all cell types and for each pathway are
also provided. Lists of additional major components for each
pathway were obtained from GLAD database (Hu et al. 2015).
These heatmaps provide a quick way for users to compare
expression levels among different cell types. We also provide
thumbnails of the main pathways in EGFR, FGFR, Insulin, Pvr,
Torso, TNFa, TGF-b/BMP, TGF-b/Activin, Notch, Wnt-TCF, Hedgehog,
JAK–STAT, Hippo, and Toll, which are available at FlyBase (http://
flybase.org/; release FB2021_04) (Fig. 2).

FlyPhoneDB website
The FlyPhoneDB site contains 4 different sections that allow
users to do the following (Fig. 1d): (1) Browse the annotation of L–
R pairs as well as the core component for each pathway with an
option to download the information (Fig. 3); (2) Provide their own
annotations by uploading a file with new information. Users have
the option to upload 1 pair at a time or upload in batch mode us-
ing a template file. An upload triggers an email message to
FlyPhoneDB. The information will then be reviewed by staff and
updated on the backend database; (3) Browse the analysis result
of scRNA-seq dataset from the Drosophila midgut as user case.
Users can browse L–R interactions illustrated by dot plots and
view expression patterns of all core components on a heatmap;
and (4) Analyze new datasets. Users can upload a file of expres-
sion matrix obtained from a scRNA-seq dataset and the
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corresponding metadata file, and then analyze the dataset using

the FlyPhoneDB pipeline. An email message is sent automatically

when the analysis is completed and result files, including a table

of statistics and visualizations, is made available for download.

Using FlyPhoneDB to identify signaling pathways
in adult Drosophila organs
To assess FlyPhoneDB, we tested whether the tool could make ac-

curate predictions, from existing scRNA-seq data sets, of cell–cell

communication pathways that have been reported in the litera-

ture. We first focused our analysis on the fly gut, as a number of
specific signaling pathways have been shown to regulate the

maintenance of the adult midgut in an autocrine or paracrine

manner.

The adult midgut largely consists of absorptive enterocytes
(ECs) and secretory enteroendocrine cells (EEs) that are replen-
ished by proliferative intestinal stem cells (ISCs). These 3 major
cell types can be further categorized into subtypes according to
their spatial or transient states (Buchon et al. 2013; Dutta et al.
2015; Guo et al. 2019; Hung et al. 2020, 2021). For example, ISCs
can differentiate into enteroblasts (EBs), which is a transient state
before becoming ECs. Previously, we identified 22 clusters in
scRNA-seq data acquired from whole Drosophila midguts (Hung
et al. 2020). These clusters included 1 cluster annotated as ISC/
EBs, 14 clusters annotated as ECs, 3 clusters annotated as EEs, 1
cluster annotated as cardia, and 3 clusters of unidentified cell
types. Among the EC clusters, 4 clusters (aEC1–4) correspond to
the anterior midgut, 1 (mEC) maps to the middle midgut, 3

Fig. 2. Thumbnails of the main signaling pathways. A set of thumbnails representing EGFR, FGFR, Insulin, Pvr, Torso, TNFa, TGF-b/BMP, TGF-b/Activin,
Notch, Wnt-TCF, Hedgehog, JAK–STAT, Hippo, and Toll signaling pathways.
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(pEC1–3) to the posterior, one to copper and iron cells, one to
large flat cells (LFC), and one to differentiating EC (dEC), and 3
were annotated as “EC-like” clusters. We applied FlyPhoneDB to
this dataset and constructed heatmaps to visualize the expres-
sion levels for each of the 13 major signaling pathways
(Supplementary Fig.1, a–c). We also generated visual representa-
tions of the interaction score and statistical significance of all
possible combinations of L–R cell–cell interaction pairs.

We first looked at the Notch signaling pathway (Fig. 4). ISCs
produce the ligand Delta (Dl), which activates the Notch (N) recep-
tor, triggering ISCs to develop into EBs (Micchelli and Perrimon
2006; Ohlstein and Spradling 2006). Subsequently, EBs differenti-
ate toward the EC lineage. Accordingly, our expression
profile shows enrichment in the ISC/EB cluster of Dl, N, and
other key components of the Notch signaling pathway, including
kuzbanian (kuz), an ADAM family metalloprotease that plays
a role in the cleavage of N (Lieber et al. 2002), and many of the
enhancer of split [E(spl)] genes. In addition, ISC/EB > ISC/EB signal-
ing had the strongest Dl–N interaction score of all pairwise inter-
actions.

We next looked at the FlyPhoneDB output related to the JAK/
STAT pathway. The L–R pairs for this pathway consist of binding

interactions between any of the 3 unpaired ligands (Upd1–3) and
the Domeless (Dome) receptor. In the gut, all Upds are upregulated
upon injury (Jiang et al. 2009). Specifically, Upds produced from
ECs activate JAK/STAT signaling in Dome-expressing ISCs to pro-
mote cell division. Upds are also required for proliferation of ISCs
under homeostatic conditions (Osman et al. 2012). Accordingly,
we observed upd2-3 expression in a few EC clusters, with the
strongest expression in the pEC3 cluster, and we observed dome
expression in the ISC/EB cluster (Supplementary Fig. 1a). Notably,
for the L–R pair Upd3-Dome, the cell interaction score for aEC1
and pEC3 cluster signaling to the ISC/EB cluster was greater than
that of ISC/EB signaling to these EC clusters. This indicates that
the directionality of signaling can be inferred from the cell inter-
action scores. We also found that ISC/EB signaling to itself (ISC/
EB > ISC/EB) had significant interaction scores for both the Upd2-
Dome and Upd3-Dome L–R pairs, suggesting an autocrine role for
Upd2 and Upd3.

We then looked at the EGFR signaling pathway. Upon damage
or infection of the midgut, EGFR signaling in ISCs is enhanced by
the upregulation and secretion of the EGFR ligands Vein (Vn), Spitz
(Spi), and Kernen (Krn) from surrounding cells to promote prolifer-
ation (Jiang et al. 2011). Moreover, suppression of EGFR signaling

Fig. 3. FlyPhoneDB annotation panel. a) Browser of FlyPhoneDB annotation. b) Annotation of L–R pairs. c) Core components information for each
signaling pathway. Users can filter, sort, and download the various tables.
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during homeostasis also leads to a loss of EBs and ISCs (Jiang

et al. 2011). This suggests that the ECs > ISCs L–R interactions of

the EGFR pathway are active during homeostasis, albeit at a lower

level. Consistent with this, we observed expression of Krn in 3 EC

clusters (aEC4, mEC, and pEC2-3) and spi in the ISC/EB cluster. In

addition, we also observed Vn expression in pEC2 and pEC3.

Similar to the JAK/STAT pathway, cell interaction scores for EC to

ISC/EB signaling for Vn-, Krn-, or Spi-Egfr L–R pairs were greater

than those of ISC/EB to EC signaling (Supplementary Fig. 1b). This

suggests that FlyPhoneDB can accurately predict the directional-

ity of L–R pairs between cell types. Furthermore, EGFR signaling

in the midgut is likely to be active at a basal level during homeo-

stasis and could be primed for ISC proliferation in the event of

damage.

Fig. 4. Analysis of signaling pathways in the adult Drosophila midgut. a) UMAP of the Drosophila midgut (data from Hung et al. 2020). b) Circle plot
showing the significant interaction between the Delta (Dl) ligand and Notch (N) receptor in ISC/EB. c) Dot plot showing the significant ligand–receptor
pairs of Dl–N in ISC/EB. d) Heatmap showing that Notch signaling in the entire gut is used only in ISC/EBs. It also gives a view of the components of the
Notch network that is being used.

6 | GENETICS, 2022, Vol. 220, No. 3

https://academic.oup.com/genetics/article-lookup/doi/10.1093/genetics/iyab235#supplementary-data


Interestingly, among the many interactions observed in the

FlyPhoneDB output for the midgut dataset, we found very strong
interaction scores originating from various EE clusters that were

directed toward other cell types. For example, all EE to ISC/EB in-

teraction scores were strong with regards to the Spi-Egfr and Krn-

Egfr L–R interactions. This suggests that EEs may send signals to

ISCs to promote proliferation. Among other L–R pairs, Tk-TkR99D

and Dh31–Dh31R have strong interaction scores between AstA-EE
or NPF-EE and many EC or EC-like clusters. The Tk-TkR99D obser-

vation is consistent with expectation, as the secretion of Tk by

EEs is thought to regulate lipid metabolism in ECs (Song et al.

2014). Less is known about the interaction of Dh31–Dh31R be-

tween EE and ECs, suggesting this is a topic that could be ex-

plored further. Finally, we also observed high interaction scores
when comparing EEs between itself and other EEs cluster interac-

tion scores for the L–R pair, Sema1a-PlexA. In the nervous system,

Sema1a binds to its receptor PlexA and triggers a cascade of down-

stream events that lead to a repulsive growth cone response

(Winberg et al. 1998; Winberg et al. 2001). This raises the interest-

ing possibility that a similar mechanism is used by EEs to ensure
that they are evenly distributed along the midgut. Altogether,

these findings show that FlyPhoneDB can generate new predic-

tions that can be further tested experimentally.
To further evaluate the strength of FlyPhoneDB predictions,

we next applied the FlyPhoneDB analysis approach to a second

dataset. The dataset was generated using single nuclei RNA-seq

(snRNAseq) on whole abdomens and predominantly identified 3
clusters consisting of adipocytes, muscle cells, and oenocytes

(Ghosh et al. 2020, 2021). In that study, we reported that the mus-

cle produces the VEGF ligand Pvf1, which acts on its receptor, Pvr,

in the oenocytes to inhibit lipid synthesis (Ghosh et al. 2020).

FlyPhoneDB expression profile analysis accurately identified

this cell–cell communication pathway, as Pvf1 and Pvr are
enriched in the muscles and oenocytes, respectively. Accordingly,

the Pvf1–Pvr interaction score for muscle to oenocyte signaling

is greater than found for oenocyte to muscle signaling

(Supplementary Fig. 2).
Finally, we applied FlyPhoneDB to a third study, which sur-

veyed hemocytes in unwounded, wounded, and parasitic wasp-

infested larvae (Tattikota et al. 2020). The study identified 17
clusters including 12 plasmatocyte (PM) clusters, 2 clusters of

lamellocytes (LM), 2 clusters of crystal cells (CC), and 1 nonhemo-

cyte cluster. Pathway enrichment analysis revealed that the FGF

receptor breathless (btl) and its only ligand, branchless (bnl), was

enriched in the LM2 and CC2 clusters, respectively. Functional

analyses further showed that Bnl–Btl L–R communication be-
tween LM2–CC2 is crucial for the melanization of parasitoid wasp

eggs. Consistent with this, the FlyPhoneDB expression profile

indicates that Bnl is enriched in LM2 and Btl in CC2. Furthermore,

the Bnl–Btl interaction score for LM2 to CC2 signaling is greater

than that of CC2 to LM2 signaling (Supplementary Fig. 3).
In summary, by testing FlyPhoneDB with existing scRNA-seq

datasets for well-studied tissues, we found that we were able to

identify known L–R interactions, validating the effectiveness of
the approach. In all the cases that we examined, the directional-

ity of L–R between cell types, when known, was accurately pre-

dicted by selecting the higher of the 2 directional cell-to-cell

interaction scores for a pair of cell types. Altogether, our reanaly-

sis using FlyPhoneDB of established directional and autonomous

L–R signaling events suggest that the approach can be used to
uncover novel cell communication events.

Comparison of FlyPhoneDB with CellPhoneDB
and CellChat
CellPhoneDB and CellChat each provide a standalone program at
github without any web-based portal. CellChat provides ligand
and receptor annotations for mouse whereas CellPhoneDB pro-
vides these annotations for human. Users have to install the pro-
gram on a local computer to analyze datasets either using the
mouse/human L–R annotations provided with the tool or by
uploading L–R annotations for other species. In comparison,
FlyPhoneDB provides: (1). a knowledgebase of manually curated
high-quality L–R relationships for Drosophila, which is currently
not provided by any of the existing resources; (2) a standalone
program; and (3) a web portal for scientists to upload and analyze
scRNA-seq data directly without a need to set up and run a
program locally. The third option is quite important for bench
scientists, who often lack the expertise to install and configure a
complicated software package.

Regarding the core algorithm, FlyPhoneDB is a reimplementa-
tion of CellPhoneDB. CellPhoneDB does the analysis based on the
average expression level of ligand and receptor using a program
written in Python, whereas FlyPhoneDB is based on the product
of L–R expression levels using a package implemented in R. By
contrast, the core algorithm of CellChat is quite different.
CellChat quantifies the communication probability based on a
mass action-based model. Given that the core algorithm of
CellChat is different from that of FlyPhoneDB, and given that the
performance of CellChat has only been demonstrated using hu-
man and mouse data, we analyzed a Drosophila gut dataset (Hung
et al. 2020) using CellChat with the Drosophila L–R annotations
used at FlyPhoneDB and compared the results. Using a P-value of
<0.05 as a filter, CellChat predicted 11,879 L–R relationships of
2,520 cell–cell communication events, while FlyPhoneDB pre-
dicted 4,615 L–R relationships for 1,814 cell–cell communication
events. The overlap is 729 cell–cell communication events. Since
cell–cell communication is not an extensively studied area with a
gold standard set of benchmarks, we focused on the Notch, JAK/
STAT, and EGFR signaling pathways relevant to gut ISC/EB as 3
ground truths established by literature. In all, FlyPhoneDB and
CellChat identified 49 and 46 cell–cell communication events re-
spectively, in which 35 events are overlapping (Supplementary
Table 1). For both methods, all cell–cell L–R pairs were ranked
based on the corresponding measurement score. Since multiple
L–R combinations exist for each individual pathway, we used the
highest L–R ranking as the representation of pathway activity in
any given cell–cell interaction. For the purpose of evaluating the
2 methods, we assumed that a higher ranking equates to more
relevance. Comparing the best rank of the cell–cell interaction of
each signaling pathway showed that both methods are quite con-
sistent. Both methods were able to identify ISC/EB > ISC/EB as
the highest best ranked score amongst all pair-wise combination
of source > target within the Notch pathway. Likewise, both
approaches resulted in ISC/EB > ISC/EB scores with very high
ranking for the EGFR pathway (FlyphoneDB : 3, CellChat : 1). aEC/
pEC > ISC/EB also had similar best ranks when comparing both
methods (aEC1–3, pEC1–3, FlyphoneDB: 35, 59, 34, 18, 19, 12;
CellChat: 56, 45, 22, 20, 17, 16). On the other hand, some of the
overlapping cell–cell communication events have different direc-
tionality. We investigated the pathways for which CellChat was
not able to infer the same directionality observed with
FlyPhoneDB. The directionality inferred from FlyPhoneDB is more
consistent with the literature compared to CellChat. For example,
the probability score of JAK–STAT signaling pathway between
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most EC clusters > ISC/EB pairs were no different from the recip-
rocal score (ISC/EB > EC clusters). Furthermore, the score of most
ISC/EB > EC cluster had a higher score for all ligand–EGFR pairs
than the opposite direction. This is contrary to what is expected.

Altogether, these comparisons highlight the advantages of
FlyPhoneDB, including the inclusion of manually curated high-
quality L–R relationships, the convenience offered to bench scien-
tists, who can upload their data to get analysis result without the
difficulty of setting up a program on a local computer, and the
usefulness of obtaining more biologically relevant results when
analyzing a Drosophila dataset.

Discussion
We have developed FlyPhoneDB to explore cell–cell communica-
tion in Drosophila using scRNA-seq data. To provide a high-
confidence L–R interaction set, we manually curated L–R interac-
tions from various resources, literature, and the Drosophila com-
munity. The strength of FlyPhoneDB analyses depends on an up-
to-date database of L–R interactions. To facilitate community
updates, we implemented a page at which users can use a form
to suggest new L–R pairs and provide the relevant publication(s)
supporting the database expansion. In addition to supporting
user-initiated submissions, we will continue to work with FlyBase
to curate L–R interactions reported in the literature and import
them into FlyPhoneDB as new knowledge emerges. Given the
ability to intake community input as well as the potential anno-
tation pipeline from FlyBase, we anticipate that FlyPhoneDB will
improve and expand over time, further increasing its value to the
community. To make FlyPhoneDB user-friendly, we also devel-
oped the web-based FlyPhoneDB Explorer, which allows users to
easily search the L–R database, upload new L–R annotations,
browse the midgut cell crosstalk example, and upload scRNA-seq
data to perform their own analyses. We also note that current
scRNA-seq data do not provide spatial information and note that
FlyPhoneDB can help predict spatial locations of cells in specific
clusters by projecting cell–cell communication pathways onto
the anatomy.

Although the core algorithm of score calculation of
FlyPhoneDB is similar to that of CellPhoneDB, FlyPhoneDB
presents a number of new features compared to other analysis
tools that predict cell–cell communication from scRNA-seq data.
Whereas all existing tools were originally developed to analyze
human/mouse data, FlyPhoneDB was developed specifically for
Drosophila research and makes it convenient to analyze Drosophila
scRNA-seq data by providing manually curated high-quality L–R
annotation for Drosophila and a web portal that allows users to di-
rectly analyze a dataset online. In addition, FlyPhoneDB provides
multiple ways to visualize results. This includes displaying the
activity of all core components besides L–R for each pathway
through a heatmap, which can help users quickly compare path-
way activities between different cell types. The availability of a
standalone version of FlyPhoneDB also makes it possible for users
to analyze datasets obtained from other organisms. With more
and more scRNA-seq datasets becoming available, we anticipate
that FlyPhoneDB will play an important role in the characteriza-
tion of cell–cell communication in Drosophila and beyond.

Code availability
The code is available on Github: https://github.com/liuyifang/
FlyPhoneDB.

Data availability
FlyPhoneDB web server is available at https://www.flyrnai.org/
tools/fly_phone/web/. The code of the standalone program is avail-
able on Github: https://github.com/liuyifang/FlyPhoneDB. Three
datasets used in this study are accessible through GEO series acces-
sion number GSE120537 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc¼GSE120537), GSE146596 (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE146596), and GSE147601 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147601).

Supplemental material is available at GENETICS online.
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