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ABSTRACT

Periodontitis is among most common human inflammatory diseases and characterized by
destruction of tooth-supporting tissues that will eventually lead to tooth loss. Diabetes
mellitus (DM) is a group of metabolic disorders characterized by chronic hyperglycemia
which results from defects in insulin secretion and/or insulin resistance. Numerous studies
have provided evidence for the inter-relationship between DM and periodontitis that has
been considered as the sixth most frequent complication of DM. However, the mechan-
isms are not fully understood yet. The impact of DM on periodontitis through hypergly-
cemia and inflammatory pathways is well described, but the effects of DM on oral
microbiota remain controversial according to previous studies. Recent studies using next-
generation sequencing technology indicate that DM can alter the biodiversity and com-
position of oral microbiome especially subgingival microbiome. This may be another
mechanism by which DM risks or aggravates periodontitis. Thus, to understand the role
of oral microbiome in periodontitis of diabetics and the mechanism of shifts of oral
microbiome under DM would be valuable for making specific therapeutic regimens for
treating periodontitis patients with DM or preventing diabetic patients from periodontitis.
This article reviews the role of oral microbiome in periodontal health (symbiosis) and
disease (dysbiosis), highlights the oral microbial shifts under DM and summarizes the
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mechanism of the shifts.

Introduction

Periodontal diseases comprise a wide range of inflam-
matory conditions of periodontal supporting tissues
including gingiva, alveolar bone and periodontal liga-
ment [1]. Gingivitis is the localized inflammation of the
gingiva, while periodontitis is characterized by the loss
of gingiva, alveolar bone and periodontal ligament. The
deep periodontal ‘pocket’ is a hallmark of the disease
and can eventually lead to tooth loss [2]. Periodontal
diseases are currently considered to share a similar
aetiopathogenesis, which is initiated and sustained by
the oral microbial biofilm [2]. Other factors such as
gene susceptibility and environmental conditions also
influence the morbidity of the diseases [3]. Moreover,
recent evidence has indicated that periodontitis is epi-
demiologically associated with several systemic disor-
ders such as atherosclerosis, adverse pregnancy
outcomes, rheumatoid arthritis, aspiration pneumonia,
certain cancers and diabetes mellitus [4].

Diabetes mellitus (DM) is a group of metabolic dis-
orders characterized by chronic hyperglycemia which
results from defects in insulin secretion and/or insulin
resistance over a prolonged period of time. Generally,

there are two main types of DM: type 1 diabetes mellitus
(T1IDM) and type 2 diabetes mellitus (T2DM) [5].
T1DM is due to autoimmune B-cell destruction, usually
leading to absolute insulin deficiency, including latent
autoimmune diabetes of adulthood [5]. T2DM is due to
a progressive loss of adequate B-cell insulin secretion
and insulin resistance [5,6]. According to the World
Health Organization, DM currently affects approxi-
mately 422 million people globally and 1.6 million
deaths are directly attributed to DM each year. In
2045, the number of diabetic patients is expected to
increase to 629 million [7]. Of all the diagnosed diabetes
cases, T2DM accounts for 90%-95% [5] and affects
more than 380 million people worldwide, representing
8.8% of individuals aged 20-79 years [8]. Moreover,
T2DM may cause long-term complications including
retinopathy, nephropathy, peripheral neuropathy and
atherosclerotic cardiovascular, peripheral arterial and
cerebrovascular diseases [9]. Also, periodontal diseases
are highly likely to occur and aggravate in individuals
with DM especially in poorly controlled diabetics [10].
Likewise, since periodontal diseases may contribute to
the body’s overall inflammatory burden, individuals
with periodontitis are more potentially to develop DM
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[2]. Thus, a ‘two-way’ relationship between the two
diseases is established [10].

The impact of DM on periodontal diseases
through hyperglycemia and inflammatory pathways
is well described [10-12], while the effects of DM on
oral microbiome remains controversial. Previous stu-
dies failed to reach a consensus on that DM affects
the oral microbiome [13], possibly because of the
limited numbers of bacteria being surveyed [14]. In
recent years, the development of next-generation
sequencing (NGS) technologies allowed us to study
the oral microbiome more comprehensively and their
increasing affordability also facilitated such studies to
become the mainstream. Thus, the use of NGS has
broadened and deepened our understanding about
whether DM may exert a selective pressure on oral
microbiome by comprehensively comparing the oral
microbiome from nondiabetic and diabetic indivi-
duals with and without periodontitis. In the next
sections, we will review the oral microbiome in health
and periodontitis, highlight the alteration of oral
microbiome especially subgingival microbiome
under DM and summarize the mechanism by which
DM changes oral microbiome. The search strategy
and inclusion criteria are as follows: search keywords
are ‘oral microbiome’ or ‘subgingival microbiome’,
‘diabetes’ or ‘diabetes mellitus’, ‘periodontitis’ or “per-
iodontal diseases’ and ‘next-generation sequencing’;
search databases include MEDLINE and WEB OF
SCIENCE; inclusion criteria are human studies or
animal studies on oral microbiome in diabetics by
using next-generation sequencing technology and
comparing with non-diabetics.

Oral microbiome and periodontitis

The concern on oral biofilms has been over three
hundred years since Antony van Leeuwenhoek
peered and observed the existence of microbes from
his own dental plaque with a microscope that he
constructed himself in the 1700s [15]. With the devel-
opment of technology, quantities of microorganisms
have been isolated from the oral cavity and exten-
sively studied by wusing cultivation and non-
traditional molecular-based approaches [16]. More
recently, the next-generation sequencing technology
enables microbiologists to study the microorganisms
at a specific niche as a whole in unprecedented detail
[17]. Consequently, the term ‘microbiome’ was pro-
posed ‘to signify the ecological community of com-
mensal, symbiotic, and pathogenic microorganisms
that literally share our body space and have been all
but ignored as determinants of health and disease’ by
the Nobel laureate microbiologist, Joshua Lederberg

[18]. The Human Oral Microbiome Database
(HOMD) contains comprehensive information
about approximately 775 prokaryote species

including both cultivable and non-cultivable isolates
that inhabit in the oral cavity, links sequence data
with phenotypic, phylogenetic, clinical and biblio-
graphic information and provides tools for use in
understanding the role of the microbiome in health
and disease [19].

Due to the local environmental features of the oral
cavity, members of the oral microbiome co-aggregate
and interact with each other by synergism, signaling
or antagonism to best adapt to the surrounding
environment [20]. Meanwhile, the oral microbial
communities interact with host, affecting the oral
health of the host. Normally, the oral microbial com-
munities are stable and symbiotic in healthy indivi-
duals with healthy food habits and good hygiene,
maintaining homeostasis with the host’s local
immune system [21-23]. Once the balance was inter-
rupted by external factors such as food habits,
tobacco and alcohol consumption, stress, hormonal
imbalance, puberty, poor oral hygiene and diabetes,
the microbial communities dramatically shift from
a symbiotic state to a dysbiotic state, which induces
diseases such as periodontitis [16,24,25]. The dysbio-
tic microbiome can be characterized by three differ-
ent scenarios that are not mutually exclusive and may
occur simultaneously, viz, the overall loss of micro-
bial diversity, relative reduction of the beneficial spe-
cies and increase of the pathogenic species [26,27].

The concept of loss of biodiversity indicates
a decline of richness, numbers and distributing even-
ness of species in a biological community, which may
eventually lead to the breakdown of an ecosystem
[26,27]. Several studies have reported that loss of
biodiversity in dental caries is associated with the
severity of the disease [28-33]. However, changes in
microbial biodiversity remain controversial in period-
ontitis with some studies reporting loss of biodiver-
sity in disease [34-38] and others indicating the
opposite [39-41]. The latter proposed that the
increased microbial diversity in periodontitis is due
to the increased amount of nutrients derived from
host’s tissue degradation in inflammation [39,40]. In
addition, there are also reports indicating no signifi-
cant difference in oral microbial biodiversity between
the healthy individuals and the patients with period-
ontitis [42,43]. The discrepancy of the results may be
attributed to differences in studying methods such as
sequencing methods, sequencing region, sequencing
depth and sampling sites (periodontal pocket depths)
[17,39,44].

Another characteristic of dysbiosis is the loss of
some beneficial microorganisms [26]. Those species
are important for the development and maturation of
the local immune system in the oral cavity [19,26].
Those species stimulate the host to generate appro-
priate immune response, which can protect the host
against oral pathogens and from carcinogenic



metabolites [45,46]. Moreover, those beneficial
microorganisms also participate in the nitrate-nitrite-
nitric oxide pathway [47]. Thus, those microorgan-
isms can offer several benefits to the host. Reduction
of those beneficial species may weaken the host’s
ability to fight against the pathogenic bacteria and
predisposing the host to generate an excessive
immune response against the host’s own tissue
when the host is exposed to carcinogenic metabolites
and detrimental vascular changes [19,26]. Loss of
beneficial species is an important factor in the devel-
opment of chronic periodontitis that is persistent and
excessive inflammation of periodontal tissues causing
the destruction of gingiva, alveolar bone and period-
ontal ligament and even tooth loss [27].

The most apparent feature of dysbiosis is the over-
growth of pathogenic microorganisms, e.g. the red
complex (Porphyromonas gingivalis, Treponema den-
ticola and Tannerella forsythia) [48]. Although the
subgingival microbiome within the healthy periodon-
tal state contains those classically defined oral patho-
gens, they do not induce any immune responses due
to their relatively low abundance in the healthy state
[49]. Those microorganisms that do not dominate in
the healthy state dramatically increase in periodontitis
[17]. But they do not solely cause periodontitis,
rather, they synergize to initiate the disease [32].
The recent hypothesis for pathogenesis of periodonti-
tis has been concluded into a Polymicrobial Synergy
and Dysbiosis (PSD) model [50,51], which is consis-
tent with the human microbiome studies, the
mechanistic studies in animal models and the ‘ecolo-
gical plaque’” hypothesis, which indicates that environ-
mental factors determine the outgrow of specific
pathogenic  bacteria, known as pathobionts
[32,52,53]. The PSD model proposes that the period-
ontal disease is not initiated by individual or several
causative pathogens but rather by a synergistic poly-
microbial community, within which specific constitu-
ents, or combinations of functional genes, fulfil
distinct roles that converge to shape and stabilize
a dysbiotic microbiota, which perturbs host home-
ostasis [32,54]. For instance, the pathogenic functions
require a series of specific molecules instead of a sole
molecule. Those molecules include adhesins, recep-
tors, proteolytic enzymes and proinflammatory sur-
face ligands, which cannot be expressed by one
species of pathogen. Rather, synergism of the patho-
gens expressing those molecules sustains a heterotypic
and dysbiotic microbial community and acts as
a community virulence factor that elicits a non-
resolving and tissue-destructive host response [50,55].

Oral microbiome under DM

Overall, regardless of periodontal health, DM patients
exhibited distinct oral microbial features (microbial
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composition, biological diversity and relative abun-
dance of specific bacteria) compared with healthy
controls (Table 1) [56-60]. Based on principal coor-
dinate analysis (PCoA), patients with T2DM and
healthy cohorts revealed different oral microbial clus-
ters [56,58]. A clear reduced biological and phyloge-
netic diversity of oral microbiome was apparent in
diabetic and pre-diabetic individuals in comparison
with that in the normoglycemic controls [59,60]. The
phylum Actinobacteria was present significantly less
abundant among patients with T2DM than among
the controls [56,57]. Genera Actinomyces and
Atopobium were associated with 66% and 72%
decreased risk of diabetes with p-values of 8.9 x 10~
> and 7.4 x 107°, respectively [57]. While another
study indicated higher abundances of Actinomyces
and Selenomonas with lower abundance of
Alloprevotella in diabetic patients compared with
non-diabetic individuals [58], a subsequent correla-
tional analysis of the differential bacteria and clinical
characteristics ~ demonstrated  that the oral
microbiomes were related to drug treatment for DM
and certain pathological changes [60]. But the treat-
ment did not lead to microbial recovery [60]. The
subgingival microbiome of diabetics with healthy per-
iodontium reveals lower species richness than non-
diabetic healthy controls [60,61], but contains rela-
tively higher abundances of periodontally pathogenic
red complex species and a potentially opportunisti-
cally pathogenic orange complex and lower abun-
dances of healthy-compatible species [61,62]. This
indicates that the subgingival microbiome in diabetic
patients with clinically healthy periodontium has
a disease-associated community framework, predis-
posing the individuals to develop periodontal diseases
[61-63].

In diabetic patients with periodontitis, oral microbial
profiles also reveal distinct features compared with non-
diabetic patients with periodontitis (Table 1) [60,64,65],
with reported either increased [66,67] or reduced micro-
bial diversity [61]. The subgingival microbiome of dia-
betic patients with periodontitis exhibited relatively
higher abundances of Leptotrichiaceae, Neisseriaceae

and Dialister; Lactobacillus, Corynebacterium and
Pseudomonas; Saccharibacteria, Aggregatibacter,
Neisseria, Gemella, Eikenella, Selenomonas, Actin

omyces, Capnocytophaga, Fusobacterium, Veillonella,
Streptococcus and Actinomyces and relatively lower abun-
dances of Filifactor, Treponema, Porphyromonas,
Prevotella, and Parvimonas than non-diabetic patients
with periodontitis, while both groups showed similar
clinical manifestations [61,63,65,66]. Furthermore, the
difference of subgingival microbiome between the peri-
odontitis state and the healthy state in diabetic patients
was less prominent than that in non-diabetic patients,
since the difference of subgingival microbiome of the
disease state and the healthy state in T2DM patients
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could not be clearly distinguished [62]. It should be
mentioned that the pocket depth and bleeding had no
significant impact on the subgingival microbiome in
diabetic patients [61,66,68], which is different from the
cases of non-diabetic patients with periodontitis [39,62].
After treatment (in the resolved state), the subgingival
microbiome of both T2DM patients and non-diabetic
individuals resembles the subgingival microbiome in the
healthy state [62]. However, in the resolved state, the
subgingival microbiome of T2DM patients revealed
lower abundances of orange complex and red complex
species than non-diabetic individuals, which indicates
that T2DM patients after periodontal treatment are less
tolerant to the periodontitis-associated species and thus
have lower periodontal pathogens to maintain the clini-
cally resolved periodontal health [62].

To confirm the effect of DM on oral microbiome and
its association with periodontitis, an animal study was
carried out by Xiao et al [69]. In this study, the oral
microbiome of two groups of mice (one was prone to
develop DM and the other was normal littermates)
presents similar oral microbiome at the beginning, but
revealed apparently different after one group became
diabetic [69]. DM reduced the diversity of total oral
microbiome in mice but increased the levels of
Proteobacteria (Enterobacteriaceae) and Firmicutes
(Enterococcus, Staphylococcus and Aerococcus) [69],
which was associated with pathologic changes reported
in other studies [14]. Furthermore, by transferring the
oral microbiota of diabetic and non-diabetic mice to
germ-free recipient mice, greater periodontal inflamma-
tion and bone loss were observed in the mice receiving
bacteria from diabetic mice [69]. Moreover, the same
group also found that IL-17 played an important role in
the oral microbial alteration of diabetic mice, as local
inhibition of IL-17 could not only render the oral micro-
biome of diabetic mice similar to that of non-diabetic
mice but also reduce the pathogenicity of oral microbiota
in diabetic mice [69]. However, since the oral micro-
biome of mice does not share similarity to human oral
microbiome, whether these findings are suitable for
human requires further studies [70,71].

Further studies indicated that prediabetic and
diabetic periodontitis patients with different glyce-
mic levels may harbor different subgingival micro-
biome [61,67,68]. Subgingival microbiome in
periodontitis patients with inadequate glycemic
levels (HbAlc > 8%) revealed a reduced biodiver-
sity compared to patients with adequate glycemic
levels (HbAlc < 7.8%) [68]. Levels of recognized
periodontopathogens, such as Porphyromonas gin-
givalis, Tannerella forsythia and Treponema denti-
cola that are indicative of periodontitis, did not
differ between diabetic patients with different gly-
cemic levels [68]. Higher abundances of species
that are able to use carbohydrates or their by-
products within families Streptococcaceae,

Prevotellaceae and Veillonellaceae were seen in
patients with a higher glycemic level, whereas
those forming butyrate/pyruvate were decreased in
patients with inadequate glycemic control [68]. The
increased level of S. agalactiae in diabetic patients
with an inadequate glycemic level belongs to Group
B streptococci (GBS) and is an important invasive
pathogen in newborn infants, elderly and those
with chronic diseases [68]. Prevotella produces
acetate and succinate from glucose fermentation,
and the cultivable species Alloprevotella are sac-
charolytic, producing acetate and major amounts
of succinate [68,72,73]. Their growth in liquid
media is stimulated by fermentable carbohydrates
[72]. The increase of Veillonellaceae in diabetic
patients with periodontitis was due to the utiliza-
tion of fermentation catabolites produced by the
fermenting species [68]. This group of bacteria
convert lactate and succinate to acetate and propio-
nate and may play an active role in reducing the
environment acidity [74,75].

As periodontitis is driven by polymicrobial effects,
microorganisms may harbor redundant roles contribut-
ing to the development of periodontitis. Thus, detecting
the changes of microbial pathways in DM may provide
more intrinsic information about how DM predisposes
patients to develop periodontitis. In both diabetic and
nondiabetic patients with periodontitis, 4 functional
pathways of virulence factors were enriched [62]. They
are pathways associated with cell motility (bacterial moti-
lity, flagellar assembly and bacterial chemotaxis) and
a signal transduction pathway (two-component system)
[62]. In addition, three pathogenic pathways were less
prevalent in T2DM patients with periodontitis than non-
diabetic patients with periodontitis [62]. There are two
pathways in lipid metabolism (ether lipid metabolism
and arachidonic acid metabolism) and one pathway in
carbohydrate metabolism (inositol phosphate metabo-
lism), which are linked via lipoprotein-associated phos-
pholipases, a group of inflammatory enzymes associated
with oral infections [62]. In contrast, three pathways of
carbohydrate metabolism (butanoate metabolism, pen-
tose and glucuronate interconversions, and ascorbate and
aldarate metabolism) were more prevalent in T2DM than
in non-T2DM in both the periodontitis state and the
healthy state [62]. The ascorbate and aldarate metabolism
pathway has been associated with inflammatory diseases
including periodontitis [76,77] and T2DM [78].
Microbial butanoate metabolism has been indicated as
a metabolic signature of periodontal inflammation [79],
and butyrate can influence insulin sensitivity [80]. These
results might account for the epidemiological studies,
which support that periodontal infection has an adverse
effect on glycemic control [62].

Taken together, recent studies on oral microbiome
in diabetics using NGS have provided great informa-
tion about the oral microbial alteration under DM



(Table 1), which would contribute to understanding
the inter-relationship between periodontitis and DM.

Changes of periodontal immune status in DM

Diabetic complications are frequently linked to
increased inflammation, and substantial evidence
has indicated that DM increases the inflammation
of periodontal tissues. Both TIDM and T2DM lead
to increased expression of inflammatory cytokine and
chemokine in human periodontal tissues [81,82].
Those cytokines include tumor necrosis factor, pros-
taglandin E2, interleukin-1beta, interleukin-17, inter-
leukin-23 and interleukin-6 [83,84]. On the contrary,
anti-inflammatory factors such as interleukin-4,
interleukin-10, transforming growth factor-beta and
anti-inflammatory lipid-based mediators are reduced
in diabetics, along with reduction of anti-
inflammatory regulatory T cells and M2 macrophages
[85-87].

The increased expression of inflammatory cyto-
kines and chemokines in diabetics leads to increased
vascular permeability and recruitment of inflamma-
tory cells in response to bacterial challenge or other
pro-inflammatory stimuli [83,88,89]. Moreover, the
behaviors of leukocytes are altered under DM [90].
For instance, DM reinforced the interaction between
neutrophils and gingival endothelial cells by increas-
ing the expression of P-selectin glycoprotein ligand-1
and CDl1a on neutrophils and P-selectin expression
on endothelial cells [89]. Studies of other diabetic
complications indicate that DM increases pro-
inflammatory M1 macrophage polarization [91,92].
The functions of monocytes and macrophages in
patients with DM are influenced by their interactions
with the local environment within periodontal tis-
sues, including interactions between receptor for
advanced glycation end products (RAGEs) and
advanced glycation end products (AGEs), toll-like
receptor signaling, reactive oxygen species (ROS)
production and others [90].

High glucose content can lead to the formation of
advanced glycation end products (AGEs), which are
products of irreversible non-enzymatic glycation and
glycoxidation of proteins, including lipoproteins,
intracellular proteins and plasma proteins [90,93-
95]. The excessive accumulation of AGEs can alter
cytoplasmic and nuclear factors and induce the for-
mation of stable abnormal cross-links on collagen
that changes its structure and function [96]. AGEs
also increase the expression of receptor for advanced
glycation end products (RAGEs) in gingiva [90,97].
The interaction between AGEs and RAGEs can mod-
ulate cell behavior and inflammation in periodontal
tissues. For instance, the binding of AGEs and
RAGEs on gingival fibroblasts can activate nuclear
factor-kappa B, which induces the expression of
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inflammatory cytokines such as interleukin-6 and
tumor necrosis factor and stimulates the production
of ROS [98]. Although RAGEs signaling does not
directly initiate inflammation, it perpetuate and
amplify the responses of monocytes, macrophages,
neutrophils, endothelial cells and chondrocytes in
the context of inflammatory processes, diabetes com-
plications and atherosclerosis [99]. Interference with
RAGEs signaling under chronic inflammatory condi-
tions results in improvement in clinical and biochem-
ical signs of inflammation, including suppression in
periodontitis-associated bone loss and decreased gen-
eration of the proinflammatory cytokines tumor
necrosis factor-a and interleukin-6 in gingival tissues
[100].

Reactive oxygen species (ROS) including free radi-
cals (e.g. superoxide O, and hydroxyl radicals' OH),
nonradical oxygen species [e.g. hydrogen peroxide
(H,0,)] and reactive lipids are generated by cellular
functions such as phagocytosis and mitochondrial cell
respiration. An overproduction of superoxide by the
mitochondrial electron transport chain is considered
as the unifying underlying pathological mechanism of
diabetic complications [93]. Chronic exposure to high
glucose content induces the production of higher
levels of ROS that may cause damage to DNA and
structural components of cells and cell apoptosis
[101]. ROS may also activate mitogen-activated pro-
tein kinase and nuclear factor-kappa B signaling,
resulting in the production and release of multiple
inflammatory factors [83,102]. Diabetic patients have
an increased number of inducible nitric oxide
synthase-positive cells in the periodontium, and levels
of lipid peroxides are elevated in the gingival crevi-
cular fluid of T2DM patients [81,103]. There is
a significant correlation between lipid peroxidation
and periodontal inflammation in T2DM patients,
which suggests that lipid peroxides may contribute
to more severe periodontal inflammation [81,83,103].
Moreover, antioxidant capacity is reduced in diabetic
patients, which also contributes to the increased
levels of ROS and their adverse impact on period-
ontium indirectly [83].

Toll-like receptors represent an important
mechanism by which the host detects a variety of
invading microorganisms and trigger the expression
of genes that control the innate immune system when
binding to their ligands such as LPS, bacterial DNA,
double-stranded RNA, peptidoglycans and lipopro-
teins [90]. There is some evidence for possible altera-
tions in toll-like receptor expression in the gingival
tissues of patients with DM [90]. Elevated expression
of toll-like receptor 2 and toll-like receptor 4 is found
in gingival tissue biopsies from patients with DM and
periodontitis compared with patients with periodon-
titis alone [83,104]. In vitro studies also indicated
increased expression of toll-like receptor 2 in
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human gingival fibroblasts cultured with high levels
of glucose [105].

An important part of the periodontal immune
system that has not received much attention is the
gingival epithelial barrier. Gingival epithelium serves
as an effective barrier in protecting the gingival con-
nective tissue from oral or subgingival microorgan-
isms [106]. The structure and function of gingival
epithelium may also be altered by DM since the
keratinocytes are affected by DM [107,108]. But the
actual impact of DM on barrier function requires
further studies to be fully understood.

Mechanisms that DM affects oral microbiome

While recent evidence indicates that DM can alter the
oral microbiome, specific mechanisms are not fully
understood. According to the ecological plaque
hypothesis, changes of the microbiome may be deter-
mined by the inherent characteristics of the microbial
environment such as oxygen tension, pH, redox
potential and nutrition supply [109]. Thus, the oral
environment may act as filters to select species that
holds suitable habitat within this environment.
Besides, the formation of microbial communities
also results from interactions of the community
members with different metabolic, structural and
nutritional traits.

In this context, the inflammation imposes a strong
ecological selective pressure that drives dysbiosis with
the expansion of periodontitis-associated microbial
species at the expense of health-compatible species
[32,110]. Destruction of periodontal tissues induced
by the inflammation generates substances such as
collagen fragments and heme-containing compounds,
which could be sources of amino acids and iron for
those microbial species that utilize them [111]. Those
substances can be transferred via increased gingival
crevicular fluid into the gingival crevice, fostering the
outgrowth of proteolytic and asaccharolytic microbial
species with iron-acquisition capacity, such as P, gin-
givalis, which can uncouple the nutritionally favor-
able inflammatory response from microbicidal
responses [112]. Moreover, inflammation causes low
redox potential that favors the development of anae-
robic bacteria [110]. Consistently, a community-wide
transcriptomic study on periodontitis-associated sub-
gingival microbiome has indicated elevated expres-
sion of proteolysis-related genes, genes for peptide
transport and acquisition of iron, as well as the
genes associated with synthesis of lipopolysaccharides
that would enhance the proinflammatory ability of
the microbiota [113]. Those species that capitalize on
the inflammatory spoils and expand their populations
are termed ‘inflammophilic pathobionts’ [111].
Studies also indicated the selective overgrowth of
pathobionts by addition of serum, hemoglobin or

hemin to the in vitro formed oral multi-bacterial
community [114]. Those pathobionts upregulate the
expression of virulence-associated genes that encode
proteases, hemolysins and proteins associated with
hemin transport [114].

Together, all these findings support hypothesis
that the selective pressure induced by the inflamma-
tory environment drives the dysbiosis of the oral
microbiome. Certain microorganisms (inflammophi-
lic pathobionts) that thrive under inflammatory con-
ditions stimulate greater inflammation, leading to
reciprocal reinforcement between dysbiosis and
inflammation. This vicious cyclic process persists
and finally causes the clinical manifestations of peri-
odontitis, e.g. attachment loss and periodontal
pocket. As mentioned above, DM imposes a pre-
existing inflammatory burden on periodontal tissues
with increased levels of cytokines and ROS, altered
immune cell function, accumulation of AGEs and
upregulated expression of RAGEs and toll-like recep-
tors. This pre-existing inflammatory burden and the
increased level of glucose in gingival crevice fluid
under DM foster the growth of inflammophilic
pathobionts including the red complex, orange com-
plex and the pathobionts that metabolize carbohy-
drates or their by-products, thus causing the oral
microbiome to become a disease-associated commu-
nity framework although the periodontium seems
healthy (Figure 1). This dysbiotic microbiome initi-
ates greater inflammation in turn, finally leading to
the development of periodontitis (Figure 1).

Discussion

Since the first observation of microbes in dental pla-
que by Antony van Leeuwenhoek using his own
microscope almost four hundred years ago, the role
of oral microbial species has evolved from being
simply considered as ‘passengers’ on the human
host to one important factor that can modulate the
health of their human host and induce diseases by
working as a whole through inter-microbial syner-
gism, signaling or antagonism, instead of by one or
several species. The pathogenesis of periodontal dis-
ease has been explained by the ‘Polymicrobial
Synergy and Dysbiosis (PSD)” hypothesis, which sug-
gests that the oral microbiome shifts from a healthy
state to a diseased state in periodontal disease.
Although the reasons for this shift are still not fully
understood, ecological studies have shed light on this,
indicating that environmental changes, such as pH,
oxygen level and nutrition supply in specific oral
sites, might drive this microbial alteration.

A mass of data has indicated that patients with
DM or poorly glycemic control are more risky to
periodontitis, which urges the studies on the oral
microbiome in diabetics. The results revealed the
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alterations in the oral microbiome of subjects with
DM or undesired glycemic control, although there
were tiny differences in the specific microbial changes
within different studies. Also, these findings support
the notion that a dysbiotic oral microbiome is
a plausible contributory factor in the pathogenesis
of diabetes-induced periodontal disease. Since dia-
betic complications are frequently linked to increased
inflammation, changes in the immune status of per-
iodontal tissues in DM play an important role in the
oral microbial shift in diabetics. Based on the studies
of interactions between host and microbial commu-
nity or certain microorganisms, this article discusses
the mechanism of microbial change in DM that the
selective pressure induced by inflammatory environ-
ment drives the dysbiosis of the oral microbiome,
which in turn enhanced the inflammation. As the
vicious cyclic process persists, periodontitis occurs.
There are also shortcomings about this review.
First, this article is a narrative review. Although nar-
rative review can be evidence-based, biased point of
view may be possibly included in a narrative review.
Nevertheless, the authors of this article hope that this
review could serve as a valuable resource for inter-
ested readers to further explore the literature in per-
iodontal microbial etiology and DM. Second, this
article does not discuss the relationship between
oral microbial shifts and the microbiome in other
sites of digestive tract under DM. Since the oral cavity
is a part of digestive tract, changes of intestinal
microbiome in DM might have an influence on oral
microbiome or vice versa. However, the relationships
between intestinal microbiome and DM is complex,
which may be beyond the focus of this review.

Future direction

While the collective analysis of those studies in this
field has provided valuable insights, mechanistic and
large longitudinal studies as well as intervention
trials are still in need to confirm these results. This
information will contribute to identification of
microbial markers of disease activity, recurrence
and responses to different types of treatment [115].
Furthermore, knowing the deleterious effects of the
modulation of the periodontal microbiome by dia-
betes, it becomes important to investigate whether it
is possible to reverse these dysbiotic ‘at-risk’ micro-
bial shifts, returning it to hemostasis with therapeu-
tic approaches [115]. There are several new
directions that have potential to fill current gaps in
this field. In addition to microbiome, other omics
such as metabolomics, virome, mycobiome, proteo-
mics and host genomics provide new methodologies
to analyze the oral health/disease puzzles by incor-
porating them into bioinformatics models. As stu-
dies have demonstrated that microbial alterations in
our body correlate with numerous diseases, manip-
ulation of the microbial communities (via trans-
plants, probiotics or targeted drug delivery) could
be used to treat disease. In vitro and in vivo/pre-
clinical studies have shown promise for applying
probiotics in treating periodontal disease [116].
Moreover, with the development of large data sets
that comprise microbial and clinical information,
and the application of robust bioinformatics
approaches, it is potentially to make really persona-
lized dentistry in periodontology according to the
metadata of individual subjects.
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