Skip to main content
. 2022 May 25;14:916020. doi: 10.3389/fnagi.2022.916020

TABLE 1.

The comparative training results (with standard deviation) in binary classification task.

Algorithms Accuracy Sensitivity Specificity Precision F1-score G-mean
LD 81.30 81.99 80.06 80.58 82.26 81.02
(2.84) (3.15) (2.80) (3.32) (3.27) (2.97)
LR 82.15 82.62 81.79 82.68 82.51 82.20
(2.55) (2.66) (2.70) (2.35) (2.56) (2.60)
SRC 82.10 78.97 77.33 77.63 77.55 78.15
(2.35) (2.01) (2.64) (1.62) (1.43) (2.28)
LC-KSVD 80.27 81.34 78.94 80.85 79.93 80.13
(2.54) (2.12) (2.63) (1.82) (2.07) (1.59)
FDDL 83.16 84.47 81.38 85.20 82.86 82.91
(2.64) (??) (1.83) (1.45) (1.69) (1.54)
SRDML 85.71 85.91 85.09 84.10 85.08 85.50
(2.15) (2.23) (1.75) (1.88) (1.74) (1.96)
LMLS-SRC 89.80 90.39 87.87 88.89 90.43 89.12
(2.02) (1.35) (2.06) (1.35) (1.28) (1.19)

The bold values in Tables 16 are the best experiment results.