Skip to main content
. 2022 Jun 1;2022:8039281. doi: 10.1155/2022/8039281

Table 5.

ResNet50 on CIFAR10.

Method Pruning ratio (%) Val. acc. (%)
Para. FLOPs
AutoML for model compression (93.53%) [49] 60 +0.12
Prune Train (94.2%) [25] 70 −1.10
Automatic neural network compression (93.55%) [26] 50 −1.51
Pruning it Yourself (92.85%) [50] 41.52 34.18 −0.16
MS-KD 0.6 (95.36%) [51] 84.01 84.10 −0.24
Ours scheme 1 Iteration-6 (93.6%) 83.97 86.30 +0.40