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Exploring the role of neuropeptides in the communication between monocyte subtypes facilitates an investigation of the
pathogenesis of Kawasaki disease (KD). We investigated the patterns of interaction between neuropeptide-associated ligands
and receptors in monocyte subpopulations in KD patients. Single-cell analysis was employed for the identification of cell
subpopulations in KD patients, and monocytes were classified into 3 subpopulations: classical monocytes (CMs), intermediate
monocytes (IMs), and nonclassical monocytes (NCMs). Cell-cell communication and differential analyses were used to identify
ligand-receptor interactions in monocytes. Five neuropeptide-related genes (SORL1, TNF, SORT1, FPR2, and ANXA1) were
involved in cell-cell interactions, wherein FPR2, a neuropeptide receptor, was significantly highly expressed in KD. Weighted
gene coexpression network analysis revealed a significant correlation between the yellow module and FPR2 (p < 0:001, CC =
0:43). Using the genes in the yellow module, we constructed a PPI network to assess the possible functions of the FPR2-
associated gene network. Gene set enrichment analysis showed that increased FPR2 levels may be involved in immune system
regulation. FPR2 in CMs mediates the control of inflammation in KD. The findings of this study may provide a novel target
for the clinical treatment of KD.

1. Introduction

Kawasaki disease (KD) is an acute, self-limiting disease that
is characterized by systemic vasculitis and is the leading
cause of acquired heart disease in children in developed
countries [1, 2]. KD occurs mainly in children who are
younger than 5 years and is less common in older children
[3]. The prevalence of KD varies among different countries;
for example, in Japan, the prevalence of KD among 5-year-
old children is approximately 1% [4]. Currently, the exact
classification and etiology of KD remain highly debated
and controversial [5], although the etiopathogenesis of KD
is attributed to a combination of genetic factors and dys-

functional immune responses to multiple antigens. Research
into the mechanism of action of the immune response thus
constitutes an important breakthrough in the diagnosis
and treatment of KD [6].

Human monocyte subpopulations possess a wide range
of complex functions. Different monocyte subpopulations
perform diverse functions and are associated with multiple
inflammatory conditions and diseases, including obesity,
atherosclerosis, chronic obstructive pulmonary disease, lung
cancer, and Alzheimer’s disease [7, 8]. As evinced by the
monocyte count, intermediate monocytes (IMs) potentially
play a significant role in intravenous immunoglobulin
(IVIG) resistance to the treatment of KD in children [9].
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However, the functions of activated monocyte subpopula-
tions are usually difficult to define, likely due to the hetero-
geneity of monocytes and the significant functional overlap
between subpopulations [10]. Therefore, exploring the inter-
action of monocyte subtypes in KD could provide important
insights to facilitate targeted therapy of monocytes to treat
this bottleneck in KD.

Neuropeptides play an important role in the regulation
of neuroendocrine processes and modulate many patho-
physiological processes [11, 12], including in cell-cell inter-
actions [13, 14]. The levels of various neuropeptides

change during the course of KD [15, 16]. Therefore, we spec-
ulated that neuropeptides may mediate monocyte interac-
tions in KD. However, the potential role of neuropeptides
in KD, particularly in monocyte interactions, has not been
investigated.

The development of single-cell RNA-seq (scRNA-seq)
has facilitated precise investigations into the varying func-
tions of different monocyte subpopulations. With the advent
of bioinformatic techniques, deeper mechanisms and poten-
tial biomarkers have been identified from the analysis of
scRNA-seq data [17, 18]. Weighted gene coexpression

HIST1H2AC
CD69

LTB
TCF4

ITM2C
IGKC

JCHAIN
FAM129C

MS4A1
IGHM

ARL4C
NKG7

KLRD1
PRF1

KLRB1
FGFBP2

GZMA
CCL5
GNLY
IL6ST
LDHB

ITK
BCL11B

TRAC
LEF1
TCF7

TRBC2
ETS1
IL7R

RGS1
HLA.DQB1

HLA.DRA
HLA.DPB1

HLA.DQA2
HLA.DQA1

CD1C
CLEC10A

FCER1A
RGCC

HSP90B1
CALR

HBEGF
THBS1

DDX3Y
CD163
HSPA5
LMNA

GPR183
NKTR

RP5.857K21.6
RP5.857K21.9

MT.RNR1
NEAT1

MT.ND2
MT.ND5

MT.RNR2
MT.CO1

MALAT1
TNF

HLA.DPA1
IFITM2

WARS
MS4A7

NAP1L1
TCF7L2
IFITM3

CDKN1C
FCGR3A

P2RY13
HLA.J
LRP1

MT.TN
CD99
CPVL

CLEC12A
CD14

MNDA
CLU

CKAP4
BASP1
PLBD1

C19orf59
IL1R2

S100A9
S100A8
FOLR3

S100A12
CCL20

CCL4
AP1S2

IL1B
LGALS2

IER3
TNFAIP3

HLA.DRB5
CLEC4E

CCL3

0 1 2 3 4 5 6 7 8 9

(d)

Figure 1: Downscaling and clustering processes for the data of single-cell transcripts from the GSE152450 dataset. (a) The elbow plot shows
the inflection point between PCs 10 and 13, indicating that selecting these PC numbers in the subsequent downscaling analysis would help
retain most of the original data information. (b) PC1 and PC2 obtained during PCA and the dimensionality reduction results of the single-
cell data for the 4 samples are presented here. Different samples are indicated by different colors. (c) Herein, 13 PCs were selected to
construct the clustering tree, and the results show 10 cell clusters. (d) In each of these 10 clusters, the top 10 cluster marker genes, along
with their expression levels, are represented in the heat map.
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network analysis (WGCNA) can help identify coexpressed
gene modules from gene expression data [19, 20]. Further-
more, correlation analysis can identify modules and genes
that are significantly associated with clinical features.
WGCNA has been used to identify key transcription factors
that predict response to initial immunoglobulin therapy in
acute KD [21]. Therefore, we believe that in combination
with scRNA-seq analysis and bioinformatic techniques,
WGCNA can facilitate investigations into the role of
neuropeptide-related genes in the monocyte-mediated path-
ogenesis of KD. This study is aimed at improving the current
understanding of KD monocyte subpopulation interactions,
which can provide novel biomarkers for the diagnosis and
treatment of KD.

2. Materials and Methods

2.1. Acquisition of Single-Cell Data and Quality Control. We
used “Kawasaki Disease” as the keyword to retrieve KD-
related single-cell datasets in the GEO database that were
screened based on the following inclusion criteria to include
datasets that (1) comprised single-cell transcriptomic data,

(2) contained data from at least two KD patients, and (3)
included pretreatment KD samples. The GSE152450 dataset,
which met the abovementioned inclusion criteria, was
included in our study [2, 22]. The GSE152450 dataset con-
tains transcriptomic data of 8,880 mononuclear cells
obtained from the peripheral blood samples of two KD pedi-
atric patients and two healthy controls. After removing the
data of “Multiplet” and “Undetermined” cells, the remaining
data from 8,085 cells were further analyzed to determine
data quality based on the inclusion of cells with at least
200 genes and of genes that were expressed in at least 3 cells.
Finally, data from 7,271 cells were included in the subse-
quent single-cell analyses and for the evaluation of cell-cell
communication. All included cells were treated for debatch-
ing effects.

2.2. Analysis of Single-Cell Data and Cell Annotation. The
raw gene expression matrix of single cells was transformed
into Seurat objects using Seurat (version 4.0.4). The gene
expression matrix was normalized after quality control.
Genes with high variability were identified and filtered using
the FindVariableFeatures function and applying default
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Figure 2: Cellular annotation of molecules and clusters. (a) UMAP represents the 10 cell clusters, and different colors indicate different
clusters. (b) The sources of cells corresponding to the 10 clusters are labeled in the UMAP. (c) Cell clusters were accurately annotated
into 6 cell types. Among them, NCM, IM, and CM are subtypes of monocytes. (d) The 8 molecules used for cellular annotation and
their expression in each of the 10 clusters are shown.
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parameters. Principal component analysis (PCA) of these
highly variable genes was used to reduce the dimensionality
to extract the expression features of each cell. Based on the
inflection points on the elbow plot, we selected the principal
components (PCs) that contained most of the original infor-
mation and included these PCs in a clustering analysis
(p < 0:05). The uniform manifold approximation and pro-
jection (UMAP) algorithm was used for dimensionality
reduction to visualize cell clustering based on the selected
PCs [23]. We identified the marker genes for each cell cluster
using the FindAllMarkers function and demonstrated the
top 10 marker genes in each cell cluster by using a heat
map. The selection of marker genes for cell cluster annota-
tion was performed according to the previously described
protocols and instructions on the CellMarker website
(http://biocc.hrbmu.edu.cn/CellMarker/index.jsp) [24–26].

2.3. Identification of Neuropeptide-Related Marker Genes.
We included 87 neuropeptide-related molecules that were
obtained through searches of literature reviews in PubMed
and in the genecard database. Neuropeptide-associated
genes encode neuropeptides and receptors. After cross-

tabulation analysis to identify neuropeptide-related ligand
and receptor molecules in cell clusters with specific marker
genes, we could identify genes that are functionally related
to neuropeptides and possibly play a role in cell-cell commu-
nication between these cell clusters.

2.4. Analysis of Ligand-Receptor Interactions in Cell-Cell
Communication. CellPhoneDB was used to analyze cell-cell
communication. Single-cell gene expression matrices were
calculated as input files to predict ligand-receptor interac-
tion pairs among cells [27, 28]. We further screened
neuropeptide-associated cluster marker genes from these
predicted ligand-receptor pairs, which were then included
in the subsequent analysis.

2.5. Weighted Gene Coexpression Network Analysis in
Monocytes. To further explore the regulatory role of neuro-
peptides in monocytes, monocyte expression matrices that
were extracted from single-cell expression matrices were
evaluated through WGCNA [19, 29] using the WGCNA
package in R (version 1.70.3), and an approximate scale-
free topology network was constructed for the analysis of
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module functionality [19, 29]. First, we used the pickSoft-
Threshold function to identify the soft-thresholding powers
that satisfy the criterion of approximate scale-free topology.
Unsigned network and topological overlap measure (TOM)
were chosen to calculate the intergene correlation between
genes. The genes in the matrix were further hierarchically
clustered to construct clustering trees based on the TOM
values. The clustering tree was segregated into several clus-
ters using a predefined fixed height. PCA was used to iden-
tify the Epigen gene to represent the overall level of gene
expression within each module. Epigen gene significance
and Pearson correlation analysis of the desired factors were
used to screen for modules associated with the interesting
factors. We selected modules based on Pearson correlation
coefficients > 0:35 for further analysis.

2.6. Protein-Protein Interaction Network Analysis. To explore
the function of these modules, we constructed a protein-

protein interaction (PPI) network for the genes included
within these modules that were then entered into the STRING
database (https://www.string-db.org/) for protein matching
and network construction [29, 30]. Depending on the number
of molecules in the network and the size of the network, we set
the appropriate minimum required interaction score and
removed isolated nodes that were not connected to other
nodes. Finally, we described and visualized the protein func-
tions within the constructed PPI networks.

2.7. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was used to analyze the function and
potential enrichment pathways of neuropeptide-related
molecules in cells and was set up as follows: number of
random sample interchanges, n = 1000, with at least 10
genes and up to 500 genes in each gene set. The
“c2.cp.v7.2.symbols.gmt [Curated]” gene set from MSigDB
collections (https://www.gsea-msigdb.org/gsea/msigdb/)
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was used as a reference gene set for GSEA [31]. The R
package http://org.hs.eg/.db was used for the conversion of
gene ID, and clusterProfiler was used for calculating the signif-
icance of the enriched pathway gene sets [32]. The conditions
for significant enrichment were a false discovery rate ðFDRÞ
< 0:25 and adjusted p < 0:05.

2.8. Analysis of Differential Gene Expression between HI and
KD. R (version 4.0.2) was used for the majority of statistical

analysis and to construct the graphical plots. We used
DESeq2 (version 1.20) to analyze differential gene expres-
sions between the healthy individual (HI) and KD groups
[33]. To explore the role of a monocyte (CM) subpopulation
in KD pathology, we separately analyzed the differential
gene expressions in the CM subpopulations. Cellular gene
expression matrices in the same sample were summed
according to gene to generate a bulky RNA-seq-like dataset.
Thus, we could evaluate and compare the ploidy changes in
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Figure 5: Relationship between the 5 gene modules and desired indicators determined using WGCNA. (a) Heat map representing the
correlation between the 5 modules and 5 neuropeptide-related ligands/receptors obtained from the results of ligand-receptor interaction
analysis. (b) FPR2 expression in monocytes differs between the HI and KD groups in these 5 neuropeptide-related ligands/receptors. (c)
Comparison between the HI and KD groups for the proportion of the 3 monocyte subtypes. The proportion of CMs in the KD group
was significantly higher than that in the HI group.

9Disease Markers

http://org.hs.eg/


(a)

(b)

Figure 6: Continued.

10 Disease Markers



genes between the HI and KD groups and determine the p
values of differentially expressed genes (DEGs), which were
used to further screen for neuropeptide-related ligands
and/or receptors. p < 0:05 was considered statistically signif-
icant unless stated otherwise. All data were saved to enable
replication of the analysis.

3. Results

3.1. Cellular Heterogeneity and Clustering Results. After rig-
orous quality screening of cells, we selected 2,968 and
4,303 cells from the HI and KD groups, respectively, for fur-
ther analyses. The results of quality control performed using
the data from single-cell sequencing are shown in Supple-
mentary Figures 1A–1C. ANOVA revealed the top 10
highly variable genes in single cells (Supplementary
Figure 1D). Elbow plots showed that the forward 13 PCs
contained most of the gene information that was expressed
by the cells (Figure 1(a)). The PCA plot using principal
component 1 (PC1) and principal component 2 (PC2)
showed that the single-cell data of HI1 and HI2 overlapped
after downscaling, whereas those of KD1 and KD2 only
overlapped partially after downscaling (Figure 1(b)). This
suggests that there may be differences in cell composition
between KDs and HIs. The abovedescribed 13 PCs were
used to construct a clustering tree wherein 10 clusters were
identified (Figure 1(c)) along with their marker genes, and
the expression of the top 10 marker genes in each cluster is
presented as a heat map (Figure 1(d)).

3.2. Cell Annotation and Identification of Three Monocyte
Subpopulations. First, we performed cell annotation of the
10 cell clusters and visualized the single-cell distribution of
these 10 clusters and the 4 samples by using the UMAP of
the 13 selected PCs (Figures 2(a) and 2(b)). Next, we anno-
tated these 10 cell clusters with 8 marker genes, namely,

FCGR3A, CD14, HLA-DRA, ITGAX, CD3D, CD2, FCGR3A,
and PRF1, and annotated a total of 6 cell types. Human
monocytes were annotated into 3 categories based on the
expression of CD16 (FCGR3A) and CD14. CD14+CD16-
monocytes were annotated as monocytes (CMs), CD14
+CD16+ monocytes were annotated as intermediate mono-
cytes (IMs), and CD14-CD16+ monocytes were annotated
as nonclassical monocytes (NCMs). The other 3 cell types
identified were dendritic cells (DCs; HLA-DRA+, ITGAX+,
CD14-, and FCGR3A-), NK cells (FCGR3A+ and PRF1+),
and T cells (CD3D+ and CD2+). The UMAP to visualize
these 6 cell types is presented in Figure 2(c). Figure 2(d)
shows the expression of the 8 marker genes in the 10 cell
clusters. To assess the role of neuropeptide-related molecules
in monocyte subpopulations, the expression matrices of
monocytes were extracted for further analysis.

3.3. The Interactions between Ligand-Receptor Pairs during
Cell-Cell Communication.We analyzed cell-cell communica-
tion among the 6 annotated cell types. And 144 ligand-
receptor interaction pairs among these 7 cell populations
were found. Of these ligand-receptor pairs, 5 neuropeptide-
related mRNAs were identified: SORL1, TNF, SORT1,
FPR2, and ANXA1. The correlation heat map presented in
Figure 3 shows the relationship between the ligand-
receptor pairs containing the neuropeptide-related genes
(Figure 3). FPR2 and ANXA1 have a significantly positive
activating effect in all 3 monocyte subtypes. DCs can regu-
late the function of monocytes by releasing APP to bind
the formyl-peptide receptor 2 (FPR2). In addition, SORL1,
TNF, and SORT1 played a role in monocyte regulation
through a ligand-receptor mechanism of action.

3.4. WGCNA Reveals Gene Modules Related to
Neuropeptides. WGCNA was used to identify gene modules
related to the 5 neuropeptide-related genes (SORL1, TNF,
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Figure 6: Protein-protein interaction networks in the yellow and blue modules and GSEA of FPR2. (a) A PPI network based on the genes in
the yellow module was constructed to observe the intramodule gene interactions. (b) PPI network based on the genes in the blue module. (c)
GSEA demonstrating the up- and downregulated GO pathways in cells with increased FPR2 expression. (d) GSEA demonstrating the
downregulated KEGG pathway in cells with increased FPR2 expression.
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SORT1, FPR2, and ANXA1) that were identified in this
study. First, the scale-free network was successfully con-
structed when the soft threshold power was 1 (R2 = 0:99,
Figure 4(a)). Then, a clustering tree was constructed for
the network, and the static shear tree method was used to
obtain 5 modules (Figures 4(b) and 4(c)). Figure 4(d) shows
the relationship between module eigengenes. The correlation
heat map in Figure 5(a) shows a significant correlation
between FPR2 and the yellow module (p < 0:001, CC = 0:43
). Analysis of gene differences in CMs showed the differences
in the expression levels of ANXA1 and FPR2 between the HI
and KD groups (Figure 5(b)). Furthermore, the expression
of FPR2 in monocytes significantly differed between the HI
and KD groups. Figure 5(c) shows that the proportion of
CMs in the KD group was significantly higher than that in
the HI group. Moreover, Figure 5(a) shows that TNF levels
were significantly correlated with the blue modules
(p < 0:001, CC = 0:4). The yellow and turquoise modules
were significantly correlated with both the sample sources
and cell types. The results of correlation analysis between
genes in the yellow module and the 5 neuropeptide-related
molecules are presented in Supplementary Figure 2.

3.5. PPI Network Analysis. To explore the possible roles of
the modules that were being investigated, we constructed a
PPI network for genes in the yellow, blue, and turquoise
modules. Figures 6(a) and 6(b) present PPI networks con-
structed from the genes in the yellow and blue modules,
respectively. In these networks, some pivotal genes, such as
HSP90AA1 in the yellow module and CCL4 in the blue
module, can be seen. In addition, the PPI network con-
structed from the genes in the turquoise module is presented
in Supplementary Figure 3 and revealed the interactions
between proteins in different modules.

3.6. Functional Analysis of FPR2 Using GSEA. To explore the
function of FPR2 in cells, we used GSEA to analyze FPR2-
enriched GO and KEGG pathways. Upregulated FPR2 was
found to be enriched in the following GO pathways: Golgi-
associated vesicle membranes and specific granule mem-
branes. In contrast, FPR2 was downregulated in lymphocyte-
mediated immunity, adaptive immune response, and neuroac-
tive ligand-receptor interaction pathways, which suggests that
increased FPR2 levels may participate in immune system
regulation.

4. Discussion

Monocytes play a key role in inflammatory responses and
are important immune cells in KD. However, due to hetero-
geneity and functional overlap among the monocyte sub-
populations, monocyte subsets prove challenging to clearly
define and delineate. Moreover, the role of neuropeptides
as critical mediators in neuroendocrine regulation remains
unclear in KD pathology. This study investigated the pat-
terns of interaction between neuropeptide-associated ligands
and receptors in monocyte subpopulations in KD patients.
FPR2 in CMs is involved in the control of inflammation in
KD.

Based on the screening criteria, the GSE152450 dataset
containing transcriptomic data from healthy controls and
children with acute KD was used in this study. First, cells were
downscaled, clustered, and annotated according to gene
expression. Then, according to the previous classification of
human monocytes, we classified monocytes into 3 subgroups
(namely, CMs, IMs, and NCMs) based on CD14 and CD16
expression. We analyzed monocyte subpopulation-specific
interactions between neuropeptide-related ligand-receptor
molecules. Using differential analysis, we identified FPR2 as
a gene that encodes a CM-specific neuropeptide receptor
and further used WGCNA to discern that the yellow module
in the coexpression network correlated with FPR2 expression.
The genes in the yellow module were used to construct a PPI
network to assess the possible functions of the FPR2-associ-
ated gene network. Finally, GSEA was used to identify the
GO and KEGGpathways that were altered when FPR2 expres-
sion levels increased.

Monocytes are important inflammatory regulators that
play diverse roles in vasculitis as well as in immune
responses [34, 35]. Based on the CD14 and CD16 expression
patterns, human monocytes can be classified into 3 major
subpopulations—CMs, IMs, and NCMs. CMs are usually
phagocytes without inflammatory activity; NCMs can dis-
play inflammatory features; and IMs may be transitional
cells with both phagocytic and inflammatory functions
[36]. A study noted that CMs exhibit a more proinflamma-
tory phenotype during antimicrobial response, whereas
another study reported that CMs are usually phagocytes
without inflammatory properties [36, 37]. In the present
study, the proportion of CMs was significantly higher in
the KD group than in healthy controls, suggesting that
CM-mediated proinflammatory responses or phagocytosis
may be significantly increased in KD.

Formyl-peptide receptors (FPRs) play crucial roles in
various pathophysiological conditions, including inflamma-
tion control, tissue repair, and angiogenesis [38, 39]. Among
these, FPR2 is the most promising member, as it can recog-
nize various lipids, proteins, and neuropeptides and act as a
“double-sided”molecule in both pro- and anti-inflammatory
responses, depending on the binding of different agonists
[40–42]. Involvement in many normal physiological
responses and in the etiopathogenesis of diseases, such as
RA, makes FPR2 a very attractive therapeutic target [43].
Vasoactive intestinal peptide (VIP) can effectively improve
corneal inflammation by influencing FPR2 pathway activa-
tion [44]. FPR2 agonists can help improve the healing pro-
cess after myocardial infarction, thus providing an
innovative option for therapy [45]. Annexin A1 (ANXA1)
is an important mediator that regulates glucocorticoid
expression, and FPR2 mediates inflammatory response
under ANXA1 regulation [46–48]. In this study, FPR2
expression and CM counts were significantly higher in the
KD group than in healthy controls, suggesting that CMs
may play a crucial role in the development of FPR2-
mediated inflammation. Furthermore, cell-cell communica-
tion analysis demonstrated that ANXA1-FPR2 interactions
occur during cellular interactions between multiple cell types
and CMs. The main features of acute KD include signaling
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pathways of the innate immune system [49]. GSEA suggests
that elevated levels of FPR2 may be involved in the regula-
tion of homeostasis within the immune system.

However, the present study has certain limitations. First,
KD staging was not specifically studied in this research. For-
tunately, the GSE152450 collection included transcriptome
data from 8880 mononuclear cells collected from peripheral
blood samples. Because all of the cells in this study were
debatched, the differences between the HI and KD groups
could be compared more accurately. Second, we identified
some interacting neuropeptide-related molecules between
monocytes mainly by using public datasets and bioinfor-
matic techniques; however, these data were acquired from
a dataset with sample-size constraints. Therefore, validation
of the clinical samples and experiments is needed. In addi-
tion, we only analyzed monocytes, which somewhat limits
the assessment of the entire immune system in patients with
KD that should be examined in further studies to identify
the key genes in the various immune cells causing KD.

5. Conclusion

The neuropeptide receptor FPR2 in CMs plays a role in the
regulation of inflammation in KD. The findings of this study
will help us elucidate the mechanisms of action of monocyte
subpopulations in KD and pave the path for a new direction
in the clinical treatment of KD.
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