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Abstract

Background: Variants in RCBTB1 were recently described to cause a retinal dystrophy 

with only eight families described to date and a predominant phenotype of macular atrophy 

and peripheral reticular degeneration. Here, we further evaluate the genotypic and phenotypic 

characteristics of biallelic RCBTB1-associated retinal dystrophy in a North American clinic 

population.

Methods: A retrospective analysis of genetic and clinical features was performed in individuals 

with biallelic variants in RCBTB1.

Results: Three unrelated individuals of French-Canadian descent with rare biallelic RCBTB1 
variants were identified. All individuals shared a novel p.(Ser342Leu) missense variant; one 

patient was homozygous whereas the other two each possessed a second unique novel variant 

p.(Gln120*) and p.(Pro224Leu). All three had macular-predominant disease with symptom onset 

in the fifth decade of life.

Conclusion: This report adds to the genetic diversity of RCBTB1-associated disease. These 

cases confirm the later-onset, relative to many other retinal dystrophies, and macular focus of 

disease described in most cases to-date. They are thus a reminder of considering hereditary disease 

in the differential for later-onset macular atrophy.
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INTRODUCTION

Inherited retinal dystrophies (IRDs) are a genetically and phenotypically diverse group of 

diseases that affect more than 2 million individuals worldwide and result in significant 

visual disability and blindness(1, 2). Mutations in nearly 300 genes are known to cause 

these conditions (https://sph.uth.edu/retnet/) and while mutations in certain genes account 

for a significant fraction of disease, the remaining genetic forms are rare. Although many 

disease-causing genes have roles in retina-specific pathways, an increasing number of genes 

are being identified with more ubiquitous roles in tissue homeostasis and stress response 

(https://sph.uth.edu/retnet/).

RCBTB1 is a protein that comprises a regulator of chromosome condensation 1 (RCC1)-like 

domain (RLD) and two broad complex, tramtrack, and bric-a-brac (BTB) domains(3). It 

has been proposed to have a function in cell cycle regulation(3), and some evidence points 

to its potential role as a tumor suppressor gene(4). Expression array data on total RNA 

samples has shown ubiquitous expression in all human adult tissues(5). Targeted analysis 

of expression has revealed relatively high expression of RCBTB1 mRNA in human neural 

retina compared to retinal pigment epithelium (RPE)(5). In the retina specifically, it has been 

hypothesized that RCBTB1 may act as a substrate adaptor in the ubiquitinylation pathway(6) 

and possibly modify the localization of oxidative stress-response transcription factors(5, 7).

At the time of writing, only eight IRD families have been reported with retinal disease 

due to mutations in RCBTB1 (OMIM 607867)(5, 8–10). The available phenotypic data 

from reports of retinal disease suggests that although mutations in RCBTB1 can cause 

typical retinitis pigmentosa (RP), the more common presentation may be a later-onset retinal 

dystrophy characterized by prominent macular atrophy(5, 8, 9). Here, we describe three 

unrelated patients of French-Canadian descent with recessive disease and carrying novel 

pathogenic RCBTB1 variants. This series increases the number of reported patients with 

non-syndromic disease and describes a novel variant shared between the two compound 

heterozygous patients. All three of these patients have later-onset disease with functional 

consequences due to macular involvement.

METHODS

This retrospective study was conducted at Massachusetts Eye and Ear (MEE) under a 

protocol approved by the local institutional review board. The study met the tenets of the 

Declaration of Helsinki. Individuals with two rare, likely biallelic variants in RCBTB1 were 

identified from the patient population of a clinic specializing in inherited retinal dystrophies.

A. Genetic Analysis

Blood samples were obtained from probands and available family members, and DNA was 

isolated from peripheral blood lymphocytes by standard procedures. Genetic testing was 
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performed through the MEE Ocular Genomics Institute for two subjects (OGI1042_002062 

and OGI3572_005183) and by a commercial diagnostic genetic testing lab for the third 

(OGI3572_005182). For testing performed at MEE, the Genetic Eye Disease panel and 

previously described analysis methods were used(11). Guidelines of the American College 

of Medical Genetics(12) were used for the interpretation of sequence variants. Variants 

were verified to have an allele frequency of less than 1% in the Genome Aggregation 

Database (gnomAD)(13). The Combined Annotation Dependent Deletion (CADD) tool 

including PHRED-scaling was used to score the deleterious of the missense variants with 

scores of greater than 20 suggesting that a variant is more likely to have a deleterious 

effect(14). Predictions from in silico modeling including SIFT(15), PolyPhen-2(16), and 

MutationTaster(17) were also used to help assess variant pathogenicity. Finally, structural 

modeling was used to assess the impact of missense mutations on polar bond organization 

and surrounding structure. Tridimensional structure of the RCBTB1 protein was generated 

with a protein modelling software (PyMOL Molecular Graphics System, Version 1.2r3pre, 

Schrödinger, LLC) using AlphaFold Database-predicted(18) (https://alphafold.ebi.ac.uk) 

structure of human RCBTB1 as an input (AlphaFold ID: AF-Q8NDN9-F1).

When available, DNA samples were obtained from family members for segeregation 

analysis.

B. Clinical evaluation

All clinical assessments were performed in the Massachusetts Eye and Ear (MEE) 

Inherited Retinal Disorders Service. Visual acuity was assessed using Snellen charts. 

Kinetic perimetry was evaluated with Goldmann perimetry. Full-field ERGs were 

conducted with Burian Allen electrodes and a custom ERG system(19). Fundus exam 

was complemented by fundus photography (Optos 200Tx and California devices, 

Optos PLC, Dunfermline, Scotland, United Kingdom), widefield fundus autofluorescence 

imaging (Optos), and spectral-domain optical coherence tomography (SD-OCT: Spectralis, 

Heidelberg Engineering, Heidelberg, Germany). The region tool within the Heidelberg 

Spectralis software was used to outline central macular areas of disrupted near infrared 

reflectance on high resolution images for Patient 1 (Heidelberg Engineering Region Finder 

Module 2.6.1.0).

RESULTS

A. Genetic analysis

Three unrelated patients (2 males, 1 female) with biallelic rare variants in RCBTB1 were 

identified (Table 1). One of the variants led to a premature stop codon in exon 5 (of 13 

exons total): c.358C>T, p.(Gln120*), likely leading to degradation of the transcript and 

no protein product. The remaining two RCBTB1 variants found were missense changes 

that fell within exons encoding the RCC1-like domain (Figure 1, Tables 1 and 2). The 

CADD-PHRED scores for the missense variants were greater than 20 thus suggesting a 

deleterious effect (p.(Pro224Leu) C-score=31; p.(Ser342Leu) C-score=22.9). These scores 

for the missense variants, as well as combined information from in silico predictions 

and ACMG classification of each of the three variants (Table 2), supported pathogenicity. 
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Structural modeling of the two missense variants found that they did not affect polar bond 

organization or significantly modify surrounding protein structure, but the analysis did not 

permit any conclusions regarding whether these variants impaired binding efficiency with 

other proteins (data not shown).

None of the variants have been reported before in association with retinal disease; the 

missense variants are reported in gnomAD but not in the homozygous state, and the 

variant with the premature stop is absent in gnomAD. One missense variant (c.1025C>T, 

p.(Ser342Leu)) was shared by all three individuals, and it was homozygous in one 

patient (Patient 3, OGI3572_005183; no testing of family members performed) and in 
trans with the c.358C>T, p.(Gln120*) variant in another (Patient 1; OGI1042_002062; 

confirmed by biparental testing). Family members were not available for testing in Patient 2 

(OGI3572_005182), but the gnomAD Variant Co-Occurrence calculator predicts these two 

variants occur on different haplotypes supporting that these variants are likely in trans(20). 

All three patients reported French-Canadian ancestry. Two of Patient 2’s four siblings had 

subjective difficulty with night vision and one carried a possible diagnosis of a retinal 

degeneration (Supplemental Figure 1). There was no family history of retinal disease or 

degeneration in the other two patients. Variants in other IRD genes (https://sph.uth.edu/

retnet/) were found for two patients (Supplemental Table 1), but none of the variants 

detected were able to explain the phenotype in the reported cases.

B. Clinical data

Clinical assessments, with data summarized in Table 1, were performed at a single visit for 

two patients and spanned three years for one individual (Patient 1). Patients were between 

46 and 62 years of age at initial examination. They described symptoms of decreased central 

vision, increased glare, and nyctalopia with most of these beginning when they were in their 

early to mid-40’s. Patient 3 was told that he had retinal abnormalities during a routine exam 

at age 25 suggesting that anatomic changes predated any functional impact. At the time of 

initial exam, visual acuity ranged from 20/20 to “count fingers” with an accompanying range 

of macular disruption apparent on fundus exam and with retinal imaging. The oldest patient 

(Patient 3) had the most impaired visual acuity at the initial exam.

Fundus exam in all individuals showed macular atrophy of varying severity and 

characterized by nummular areas of atrophy that could be either fovea-sparing or fovea-

threatening even in earlier stages of macular disease and later becoming confluent (Figure 

2, A–C). Abnormalities of the peripheral retina varied in extent and included subtle pigment 

mottling (Patient 1), fine pigment deposits (Patient 2, 3), and chorioretinal atrophy (Patient 

2). At least one patient had a reticular pattern of pigment deposition in the peripheral retina. 

Fundus autofluorescence (Figure 2, D–F) emphasized the distribution of clinically-apparent 

atrophy but was also more diffusely peripherally disrupted in two patients (Patients 2, 3). 

In addition to delineating areas of clear atrophy, OCT showed reduced definition of the 

RPE and ellipsoid zone even in seemingly intact areas of retina (Figure 2, G–H). Numerous 

small cystoid spaces were present in the inner and outer retina overlying areas of atrophy in 

Patient 2. Retinal imaging over an approximately three-year interval in Patient 1 illustrated 

significant progression of macular involvement that corresponded to visual acuity decreasing 
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from 20/20 in the right eye and 20/25 in the left eye to 20/30 and 20/600 respectively (Figure 

3). The area of abnormal reflectance on near infrared imaging corresponding to the atrophy 

expanded by 1.1 mm2/year in the right eye and 1.2 mm2/year in the left eye (Starting values: 

2.18 mm2 OD, 3.24 mm2 OS; final values 3.24 mm2 OD, 6.96 mm2 OS).

Goldmann perimetry demonstrated relative central scotomas but full peripheral fields. Full-

field ERG demonstrated normal to mildly abnormal rod- and cone-isolated responses, but 

even when abnormal, responses remained robust (Table 1).

Patient 2 had additional medical diagnoses of tremor, anxiety, and nephrolithiasis; Patients 1 

and 3 were in good health.

DISCUSSION

In this cohort of patients with RCBTB1-associated retinal dystrophy, we thoroughly 

characterize the clinical phenotype and identify three novel disease-causing variants 

including a suspected founder mutation in the French-Canadian population. The functional 

(perimetry, ERG) and anatomic (widefield color, autofluorescence, OCT) descriptions of this 

cohort complement prior reports but also provide new information on the clinical spectrum 

of disease. Our description of prominent macular atrophy and peripheral pigmentary 

abnormalities corresponds to the findings described in five of six families in the original 

report of RCBTB1-associated disease(5) as well as in available data from two additional 

individuals(9, 21). Features of more typical retinitis pigmentosa were present in one 

family(5) but appear to be a phenotypic outlier in RCBTB1-associated disease. Full-field 

ERG recordings in the current cohort demonstrated the potential for varying degrees of rod 

and cone dysfunction consistent with the range of changes previously reported (21). Even 

in the patient with the most appreciably impacted ERGs (Patient 1), however, the response 

amplitudes were better preserved than those seen in typical RP. Indeed, the impact on visual 

acuity and central perimetry was consistent with the macular focus of degeneration. The 

progression over a three-year interval from 20/20 to counting fingers acuity in Patient 1 

demonstrates the rapidity with which fovea-threatening disease can impact functional vision. 

The rate of atrophy expansion was similar to what has been described previously(21).

The typical RCBTB1-associated cases in our cohort and others are characterized by central 

vision symptoms appearing and progressing in a patient’s 40s or 50s, with subsequent 

onset of nyctalopia. In this respect, the disease is similar to other later-onset disorders 

that can have significant impact on central vision through macular involvement, such as a 

C1QTNF5-associated late-onset retinal dystrophy (LORD)(22, 23) or autosomal dominant 

RPE65-associated retinal degeneration(24). In conjunction with reticular peripheral retinal 

pigmentation, the potential overlap with nonexudative age-related macular degeneration is 

also apparent; this diagnosis, and inherited retinal dystrophies more generally, should be 

considered in younger patients with macular atrophy but no drusen. However, as previously 

described, there are several examples of genes (e.g., PRPH2(25, 26), ABCA4(27)) in 

which mutations can cause dystrophies that vary from macular-dominant disease to features 

consistent with typical RP. Our cases highlight the importance of including evaluation of 

RCBTB1 in genetic analysis of patients with apparently non-syndromic later-onset retinal 
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dystrophy. Finally, unlike a previous report(5) which detailed 7 cases with associated 

systemic findings, our small cohort also did not have features suggestive of syndromic 

disease; they thus add to 5 of the 12 previously reported cases of RCBTB1-associated retinal 

dystrophy with non-syndromic disease(5, 8, 9).

The three novel RCBTB1 variants found in this cohort expand the list of disease-associated 

variants. All three patients, from unrelated pedigrees, shared the c.1025C>T, p.(Ser342Leu) 

variant. Even though all three patients self-reported French-Canadian ethnicity, this variant 

is predominantly present in Finnish individuals in gnomAD and therefore, at present, it is 

unclear if the c.1025C>T p.(Ser342Leu) change is a founder allele or a mutational hot-spot. 

The p.(Ser342Leu) change affects the sixth RCC repeat of the RCC1-like domain, which 

harbors three additional missense variants associated with disease (Figure 1, Table 2), and 

the surrounding amino acids are highly conserved throughout evolution(5). Patient 3 who 

was homozygous for the c.1025C>T p.(Ser342Leu) mutation had the earliest onset and most 

anatomically-advanced phenotype of the three cases, which may also be related to the fact 

that he was more than a decade older than the other cases. Of the remaining two patients, 

one carried a null allele in exon 5 (c.358C>T, p.(Gln120*)) and the other carried a variant 

affecting the fourth RCC repeat (c.671C>T, p.(Pro224Leu)). Given the limited number of 

cases in the literature, additional cases will be needed to determine whether there is any 

genotype-phenotype correlation in age-of-onset or disease severity.

Initial insights regarding the molecular function of RCBTB1 came from oncology with a 

focus on cell cycle regulation. The identification of RCBTB1 in 2001 was facilitated by 

the commonly encountered deletion of chromosome 13q14, the region within which it falls, 

in B-cell chronic lymphocytic leukemia(3). The RCBTB1 protein was proposed to have a 

function in cell cycle regulation based upon the two protein domains encoded within its 

sequence (regulator of chromosome condensation-like (RCC1); broad complex, tramtrack, 

and bric-a-brac (BTB))(3). Indeed, the function of RCBTB1 as a tumor suppressor gene 

has been supported by findings including decreased RCBTB1 transcript levels in multiple 

cancer cell lines and the activation of DNA repair pathways following its expression(4). 

RCBTB1 expression levels influence resistance to chemotherapy-induced apoptosis in cell 

lines with a clinical correlate of an association between deletion and metastatic progression 

in patients with sarcomas, particularly in individuals with prior chemotherapy(4, 28). 

Increasing RCBTB1 levels by inhibiting the microRNA miR-26a-2 increases susceptibility 

to chemotherapy-induced apoptosis in a liposarcoma cell line and thus offers one potential 

method of modifying expression levels of this gene(28).

The precise retinal functions of RCBTB1 remain under investigation. A more specific 

role for RCBTB1 within the ubiquitination pathway is emerging that has implications for 

understanding the mechanisms of RCBTB1-associated retinal disease. Protein tagging with 

ubiquitin, through the action of ubiquitinylation enzymes (E1, E2, E3), targets the complex 

to the proteasome for degradation or other cellular processes. RCBTB1 interacts with this 

pathway in two ways: it is proposed to be a substrate adaptor for a cullin3 (CUL3) E3 

ligase, and it also binds to the mouse homolog of UBE2E3, an E2 ubiquitin-conjugating 

enzyme, through an interaction facilitated by the BTB domain(6). UBE2E3, like RCBTB1, 
is expressed in the retina and is important for mediating the localization and activity of the 
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stress-response transcription factor NRF2(7). Loss of NRF2 is known to play a role in retinal 

vulnerability to oxidative stress(29, 30). Findings by Coppieters et al suggest how RCBTB1-

associated retinal disease might impact pathways important for regulating oxidative stress 

and suggest points for intervention. Individuals with RCBTB1-associated retinal dystrophy 

showed lower levels of NRF2 expression than control individuals based on mRNA 

expression in peripheral blood mononuclear cells(5). As previously noted(5), however, the 

pathologic accumulation of other proteins destined for degradation in the proteasome cannot 

be excluded as a disease mechanisms in RCBTB1-associated retinopathy(31, 32). RPE cells 

derived from induced pluripotent stem cells (iPSCs) in individuals with RCTB1-associated 

retinal disease are also beginning to provide insights into aberrations at a retina-specific 

level(33).

If the mechanism of RCBTB1-associated disease is one of accumulation of oxidative 

damage, then multiple therapeutic strategies might be envisioned. Animal studies in which 

NRF2 was overexpressed using an AAV-vector in mouse models of RP showed prolonged 

cone survival(34). Oral neuroprotective strategies based on preventing oxidative damage 

may also have therapeutic potential. For example, N-acetyl cysteine was previously shown 

to reduce oxidative damage and increased cone function and survival in animal models of 

RP(35), and a recent report of a Phase I clinical trial for oral N-acetylcysteine suggested 

that it was safe, well-tolerated and may improve the function of macular cones in patients 

with moderately-advanced RP(36). It remains to be seen whether these strategies based 

on reducing oxidative damage may have a differential, genotype-specific, effect based on 

a specific pathogenic mechanism for particular IRDs. Recent work also in RPE derived 

from iPSCs from a patient with RCBTB1-associated retinopathy also suggests the potential 

benefits of AAV-mediated RCBTB1 gene augmentation(33).

CONCLUSION

Our report provides a comprehensive description of the phenotype of three cases of 

retinal dystrophy of varying severity associated with biallelic RCBTB1 mutations and 

describes three new disease-causing variants. Three novel alleles are described including 

a potential founder mutation. This case series increases the number of reported families with 

nonsyndromic disease. The macular atrophy common to all three indivdiuals emphasizes the 

importance of considering retinal dystrophies in the differential of later-onset retinal disease. 

Further work is needed to elucidate the role of RCBTB1 in the retina, both to understand 

retinal pathobiology of disease and to identify potential treatments which may intervene at 

the level of the gene or downstream effectors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Location and features of disease-associated RCBTB1 variants
The schematic figure shows the location of all the disease-associated variants in RCBTB1 
described in the literature and in this report. Novel variants are shown in bold font.
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Figure 2: Fundus imaging of patients with RCBTB1-associated retinal dystrophy
Fundus photography (A-C), fundus autofluorescence (FAF; D-F), and SD-OCT (G-I) were 

obtained in all patients. In Patient 1, nummular patches of fovea-abutting atrophy were 

observed on exam and with fundus photography (A). Subtle pigment mottling was present 

in the midperipheral retina. FAF (D) highlighted the nummular nature of the atrophy and 

also showed generalized macular hypofluorescence without prominent peripheral disruption. 

SD-OCT (G) delineated areas of atrophy with a restricted island of foveal sparing in addition 

to showing more widespread RPE irregularities.

In Patient 2, fundus exam and photography (B) showed fovea-sparing macular atrophy. 

Fine pigment deposits, nummular areas of chorioretinal atrophy, and occasional larger 

pigment clumps were present in the peripheral retina. FAF (E) further illustrated the 

distribution of atrophy and pigment disruption. SD-OCT (H) showed generally intact foveal 

lamination. Areas of atrophy were also present with associated cystoid spaces and outer 

retinal tubulations (ORTs).

In Patient 3, fundus exam and photography (G) showed extensive macular atrophy with 

several prominent pigment clumps. Fine pigmentary deposits in the peripheral retina formed 

a reticular pattern in areas. FAF (H) showed coalescing nummular hypofluorescence in 

the macula with narrow strips of preserved signal. Reduced hypofluorescence was present 

throughout the midperiphery. Extensive chorioretinal atrophy and ORTs were present on 

SD-OCT (I) with limited areas of preserved outer retinal structure.
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Figure 3: Evolution of macular findings in a single patient with RCBTB1-associated retinal 
dystrophy
Progressive macular disease was seen over a 3 year interval in Patient 1 as evaluated in 

near-infrared (A,B), fundus autofluorescence (C,D), and SD-OCT (E,F) imaging, presented 

for the right eye.
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