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Background and Purpose: Acamprosate is an anti-craving drug used for the pharma-

cotherapy of alcohol use disorder (AUD). However, only some patients achieve opti-

mal therapeutic outcomes. This study was designed to explore differences in

metabolomic profiles between patients who maintained sobriety and those who

relapsed, to determine whether those differences provide insight into variation in

acamprosate treatment response phenotypes.

Experimental Approach: We previously conducted an acamprosate trial involving

442 AUD patients, and 267 of these subjects presented themselves for a 3-month

follow-up. The primary outcome was abstinence. Clinical information, genomic data

and metabolomics data were collected. Baseline plasma samples were assayed using

targeted metabolomics.

Key Results: Baseline plasma arginine, threonine, α-aminoadipic acid and ethanol-

amine concentrations were associated with acamprosate treatment outcomes and

baseline craving intensity, a measure that has been associated with acamprosate

treatment response. We next applied a pharmacometabolomics-informed genome-

wide association study (GWAS) strategy to identify genetic variants that might con-

tribute to variations in plasma metabolomic profiles that were associated with craving

and/or acamprosate treatment outcome. Gene expression data for induced pluripo-

tent stem cell-derived forebrain astrocytes showed that a series of genes identified

during the metabolomics-informed GWAS were ethanol responsive. Furthermore, a

large number of those genes could be regulated by acamprosate. Finally, we

Abbreviations: AUD, alcohol use disorder; EBs, embryonic bodies; FDA, US Food and Drug Administration; FDR, false discovery rate; GAD-7, Generalized Anxiety Disorder 7-item assessment;

GWAS, genome-wide association study; HRC, haplotype reference consortium; iPSC, induced pluripotent stem cell; MAF, minor allele frequency; PACS, Penn Alcohol Craving Scale; PHQ-9,

Patient Health Questionnaire 9; QQ, quantile–quantile; SNP, single nucleotide polymorphism; TLFB, Timeline Follow Back; UPLC, ultraperformance liquid chromatography.

Acamprosate: Gene associated with response. ClinicalTrials.gov Identifier: NCT00662571.
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identified a series of single nucleotide polymorphisms that were associated with

acamprosate treatment outcomes.

Conclusion and Implications: These results serve as an important step towards

advancing our understanding of disease pathophysiology and drug action

responsible for variation in acamprosate response and alcohol craving in AUD

patients.
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acamprosate, alcohol use disorder, craving, metabolomics genome-wide association study,
multiple omics study

1 | INTRODUCTION

Alcohol use disorder (AUD) is the most common substance use disor-

der (Grant et al., 2004, 2015; Hunt et al., 2020). One third of US

adults experience AUD during their lifetime (Grant et al., 2015). AUD

is a disease that, like many other chronic diseases, typically requires

long-term treatment and care to prevent relapse (Witkiewitz

et al., 2019). Acamprosate, naltrexone and disulfiram are the drugs

that have received US Food and Drug Administration (FDA) approval

for the treatment of AUD. However, only a small proportion of

patients respond to treatment with these agents by achieving

sustained abstinence (Anton et al., 2006). It would be a major achieve-

ment for precision medicine if we could develop ways to individualize

the drug therapy of patients with alcohol addiction in order, to pre-

vent alcohol relapse and to select the patients most likely to respond

prior to the initiation of drug therapy (Ho et al., 2020; Litten

et al., 2020). Acamprosate reduces the craving for alcohol

(Hammarberg et al., 2009) and has also been reported to demonstrate

antidepressant properties (Pałucha-Poniewiera & Pilc, 2012). How-

ever, the mechanism(s) of action of acamprosate as an agent for the

treatment of AUD remain unclear, and only a subset of patients with

AUD achieve optimal therapeutic outcomes, which could be due, in

part, to pharmacogenomic variation in response to this drug (Cheng

et al., 2020). Therefore, it is important to understand mechanisms

underlying variation in acamprosate efficacy and their interaction with

the biological changes associated with alcohol use. That knowledge

could potentially facilitate the development of individualized

acamprosate treatment programmes and the design of new and better

medications for the treatment of AUD.

Metabolomics can be a useful approach to identify biological

markers that could potentially predict treatment response by identify-

ing differential concentrations of metabolites associated with clinical

variables such as treatment outcomes. The Mayo Clinic Center for the

Individualized Treatment of Alcoholism Study recruited 442 patients

with AUD to an open-label study designed to investigate biomarkers

associated with outcomes for patients treated for 3 months with

acamprosate in community-based programmes (Karpyak et al., 2014).

We previously conducted a pilot study to identify baseline serum

metabolomic biomarkers (i.e. glutamate, taurine, aspartate, ammonia,

aminoadipic acid and threonine) that were associated with

acamprosate treatment response in patients with AUD, using a small

subset of these samples (relapse [n = 49] vs. non-relapse [n = 71])

(Hinton et al., 2017). We have now collected a larger sample size

(relapse [n = 110] vs. non-relapse [n = 157]) in an attempt to expand

and replicate our earlier findings. These 267 subjects presented

themselves for a 3-month follow-up.

The present study was designed (1) to identify baseline plasma

metabolomic biomarkers associated with alcohol relapse risk during

3 months of acamprosate treatment and (2) to apply our established

pharmacometabolomics-informed pharmacogenomics strategy to

identify possible genetic variants that might contribute to the con-

centrations of these plasma metabolites. This study is similar in

design to other studies that we have performed successfully with

What is already known

• Metabolomics can be a useful approach to identify bio-

markers that could potentially predict treatment response.

• Craving is associated with alcohol use disorder relapse.

What does this study add

• Baseline plasma metabolomic markers are associated

with craving intensity.

• Baseline plasma metabolomic markers are associated

with alcohol relapse risk.

What is the clinical significance

• Baseline craving intensity is associated with acamprosate

treatment outcomes.

• A pharmacometabolomics-informed pharmacogenomics

approach could identify genetic variants that are associ-

ated with acamprosate treatment outcomes.
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regard to selective serotonin reuptake inhibitor response in patients

with major depressive disorder (Gupta et al., 2016; Ji et al., 2014; Liu

et al., 2018). Specifically, metabolic profiles were associated with

both clinical phenotypes and with genetic variants to identify novel

genetic variants associated with drug response phenotypes. We

hypothesized that metabolomic profiles might differ between

patients who maintained sobriety and those who relapsed and that

these differences might provide insight into mechanisms involved in

variation in drug response phenotypes (Frye, Hinton, Karpyak,

Biernacka, Gunderson, Feeder, et al., 2016; Frye, Hinton, Karpyak,

Biernacka, Gunderson, Geske, et al., 2016; Hinton et al., 2017; Nam

et al., 2015). We also explored differences in metabolomic profiles

between men and women, because sex differences play a role in AUD

pathophysiology (Karpyak et al., 2019; Mason & Lehert, 2012) and

may also play a role in response to AUD pharmacotherapy. In addition,

we identified a series of metabolites that were associated with craving

intensity—an important clinical variable associated with alcohol

relapse (Cavicchioli et al., 2020; Flannery et al., 2003; Subbaraman

et al., 2013). Our results showed that baseline concentrations of

metabolites associated with craving intensity might be associated with

and contribute to acamprosate treatment response in patients with

AUD. Finally, the utilization of a pharmacometabolomics-informed

pharmacogenomics approach allowed us to identify genetic variants

that may contribute to variations in plasma metabolomics profiles

associated with alcohol craving and/or acamprosate treatment out-

comes. As a result, these findings could serve as an important step in

advancing our understanding of both disease pathophysiology and

drug mechanisms responsible for variation in acamprosate response

and alcohol craving in patients with AUD.

2 | METHODS

2.1 | Study participants

The Mayo Clinic Center for the Individualized Treatment of Alcohol-

ism Study previously recruited 442 participants with AUD

(ClinicalTrials.gov Identifier: NCT00662571) (Biernacka et al., 2021;

Karpyak et al., 2014, 2019). All participants in the study initially

received acamprosate (one 333-mg tablet three times a day) to deter-

mine tolerance to acamprosate treatment. A standard dose of

acamprosate was then prescribed (two 333-mg tablets three times a

day). Confidentiality was maintained for all study participants. This

study was conducted in accordance with protocols reviewed and

approved by the Mayo Clinic Institutional Review Board (07-007204

and 20-000372).

2.2 | Assessment

We collected clinical data that included the Patient Health Question-

naire 9 (PHQ-9), Generalized Anxiety Disorder 7-item (GAD-7) assess-

ment and Penn Alcohol Craving Scale (PACS). The study included two

primary treatment outcomes: relapse and heavy relapse. Relapse was

defined as return to alcohol use during 3 months of acamprosate

treatment, whereas non-relapse was defined as maintenance of

abstinence from alcohol during those 3 months (Figure 1). Heavy

relapse was defined as four or more standard drinks daily for a woman

and five or more standard drinks daily for a man based on the Dietary

Guidelines for Americans 2015–2020 recommendations (https://

www.niaaa.nih.gov/alcohol-health/overview-alcohol-consumption/

moderate-binge-drinking). Alcohol consumption during the 3 months

of acamprosate treatment was determined by self-report, using

Timeline Follow Back (TLFB).

2.3 | Targeted metabolomics using
ultraperformance liquid chromatography (UPLC)–
tandem mass spectrometry

Baseline plasma samples from patients with AUD were assayed for

the amino acid panel and the neuromodulator panel in the Mayo Clinic

Metabolomics Core Facility (see Table S1 for a list of the metabolites

assayed). Briefly, blood samples for the isolation of plasma were

collected in EDTA tubes. Blood samples were centrifuged at 2900 g

for 15 min at 4�C for biobanking. Thawed plasma samples (10 μl)

were spiked with an internal standard and were then derivatized. The

amino acid derivatizing reagent used was 6-aminoquinolyl-N-

hydroxysuccinimidyl carbamate. Concentrations of metabolites were

determined based on standard curves. A 10-point standard concentra-

tion curve was made from the calibration standard solution to calcu-

late amino acid concentrations in plasma samples. High-resolution

separation was performed using an Acquity UPLC system and injec-

tion of 1 ml of derivatized solution using a UPLC BEH C18 column

(Waters Corp). Mass detection was performed using a TSQ Ultra

Quantum running in ESI positive mode (Thermo Fisher Scientific)

(Hinton et al., 2017; Nam et al., 2015). Analyses reported subse-

quently included metabolites with fewer than 25% of samples below

the limit of detection.

2.4 | Data and statistical analysis

Statistical analysis was performed using R Statistical Software

(Version 4.0.2; R Foundation for Statistical Computing). GraphPad

Prism Software v7 (GraphPad Prism, RRID:SCR_002798) was used to

generate the figures. The data and statistical analyses comply with the

recommendations of the British Journal of Pharmacology on experi-

mental design and analysis in pharmacology (Curtis et al., 2018).

Experiments were performed using randomization and blinding analy-

sis where technically feasible and appropriate. Statistical analysis was

conducted only when the experimental group where n ≥ 5 (n refers to

independent values, not replicates). The exact sample size for each

experiment is listed in the figure legends. Log-transformed met-

abolomics and gene expression data were analysed. Data distribution

was tested using a Shapiro–Wilk test. Continuous variables were
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compared using unpaired t test or Mann–Whitney U test (when the

datasets were not normally distributed). Categorical variables were

tested for correlation using χ2 test or Fisher's exact test. P < 0.05 was

considered statistically significant. We also applied p.adjust function in

R (Version 4.0.2) to estimate false discovery rate (FDR). In addition,

logistic regression models of treatment outcomes (i.e., 3-month

relapse to any drinking or heavy drinking) were used to examine each

metabolite as a predictor of relapse individually. Models examined

included unadjusted (univariate) models, with relapse or heavy relapse

(yes/no) as the outcome and the metabolite as the predictor. Two

F IGURE 1 (a) Schematic
outline of study design and
sample numbers. (b) Plasma
concentrations of metabolites in
relapse and non-relapse groups
for metabolites that displayed
significant differences between
those two groups. Data
distribution was tested using a

Shapiro–Wilk test. Arginine,
ethanolamine and α-aminoadipic
acid concentrations were not
normally distributed; as a result,
non-parametric tests were
performed. *P < 0.05. AUD
indicates alcohol use disorder

HO ET AL. 3333



types of multivariable logistic regression models were then examined.

The first was a model adjusted for sex, still including the metabolite as

a predictor. The second model examined was a multivariable model

including sex, using the metabolites as main effects (predictors), as

well as a sex–metabolite interaction term.

2.5 | Genotyping and single nucleotide
polymorphism (SNP) data analysis

DNA samples were first genotyped using Illumina Human Core arrays

with only �300,000 markers at the Mayo Clinic Medical Genome

Facility. The National Institute of Alcohol Abuse and Alcoholism then

genotyped these samples using Infinium OmniExpressExome-8

BeadChips, a high-density SNP genotyping array with �958,497

markers. Data from the two arrays were quality-controlled, combined

and checked for concordance, and additional quality control was per-

formed using the combined dataset. Samples were excluded from

analysis if they had a low call rate, extreme heterozygosity or dis-

agreement between reported sex and genetically determined sex.

Sample relatedness was checked by pairwise identical-by-descent

estimation. Imputation was conducted using the Michigan Imputation

Server with the haplotype reference consortium (HRC) reference

panel (Version HRC.r1-1.GRCh37.wgs.mac5.sites). We excluded

SNPs with a call rate < 95%, SNPs not in Hardy–Weinberg

equilibrium, and SNPs with minor allele frequency (MAF) < 0.01

among the AUD patients. Of the 6,654,675 SNPs, 6,621,773 passed

the initial QC and were used in the genome-wide association

studies (GWAS). Concentration values for each metabolite were

transformed using van der Waerden's method (VDW score). Associa-

tions between variants and metabolites were tested using linear

regression, adjusted for sex, age, site and baseline PACS score. These

analyses were done in R Version 3.6.3 and PLINK 1.9 (PLINK, RRID:

SCR_001757).

Genetic variants within the PTPRD gene (GRCh37/hg19: chromo-

some 9: 8314246–10612723) were tested for association with a

series of drug response phenotypes. Participants who had at least

1 week of follow-up were included in the analysis. Single SNPs were

tested individually as predictors of time until alcohol use, or time until

heavy drinking after initiating acamprosate therapy, using multivari-

able Cox proportional hazard models. Heavy drinking was defined as

four or more standard drinks daily for a woman and five or more stan-

dard drinks daily for a man. SNP associations with binary outcomes,

that is, relapse to alcohol use or relapse to heaving drinking during

3 months of acamprosate therapy, were determined using multivari-

able logistic regression models. Models were adjusted for the number

of days sober prior to treatment, baseline PACS and study sites.

Results of the Cox proportional hazard analyses are displayed in

Figure 5 using Kaplan–Meier curves and have not been adjusted for

multiple testing. The odds ratios and hazard ratios are represented as

OR and HR (95% confidence interval), with a value > 1 indicating

worse outcome.

2.6 | Generation of iPSC-derived forebrain-specific
astrocytes and organoids

Peripheral blood mononuclear cells (n = 6) were used to perform

induced pluripotent stem cell (iPSC) reprogramming using the

CytoTune-iPS 2.0 Sendai Reprogramming Kit (A16517, Thermo Fisher

Scientific), as previously described (Vadodaria, Ji, Skime, Paquola,

Nelson, Hall-Flavin, Fredlender, et al., 2019; Vadodaria, Ji, Skime,

Paquola, Nelson, Hall-Flavin, Heard, et al., 2019). All iPSCs had normal

karyotypes and expressed pluripotency markers. All of these cell lines

were regularly verified to be free from mycoplasma infection. iPSCs

were differentiated into forebrain-specific astrocytes (1801; ScienCell

Research Laboratories). Forebrain-specific astrocytes derived from

iPSCs were treated with 25 mM of ethanol (EtOH), a concentration

that is considered physiologically relevant for EtOH use, with 25 mM

of EtOH being slightly higher than the 0.08% blood alcohol concentra-

tion often used as a measure of intoxication (Lira et al., 2020). The

concentrations of acamprosate (5 μM) and naltrexone (30 nM) used to

perform these experiments were selected to fall within the range of

blood drug concentrations in patients taking standard clinical doses of

these two drugs (Mason et al., 2002). Drug treatment was conducted

at 50–57 days of astrocyte differentiation with a daily medium

change. We also generated iPSC-derived 3D forebrain organoids.

Briefly, pre-patterned floating embryonic bodies (EBs) formed from

intact iPSC colonies were embedded in Matrigel and cultured with

small molecules and proteins including 1� N2 (Life Technologies,

Grand Island, NY, USA), 1� NEAA and 1� Glutamax (Invitrogen,

Grand Island, NY, USA), 1-μM SB-431542 and 1-μM CHIR99021

(Selleckchem, Carlsbad, CA, USA) for 7 days. On Day 14, organoids

were mechanically dissociated from the Matrigel and were cultured in

a 12-well plate using a bioreactor (Qian et al., 2018). Culture medium

from Days 14 to 70 consisted of DMEM/F12 medium supplemented

with 1� N2, 1� B27, 1� NEAA and 1� Glutamax, 1�
2-metabptoethanol, 100� pen/strp and 2.5 μg�ml�1 insulin (Sigma-

Aldrich, St Louis, MO, USA). To improve maturation during prolonged

culture, medium was replaced every other day. From Day 70 onwards,

supplementing media with 20 ng�ml�1 BDNF, 20 ng�ml�1 GDNF

(Peprotech, Rocky Hill, NJ, USA), 0.2-mM L-ascorbic acid (Sigma-

Aldrich, St Louis, MO, USA) and 0.5-mM cAMP (Sigma-Aldrich, St

Louis, MO, USA) were used. Drug treatment was conducted at 83–

90 days of forebrain organoid differentiation with a daily medium

change. Cultured cells were used for RNA isolation.

2.7 | Immunofluorescence staining and confocal
imaging analysis

The immunofluorescence staining procedures comply with the rec-

ommendations of the British Journal of Pharmacology on immuno-

blotting and immunochemistry (Alexander et al., 2018). Specifically,

cells were fixed in 4% paraformaldehyde at room temperature for

15 min. The cells were washed in cold PBS and permeabilized with
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0.2% Triton X-100 in PBS. After blocking for 30 min with 3%

normal donkey serum in PBS, cells were incubated with primary

antibody in 5% BSA overnight. The secondary antibody was used at

a 1:2000 dilution. Antifade mounting media with DAPI (VECTOR

laboratory, Burlingame, CA, USA) was used to stain the cell nuclei.

Slides were visualized using fluorescence microscopy (Olympus,

FV1200).

2.8 | Real-time PCR

The PCR reactions contained 100 ng of total RNA, 5 μl of 2X SYBR

green qPCR master mix (Life Technologies, CA, USA), 1 μl of

gene-specific primer and distilled water up to 10 μl of final volume per

reaction. Real-time PCR reactions were performed in duplicate using

the Applied Biosystems ViiA 7™ Real-Time PCR System (Life

Technologies, Carlsbad, CA, USA). The 2�ΔΔCt method was employed

for statistical data analysis.

2.9 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY, http://www.guidetopharmacology.org, and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander et al., 2019).

3 | RESULTS

3.1 | Characteristics of study participants

The Mayo Clinic Center for the Individualized Treatment of Alcohol-

ism Study is an acamprosate clinical trial that recruited 442 partici-

pants with AUD, all of whom were treated with acamprosate. Two

hundred and sixty-seven of these AUD subjects presented themselves

for the 3-month follow-up. As mentioned previously, acamprosate has

received FDA approval for the pharmacotherapy of AUD. It should be

emphasized that our trial was not designed to determine the efficacy

of acamprosate, but rather to study biomarkers associated with indi-

vidual variation in treatment response to acamprosate. Clinical infor-

mation obtained included rating scales for depression, anxiety and

craving. Blood samples for DNA genotyping were also collected at

baseline. However, as pointed out above, only 267 of the 442 partici-

pants were evaluated after 3 months of acamprosate treatment and,

as a result, had treatment outcome data available (Karpyak

et al., 2014, 2019). Alcohol consumption was measured using the

TLFB every month for 3 months, which permitted the calculation of

various treatment outcome measures including relapse to drinking or

to heavy drinking (Karpyak et al., 2019). Relapse (n = 110) was

defined as return to any alcohol consumption during the 3 months of

acamprosate treatment, whereas non-relapse (n = 157) was defined

as abstinence from alcohol (no alcohol use) during 3 months of

acamprosate treatment (see Figure 1a). Baseline characteristics of the

AUD participants in both groups are listed in Table 1. Among the

TABLE 1 Clinical and demographic characteristics of study participants

Characteristic

All participants (N = 442) Relapse (n = 110) Non-relapse (n = 157) Relapse versus non-relapse

Mean ± SD or no. (%) Mean ± SD or no. (%) Mean ± SD or no. (%) P value

Age (years) 42 ± 11.8 41.59 ± 12.04 42.39 ± 11.58 NS

Male sex 286 (65) 67 (60.9) 112 (71.3) NS

White race 412 (93) 100 (90.9) 147 (93.6) NS

Baseline PHQ-9 score 9.4 ± 6.1 10.24 ± 6.14 8.79 ± 6.04 *

Baseline PACS score 13.38 ± 8.0 15.44 ± 8.47 11.91 ± 7.37 *

Baseline GAD-7 score 9.0 ± 5.9 9.35 ± 5.88 8.66 ± 5.80 NS

Depression 102 (23) 30 (27.2) 33 (21.0) NS

Anxiety 141 (31.9) 33 (30) 45 (28.6) NS

OCD 22 (4.9) 6 (5.4) 8 (5.0) NS

Social phobia 54 (12.2) 14 (12.7) 16 (10.1) NS

PTSD 79 (17.8) 19 (17.2) 21 (13.3) NS

Panic disorder 31 (7) 10 (9.0) 13 (8.2) NS

Note: Relapse was defined as having a standard drink during 3 months of acamprosate treatment, whereas non-relapse was defined as the maintenance of

abstinence from alcohol during 3 months of acamprosate treatment.

Abbreviations: GAD-7, General Anxiety Disorder 7; NS, not significant; OCD, obsessive–compulsive disorder; PACS, Penn Alcohol Craving Scale; PHQ-9,

Patient Health Questionnaire 9; PTSD, post-traumatic stress disorder.
*P < 0.05.
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AUD participants, two thirds were men, consistent with most studies

of AUD—a disorder that displays a striking difference in incidence

between the sexes (Blendberg et al., 2020; Erol & Karpyak, 2015).

Psychiatric and medical comorbidities are common among patients

with AUD and may influence the efficacy of AUD pharmacotherapy.

Therefore, those comorbidities are potentially important clinical vari-

ables for studies of drug response biomarkers. Our data showed that

the frequency of psychiatric comorbidities such as depression, anxiety

and panic disorder did not display significant differences between the

relapse and non-relapse groups (Table 1). Nevertheless, the relapse

group displayed significantly higher baseline PHQ-9 scores—an

assessment of depressive symptoms. Baseline alcohol craving scores

as determined by the PACS were also significantly higher in the

relapse group (Table 1). These clinical variables may be associated

with outcomes among patients with AUD. However, even if that is

the case, the underlying molecular biology remains to be determined.

Therefore, we set out to identify and study baseline plasma

metabolomic markers that were associated with alcohol craving and

alcohol relapse risk during 3 months of acamprosate treatment.

3.2 | Plasma metabolomic markers associated with
alcohol relapse risk

Targeted metabolomic assays were performed using the baseline

plasma samples (see Figure 1a for an outline of the study design). To

identify metabolomic biomarkers associated with alcohol relapse risk

during 3 months of acamprosate treatment, we studied baseline

plasma samples from the 267 AUD participants in whom we know the

treatment outcome. Four metabolites (histidine, hydroxyproline, argi-

nine and α-aminoadipic acid) were significantly elevated in the non-

relapse group as compared with the relapse group. Two metabolites

(threonine and ethanolamine) were significantly lower in the non-

relapse than in the relapse group (see Figure 1b and, for complete

results for all metabolites assayed, see Table S2). We also studied

relapse to heavy drinking as an additional treatment outcome and

found that concentrations of α-aminoadipic acid, threonine, hydroxy-

proline, arginine, hydroxyproline and ethanolamine also differed

between the heavy relapse and non-heavy relapse groups (Table S3).

3.3 | Sex-specific differences in metabolite
concentrations

It has been reported that men and women display distinct

metabolomic profiles (Mittelstrass et al., 2011), and we also observed

a series of plasma metabolites that displayed sex-related differences

in our AUD patients (see Table S4). As stated previously, AUD is more

highly prevalent in men than in women. However, sex did not sub-

stantially influence acamprosate treatment response (Table 1), a result

that is consistent with observations made by the COMBINE study

(Anton et al., 2006). We also performed analyses using logistic models

that can accommodate covariates (i.e., sex), because sex differences in

concentrations of metabolites were observed (Table S4). Specifically,

we set out to evaluate evidence for a sex-by-metabolite interaction

effect on the outcomes (i.e., relapse and heavy relapse). Those ana-

lyses tested whether associations between the metabolites and out-

comes differed significantly between men and women. We observed

no significant interactions (Tables S2 and S3).

3.4 | Correlation of plasma metabolomics with
alcohol craving intensity

Acamprosate is an anti-craving drug (Boothby & Doering, 2005;

Shen, 2018), and elevated craving increases the likelihood of alcohol

relapse (Cavicchioli et al., 2020; McHugh et al., 2016; Schneekloth

et al., 2012; Stohs et al., 2019). In line with previous reports, baseline

alcohol craving scores in our relapse group were significantly higher

than in the non-relapse group (Table 1). Because no objective bio-

chemical measures have been associated with alcohol craving inten-

sity, we set out to explore possible correlations between craving

intensity and plasma metabolite concentrations. We found that con-

centrations for 18 of the metabolites that we had assayed were signif-

icantly associated with baseline PACS scores, as listed in Table 2.

Among metabolites that were correlated with baseline craving inten-

sity, arginine, α-aminoadipic acid, threonine and ethanolamine concen-

trations also differed significantly between the relapse and non-

relapse groups, as is shown in Figure 1b. This series of observations

demonstrates that craving intensity, at least in this study, was associ-

ated with plasma metabolite concentrations, thus raising the question

of the underlying biology that might drive the differences in metabo-

lite concentrations that we observed, a question that we began to

address in the studies described subsequently.

3.5 | Pharmacometabolomics informs
pharmacogenomics

We next performed GWAS using baseline metabolomic profiles as

quantitative biological traits to identify genetic variants associated

with variations in concentrations of metabolites that were associated

with drug response phenotypes (Figure S1). Specifically, we applied

the pharmacometabolomics-informed pharmacogenomic approach

outlined schematically in Figure 2a. Among the metabolites that were

associated with acamprosate treatment outcomes, as shown in

Figure 1b, we observed a signal that was near genome-wide signifi-

cant in the baseline ethanolamine GWAS (Figure 2b with the

corresponding quantile–quantile [QQ] plot shown in Figure S2).

Among the SNP loci with suggestive evidence for association (P ≤ 5E-

06), the majority of SNPs mapped to protein coding genes that were

ethanol responsive, as determined by real-time PCR using iPSC-

derived forebrain-specific astrocytes (see Figure 2c,d). We subse-

quently differentiated iPSC-derived forebrain organoids, which are 3D

self-assembled structures composed of multiple brain cell types

(Figure 2e). We then observed that the expression of GRM7, PTPRD
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and AUTS2 could be significantly induced by ethanol in iPSC-derived

forebrain organoids (Figure 2f).

We next performed metabolomics-informed GWAS for the

metabolites that were associated with alcohol craving intensity

(Table 2), an important variable that has been associated with

acamprosate treatment response. We observed genome-wide or near

genome-wide significant SNPs in the GWAS for α-amino-N-butyric

acid, asparagine, ethanolamine, lysine, taurine and tyrosine (Figure 3).

Among the SNP loci with suggestive evidence of association (P ≤ 5E-

06) with concentrations of the six metabolites (Figure 3), a large num-

ber of SNPs were located in or near protein coding genes. Of particu-

lar interest, a large number of those genes were ethanol responsive in

iPSC-derived forebrain-specific astrocytes (n = 6) (see Figure 4a and

Table S5). In addition, a large number of those genes displayed

‘inverted’ gene expression patterns in response to acamprosate treat-

ment, that is, the directionality after EtOH exposure was opposite to

that after acamprosate exposure (Figure 4b). Even more striking, very

similar results were observed when the cells were exposed to naltrex-

one, one of the two US FDA approved anti-craving drugs for the

treatment of AUD (Figure 4c). In summary, our multiple omics studies

have identified a series of genes that might contribute to treatment

response and/or disease pathophysiology for further studies designed

to understand underlying mechanisms for the effects of those genes.

However, it would be impractical to functionally study all of the genes

that we had identified. The subsequent paragraph will demonstrate

one of the strategies for prioritizing genes or SNPs for future func-

tional genomic study.

As a first step, we used the STRING database to identify a

protein–protein integration network using the genes listed in Figure 4,

all of which were identified in the course of our metabolomics-

informed GWAS. Of interest is the fact that we found that the PTPRD

gene might be functionally important because it appeared to be the

‘hub’ protein in the network with the highest degree of connectivity

with other proteins in the module (Figure S3). Furthermore, a series of

genes shown in Figure 2d (PTPRD, AUTS2, GRM7, ERBB4 and ESPN)

that were identified in the ethanolamine GWAS also appeared to have

either direct or indirect protein–protein interactions. As a result, we

set out to determine whether SNPs within the PTPRD gene might be

associated with acamprosate treatment outcomes (Karpyak

et al., 2014, 2019). We found that the four most significant PTPRD

SNPs (rs12001871, rs10122491, rs12349713 and rs12348723), all

with MAF � 14%, were in tight linkage disequilibrium (R2 ≥ 0.98) and

were associated with time until first alcohol use during 3 months of

acamprosate treatment (see Figure 5a and Table S6). The wild-type

genotypes for these SNPs were associated with longer abstinence

length until first drink during 3 months of acamprosate treatment.

Those same four SNPs were also associated with a series of drug

response phenotypes, that is, time until heavy drinking, return to alco-

hol use (binary variable) or return to heavy alcohol use (binary vari-

able) during 3 months of acamprosate treatment (Figure 5b). Taken

together, this series of studies illustrated that the experimental

approach that we had taken might represent a potentially important

step towards generating functional hypotheses that could be tested

to gain insight into molecular mechanisms underlying acamprosate

treatment response phenotypes.

4 | DISCUSSION

AUD is the most prevalent substance use disorder globally, and, like

many other chronic diseases, it typically requires long-term treatment

and care with a goal of preventing relapse (Carvalho et al., 2019).

Among common primary outcome measures for AUD treatment are

per cent of days abstinent from alcohol and time to first heavy drink-

ing (Anton et al., 2006; Karpyak et al., 2014; Mann et al., 2018). Like

TABLE 2 Correlation of plasma metabolomics with baseline Penn
Alcohol Craving Scale

Metabolite Pearson's r FDR

Arginine �0.220 0.00029

α-Aminoadipic acid �0.211 0.00014

Tyrosine �0.168 0.00614

Ethanolamine 0.155 0.00998

Valine �0.152 0.01125

α-Amino-N-butyric acid 0.150 0.01125

Taurine 0.145 0.01439

Tryptophan �0.145 0.01439

Hydroxylysine 2 �0.132 0.02409

Cysteine �0.129 0.03331

Lysine �0.124 0.03889

Serine 0.123 0.03889

γ-Amino-N-butyric acid 0.118 0.01125

Isoleucine �0.118 0.04739

Threonine 0.108 0.07349

Leucine �0.105 0.07470

Glycine 0.104 0.07556

Asparagine 0.101 0.08154

Citrulline 0.086 0.14279

Alanine �0.085 0.14377

Hydroxyproline �0.074 0.21020

Phenylalanine �0.067 0.26264

β-Aminoisobutyric acid 0.058 0.30557

Ornithine 0.057 0.33495

Histidine �0.043 0.47689

Aspartic acid 0.041 0.47689

Proline �0.025 0.70599

Sarcosine �0.024 0.70599

Phosphoethanolamine 0.022 0.69447

Glutamine �0.019 0.76604

Glutamic acid 0.013 0.82345

Methionine �0.010 0.85729

Abbreviation: FDR, false discovery rate.
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F IGURE 2 (a) Schematic outline of pharmacometabolomics-informed pharmacogenomics research strategy. (b) Manhattan plot for GWAS of
plasma concentrations of ethanolamine that were associated with acamprosate treatment outcomes. (c) A schematic outline of procedures used

during the differentiation of iPSC-derived forebrain astrocytes. The panel below the schematic displays representative examples of staining for
astrocyte markers (S100β and GFAP). iPSC indicates induced pluripotent stem cell. EB indicates embryonic body. NPC indicates neural progenitor
cell. (d) Effect of ethanol (EtOH: 25 mM) on mRNA expression in iPSC-derived forebrain astrocytes for SNP loci identified during the
ethanolamine GWAS with P value < 10�6. Real-time PCR was performed using iPSC-derived forebrain astrocytes from six AUD subjects.
*P < 0.05, significantly different as indicated; Mann–Whitney U test. (e) A schematic outline of procedures used during the differentiation of iPSC-
derived forebrain organoids. The panel below the schematic displays representative examples of staining for neuronal markers (MAP 2 [Sigma-
Aldrich Cat# M2320, RRID:AB_609904], FOXG1 [Abcam Cat# ab18259, RRID:AB_732415] and TUJ1 [Covance Cat# MMS-435P, RRID:
AB_2313773]) and for a cortical layer marker (TBR2 [Abcam Cat# ab75720, RRID:AB_1310743]). (f) Effects of ethanol (EtOH: 25 mM) on gene
expression in iPSC-derived forebrain organoids for SNP loci identified during the ethanolamine GWAS with P value < 10�6. Real-time PCR was
performed using iPSC-derived forebrain organoids (n = 5). Thedot plot displays mRNA expression levels (EtOH treatment vs. vehicle treatment).
Real-time PCR results were analysed using 2�ΔΔct method. As a result, the control mean is 1, and there is no variance in the control. Real-time
PCR data were then analysed using non-parametric statistical tests (Mann–Whitney U test). *P < 0.05, significantly different as indicated
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most psychiatric disorders, AUD is diagnosed primarily on the basis of

symptoms included in a list of diagnostic criteria (i.e., Diagnostic and

Statistical Manual for Mental Disorders, 5th edition), rather than

through the use of biologically based biomarkers. The present study

was designed to use metabolomics data as a quantitative biological

trait as a step towards identifying biomarkers that might be associated

with acamprosate treatment outcomes. Specifically, we performed

targeted metabolomic assays to identify genes/signals that might con-

tribute to individual variation in metabolomic markers that were asso-

ciated with acamprosate treatment response and/or alcohol craving in

AUD patients. We then performed GWAS for metabolomic markers

associated with acamprosate treatment outcomes and/or alcohol

craving intensity, followed by initial functional studies of the genes

identified (Figure 2).

We identified a series of baseline plasma metabolite concentra-

tions, including those for histidine, threonine, ethanolamine, hydroxy-

proline, arginine and α-aminoadipic acid, that were associated with

alcohol relapse risk, although those observations require replication.

Our acamprosate study is the only existing AUD study cohort that

includes genomics, metabolomics, transcriptomics, clinical data and

acamprosate treatment outcome data. Little is known about the possi-

ble role of these metabolites in the pathophysiology of AUD or

acamprosate treatment response. In the present study, we replicated

our previous findings for serum threonine and α-aminoadipic acid, in

this case using plasma rather than serum, and were able to identify

additional metabolites that were associated with acamprosate treat-

ment outcomes. However, to our knowledge, no prior studies have

reported associations of elevated plasma histidine, ethanolamine,

F IGURE 3 Manhattan plots for GWAS for plasma concentrations of metabolites that were associated with alcohol craving
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F IGURE 4 Effects of ethanol (a) or the anti-craving drugs, acamprosate (b) or naltrexone (c), on gene expression in iPSC-derived forebrain
astrocytes for genes identified by the pharmacometabolomics-informed GWAS shown in Figure 3. Real-time PCR (n = 6) was used to determine
mRNA expression before and after drug exposure. Specifically, forebrain-specific astrocytes derived from iPSCs were treated with 25 mM of
ethanol (EtOH), a concentration that is considered physiologically relevant for EtOH use, with 25 mM of EtOH being slightly higher than the
0.08% blood alcohol concentration often used as a measure of intoxication (Lira et al., 2020). The concentrations of acamprosate (5 μM) and
naltrexone (30 nM) used to perform these experiments were selected to fall within the range of blood drug concentrations in patients taking
standard clinical doses of these two drugs (Mason et al., 2002). Real-time PCR results were analysed using 2�ΔΔct method. As a result, the control
mean is 1, and there is no variance in the control. Real-time PCR data were then analysed using non-parametric statistical tests (Mann–Whitney U
test). *P < 0.05, significantly different as indicated
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hydroxyproline or arginine with acamprosate treatment response. It

should be pointed out that, in addition to acamprosate treatment out-

come (Figure 1b), baseline arginine, α-aminoadipic acid, threonine and

ethanolamine concentrations were also correlated with baseline alco-

hol craving scores (Table 2). Among these metabolites, only arginine

has been reported to be associated with alcohol withdrawal symp-

toms in a rodent model (Uzbay & Erden, 2003). Specifically, Uzbay

and Erden (2003) reported that L-arginine, an NO precursor, had ben-

eficial effects on ethanol withdrawal symptoms in rats. However, the

biological role of arginine in AUD disease risk and/or acamprosate

treatment response has not been systematically addressed. Our data

showed that elevated arginine was found in the non-relapse group

(Figure 1b), and those values were negatively associated with craving

scores (Table 2). We did not observe that any SNPs achieved

genome-wide significance in our GWAS for arginine concentrations.

That may be due, at least in part, to the fact that the effect size is too

small to detect in this relatively small sample. However, we should

once again point out that our study is currently the only study with

both genomic and metabolomic data from patients with AUD and

acamprosate treatment outcome information. Future studies will be

F IGURE 5 PTPRD SNPs were associated with acamprosate treatment response. (a) Kaplan–Meier curves for the time until first alcohol use
during 3 months of acamprosate therapy. Participants who had at least 1 week of follow-up were included in the analysis. The wild-type
genotype was associated with better outcomes, that is, longer abstinence length until first drink during 3 months of acamprosate treatment, P:
1.35E-05. (b) PTPRD SNPs were associated with acamprosate treatment response phenotypes. SNPs within the PTPRD gene (GRCh37/hg19:
chromosome 9: 8314246–10612723) were tested for association with a series of phenotypes. Single SNPs were tested individually as predictors
of time until alcohol use or time until heavy drinking after initiating acamprosate therapy using multivariable Cox proportional hazard models.
Heavy drinking was defined as four or more standard drinks daily for a woman and five or more standard drinks daily for a man. SNP associations
with binary outcomes, that is, relapse to alcohol use or relapse to heaving drinking during 3 months of acamprosate therapy, were determined
using multivariable logistic regression models. Models were adjusted for the number of days sober prior to treatment, baseline PACS and study
site. Results of the Cox proportional hazard analyses were not adjusted for multiple testing. The odds ratios or hazard ratios are represented as
OR and HR (95% confidence interval), with a value > 1 indicating worse outcome. *P < 0.05
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required to investigate the potential role of these metabolites in

molecular mechanisms underlying AUD pathophysiology and individ-

ual variation in drug treatment response.

Craving intensity has been associated with AUD treatment

response (Schneekloth et al., 2012; Subbaraman et al., 2013; Verheul

et al., 2005). In line with those previous reports, the present study

showed that baseline craving intensity was associated with

acamprosate treatment outcomes (Table 1). However, the mechanism

of action of acamprosate relative to anti-craving remains unclear. In

addition to arginine, α-aminoadipic acid, threonine and

ethanolamine—all of which were associated with acamprosate treat-

ment response—together with concentrations of several other metab-

olites, as shown in Table 2, were correlated with baseline craving

intensity as determined by PACS scores. We recognized that the

effect sizes appear to be minimal. Therefore, caution is necessary

when interpreting results of the correlation analyses. Obviously,

future studies will be required to explore additional metabolites within

these pathways. Once again, there are, to our knowledge, no prior

studies addressing the biological roles of these metabolites in AUD

disease risk and/or acamprosate treatment response. As a result, we

have identified genetic variants associated with the concentrations of

these metabolites that may contribute to or be associated with varia-

tion in acamprosate response. These findings may also help to stimu-

late the study of molecular mechanisms involved in variation in AUD

drug response phenotypes, in this case, response to acamprosate

therapy. Specifically, we observed that several SNPs reached or were

near genome-wide significance, with P values ≤ 5 � 10�8 in the

GWAS for metabolites associated with either acamprosate treatment

response or alcohol craving intensity (Figures 2 and 3)—although

these observations must be replicated. We observed that several

proteins identified in our GWAS for baseline ethanolamine concen-

tration might display protein–protein interactions based on the

STRING database. It should also be pointed out that several genes

involved in the protein interactive network have been implicated in

substance use disorders (Narita et al., 2016; Uhl et al., 2008; Yeung

et al., 2017). For example, the autism susceptibility candidate

2 (AUTS2) gene has implications for alcohol consumption (Narita

et al., 2016). Several genetic variants (rs10085696, rs13229395 and

rs6943555) in AUTS2 have been associated with alcohol consump-

tion (P ≤ 5 � 10�8, n = 1,039,210) (Liu et al., 2019). The protein

tyrosine phosphatase receptor type D (PTPRD) has been implicated

in alcohol dependence (Yeung et al., 2017) and cocaine reward (Uhl

et al., 2018). Both ethanol and acamprosate can regulate the

expression of PTPRD in iPSC-derived forebrain astrocytes generated

from AUD participants (see Figure 4). Finally, we identify PTPRD

SNPs that were associated with acamprosate treatment outcomes.

Taken as a whole, these results help to demonstrate that the appli-

cation of a pharmacometabolomics-informed pharmacogenomics

strategy could help to prioritize genes for subsequent functional

mechanistic studies—as has already been done successfully during

our previous studies of selective serotonin reuptake inhibitors in the

treatment of major depressive disorder (Gupta et al., 2016; Liu

et al., 2018).

Our study also has limitations. We should point out that our

acamprosate clinical trial was not originally designed to study

metabolomic biomarkers, but rather genomic biomarkers associated

with acamprosate treatment response (Karpyak et al., 2014). There-

fore, blood samples were collected as the source of DNA, and plasma

samples were stored in the Mayo Clinic Biobank for future studies

such as those reported here. The present study was designed as an

extension of our previous preliminary serum metabolomics study, with

a focus on amino acid and neuromodulator metabolomics panels

(Hinton et al., 2017; Nam et al., 2015). We know that concentrations

of amino acids and their derivatives could be influenced by diet, a var-

iable that we found difficult to control. It should also be emphasized

that plasma metabolites may not directly reflect metabolite levels in

the brain. However, some of these metabolites may be predictors for

acamprosate treatment response in patients with AUD and, if so,

relevant pathways require further exploration with regard to their

possible role in disease pathophysiology. Future studies should also

be performed to explore the value of the assay of additional metabo-

lites. A larger prospective study that includes functional genomic

experiments should be conducted to validate and replicate our find-

ings. However, the application of a pharmacometabolomics-informed

pharmacogenomic research strategy might make it possible to identify

genetic variants contributing to variation in acamprosate response

(Gupta et al., 2016). Finally, we used human iPSC-derived forebrain

astrocytes to perform our functional genomic studies. Those cell lines,

like any cell lines, also have limitations; that is, iPSC-derived brain cells

are ‘region specific’. The present study utilized forebrain-specific

astrocytes, cells that have been implicated in the pathophysiology of

AUD (Bradshaw et al., 2017; Ho et al., 2020; Swift & Aston, 2015).

Future studies that include different brain cell types and different

brain regions will be required to pursue the results reported here.

In summary, we have compared metabolomic profiles between

patients who maintained sobriety and those who relapsed based on

any alcohol use during 3 months of acamprosate treatment and identi-

fied novel genes or genetic variants that may be associated with varia-

tion in metabolite concentrations, thus contributing to variation in

acamprosate treatment outcomes. These data suggest that the

application of metabolomics may be a useful approach for identifying

biological markers that could potentially predict drug treatment

response as well as clinical variables such as craving. Finally, this union

of genomics, metabolomics and transcriptomic, that is, of ‘multiple

omics’, could help us to move beyond ‘biomarkers’ to novel hypothe-

ses with regard to biological mechanisms underlying alcohol craving

and drug response phenotypes.
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