Table 3.
Parameter settings of the single-objective algorithms. For scenario 1, N = 50, Max_t = 500; For scenario 2, N = 100, Max_t = 1000.
Algorithms | Parameters | Values | Algorithms | Parameters | Values |
---|---|---|---|---|---|
EOSMA | Hybrid parameter z | 0.5 | IGWO | Convergence factor a | [2, 0] |
Mutation probability q | 0 and 1 | PSOGSA | Inertia weight w | [1, 0] | |
Control volume V | 1 | Personal cognition coefficient c1 | 0.5 | ||
Generation probability GP | 0.5 | Social cognition coefficient c2 | 1.5 | ||
Exploration factor a1 | 1 and 2 | Gravitational constant G0 | 1 | ||
Exploitation factor a2 | 2 | Constant α | 23 | ||
SMA | Constant z | 0.03 | CODE | Scale factor F | 0.5 |
EO | Control volume V | 1 | Crossover rate Cr | 0.9 | |
Generation probability GP | 0.5 | Generation jumping rate Jr | 0.3 | ||
Exploration factor a1 | 2 | MTDE | Constant WinIter | 20 | |
Exploitation factor a2 | 1 | Constant H | 5 | ||
MRFO | Somersault factor S | 2 | Constant initial | 0.001 | |
MPA | Constant p | 0.5 | Constant final | 2 | |
Constant FADs | 0.2 | Parameter Mu | log(Dim) | ||
FPA | Scale factor a | 2 | Constant μf | 0.5 | |
Constant b | 0.5 | Constant σ | 0.2 | ||
Proximity probability p | 0.2 | SASS | Constant pr | 0.11 | |
DE | Scale factor F | 0.5 | Population size N | [18*Dim, 4] | |
Crossover rate Cr | 0.9 | Rank of diagonal matrix rd | 0.5 | ||
GBO | Constant pr | 0.5 | Scale factor c | 0.7 | |
TLBO | Teaching factor TF | {1, 2} | Archiving size Ar | 1.4 | |
HHO | Constant β | 1.5 | Memory size Ms | 100 |