Skip to main content
. 2022 Jun 8;12:9421. doi: 10.1038/s41598-022-13516-3

Table 3.

Parameter settings of the single-objective algorithms. For scenario 1, N = 50, Max_t = 500; For scenario 2, N = 100, Max_t = 1000.

Algorithms Parameters Values Algorithms Parameters Values
EOSMA Hybrid parameter z 0.5 IGWO Convergence factor a [2, 0]
Mutation probability q 0 and 1 PSOGSA Inertia weight w [1, 0]
Control volume V 1 Personal cognition coefficient c1 0.5
Generation probability GP 0.5 Social cognition coefficient c2 1.5
Exploration factor a1 1 and 2 Gravitational constant G0 1
Exploitation factor a2 2 Constant α 23
SMA Constant z 0.03 CODE Scale factor F 0.5
EO Control volume V 1 Crossover rate Cr 0.9
Generation probability GP 0.5 Generation jumping rate Jr 0.3
Exploration factor a1 2 MTDE Constant WinIter 20
Exploitation factor a2 1 Constant H 5
MRFO Somersault factor S 2 Constant initial 0.001
MPA Constant p 0.5 Constant final 2
Constant FADs 0.2 Parameter Mu log(Dim)
FPA Scale factor a 2 Constant μf 0.5
Constant b 0.5 Constant σ 0.2
Proximity probability p 0.2 SASS Constant pr 0.11
DE Scale factor F 0.5 Population size N [18*Dim, 4]
Crossover rate Cr 0.9 Rank of diagonal matrix rd 0.5
GBO Constant pr 0.5 Scale factor c 0.7
TLBO Teaching factor TF {1, 2} Archiving size Ar 1.4
HHO Constant β 1.5 Memory size Ms 100