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Drug repositioning in non‑small 
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Farzad Kiani10, Mazaher Maghsoudloo5,11 & Ali Masoudi‑Nejad11

Lung cancer is the most common cancer in men and women. This cancer is divided into two main 
types, namely non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Around 85 to 90 
percent of lung cancers are NSCLC. Repositioning potent candidate drugs in NSCLC treatment is one 
of the important topics in cancer studies. Drug repositioning (DR) or drug repurposing is a method for 
identifying new therapeutic uses of existing drugs. The current study applies a computational drug 
repositioning method to identify candidate drugs to treat NSCLC patients. To this end, at first, the 
transcriptomics profile of NSCLC and healthy (control) samples was obtained from the GEO database 
with the accession number GSE21933. Then, the gene co-expression network was reconstructed 
for NSCLC samples using the WGCNA, and two significant purple and magenta gene modules were 
extracted. Next, a list of transcription factor genes that regulate purple and magenta modules’ genes 
was extracted from the TRRUST V2.0 online database, and the TF–TG (transcription factors–target 
genes) network was drawn. Afterward, a list of drugs targeting TF–TG genes was obtained from the 
DGIdb V4.0 database, and two drug–gene interaction networks, including drug-TG and drug-TF, 
were drawn. After analyzing gene co-expression TF–TG, and drug–gene interaction networks, 16 
drugs were selected as potent candidates for NSCLC treatment. Out of 16 selected drugs, nine drugs, 
namely Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, 
Dexamethasone, and Docetaxel, were chosen from the drug-TG sub-network. In addition, nine drugs, 
including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, 
Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were selected from the drug-TF sub-network. 
Methotrexate and Dexamethasone are common in drug-TG and drug-TF sub-networks. In conclusion, 
this study proposed 16 drugs as potent candidates for NSCLC treatment through analyzing gene 
co-expression, TF–TG, and drug–gene interaction networks.

Lung cancer is one of the leading cancer death causes1 worldwide. This type of cancer occurs when a cancerous 
tumor grows inside the lungs. Lung cancer contains two main types: non-small cell lung cancer (NSCLC) and 
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small cell lung cancer (SCLC). NSCLC is the most common lung cancer2. Histopathological grading has identi-
fied about 85% to 90% of lung cancers as NSCLC and 15% to 20% as SCLC3. This cancer includes three different 
types of Adenocarcinoma, Squamous cell carcinoma, and large cell carcinoma.

Different studies based on computational approaches and network analysis have been undertaken to find 
biomarker genes for early NSCLC detection. Moreover, scientists have evaluated and discussed the effect of cur-
rent drugs on this cancer. Based on a co-expression network analysis, Ling Kui et al.4 proposed several important 
genes as biomarkers for NSCLC treatment. Xiujuan Gao et al.4 applied the gene expression profile of NSCLC 
samples and, based on a systems biology approach, reported Estrogen receptors (ERs) as promoters of NSCLC 
progression. In another study, Mei Zhao et al.5 introduced five genes, including FGF2, GOLM1, GPC3, IL6, and 
SPP1, which deregulated in NSCLC tissues. They introduced these 5 genes for NSCLC prognosis in patients. A 
computational approach based on protein–protein interaction (PPI) network analysis was used in a similar study, 
and Stratifin had an important role in NSCLC6 development. Furthermore, Yun-Qiang Zhang et al.7 proposed 
HIST1H2BH and PLK1 as prognostic biomarkers for NSCLC patients.

Drug repositioning (DR) is utilized as a time- and cost-effective method to discover new drugs8–12. Drug 
repositioning is also referred to as drug repurposing, drug therapeutic, drug recycling, and drug reprofiling13,14. 
There are usually three kinds of methods for drug repurposing, including experimental biological methods, 
computational methods, and mixed methods10,15,16. Computational methods can be referred to as molecular dock-
ing, network mapping, signature matching, genetic association, and retrospective clinical analysis13,17,18. In the 
current study, a computational drug repositioning method is applied to identify candidate drugs to treat NSCLC.

Lately, various studies based on the network approach for drug repurposing have been carried out. Network-
based strategy is one of the important computational methods in drug repurposing19,20. SAveRUNNER21 is 
a network-based algorithm in this field. This algorithm predicts drug-disease relations based on a similarity 
measure. This method was provided as an R programing language package22. Xing Li and colleagues 23 proposed 
a network-based approach to discover lncRNA biomarkers in human lung adenocarcinoma. Furthermore, a com-
putational approach for drug repurposing based on the system biology approach was proposed by Azam Peyvan-
dipour and collages 24 in 2018. In another study, Wei-Feng Guo et al.25 proposed a network controllability-based 
algorithm called combinatorial drug identification algorithm (CPGD). Besides, Albert Li and collages26 proposed 
a network-based method, namely LncTx, to repurpose drugs in lung cancer. In a recent study by Zahra and 
her colleagues27, they proposed a novel network-based method to discover candidate drugs for bladder cancer.

Anisha et al. 28 presented an overview of drug repositioning for anti-cancer applications, and they proposed 
a novel drug repurposing technique to target the MAPK signaling pathway in NSCLC. In a similar study, Muthu 
Kumar and colleagues29 introduced another drug repurposing method for NSCLC, and they hypothesized that 
Nebivolol is an excellent candidate for inhibiting MEK in NSCLC patients. In another study, Joelle C. Boulos 
and colleagues30 repurposed ALK Inhibitor Crizotinib for NSCLC, Acute Leukemia, and Multiple Myeloma 
Cells. Compared to the mentioned methods, this study applies a novel computational model based on gene co-
expression and TF–TG interaction networks. Moreover, two drug–gene interaction networks, including drug-TF 
and drug-TG, were studied that have not been studied in previous studies.

Gene co-expression network analysis is one of the important network-based approaches in systems 
biology11,31,32. Different studies based on gene co-expression network analysis were done on different transcrip-
tomic datasets. In this study, a gene co-expression network analysis was applied on the NSCLC transcriptom-
ics dataset to repurpose some potent candidate drugs for NSCLC. Xue-Tao Li 33 and colleagues applied gene 
co-expression modules analysis in order to predict non-small cell lung cancer survivals. In a similar project, 
Guanghui Wang et al.34 applied gene co-expression modules analysis on NSCLC metastases.

Weighted gene co-expression network analysis (WGCNA35) is a bioinformatics and systems biology tool that 
is employed to construct and analyze co-expression networks. This tool is an R programming language package 
and contains different functions for network construction, visualization, data simulation and gene selection and 
can be applied for detecting modules (clusters) of highly correlated genes36. In the present study, WGCNA was 
utilized to reconstruct and analyze the gene co-expression network for NSCLC transcriptomic dataset. Xuting Xu 
and colleagues 37 applied WGCNA to identify hub genes as biomarkers in lung cancer and introduced CCNB1, 
CCNE2, MCM7, and PCNA as hub biomarker genes. In a similar study, Binglin Chen et al.38 applied WGCNA 
on the NSCLC transcriptomics dataset and identified four hub genes (AURKB, CDC20, TPX2 , and KIF2C) as 
NSCLC prognostic biomarkers based on co-expression network analysis. Moreover, WGCNA was utilized to 
discover prognostic markers in lung cancer by Bo Ling colleague 39.

The current study aimed to discover potent candidate drugs for NSCLC treatment by analyzing gene co-
expression, TF–TG, and drug–gene interaction networks. To this end, at first, a gene co-expression network was 
reconstructed based on the WGCNA for the NSCLC transcriptome dataset. Then, two significant gene modules, 
named purple and magenta, were discovered from the reconstructed gene co-expression network. Next, a list of 
transcription factor (TF) genes regulating purple and magenta modules’ genes was gathered from the TRRUST 
V2.040 online database. Afterward, a TF-gene interaction network was reconstructed for the gathered TFs and 
their target genes. This network is named the TF–TG network. Simultaneously, Gene Ontology (GO) and pathway 
enrichment analysis were done using the David bioinformatics Resources 6.841 for purple and magenta modules’ 
genes, and the results were reported. Subsequently, in order to identify the existing drugs targeting TF–TG net-
work genes, the DGIdb V4.042 online database was utilized. After obtaining a list of drugs targeting the TF–TG 
genes, we reconstructed two drug–gene interaction networks, including drug-TF and drug-TG. Consequently, 
for each of the drug-TF and Drug-TG networks, nine high-degree drugs (hub drugs) were selected and reported 
as potent candidate drugs. METHOTREXATE is a hub node in the drug-TG interaction network and regulates 
6 genes of the purple and magenta modules. The highest degree drug node in the drug-TF interaction network 
is CISPLATIN, which regulates 11 TF genes.
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In summary, the current study consists of the following three main steps: (1) Gene co-expression network 
reconstruction, (2) TF_TG interaction network analysis, and (c) Drug- Target interaction network analysis. 
Compared to the other studies, steps (2) and (3) are novel in our project and have not been applied for drug 
repurposing for NSCLC before. Moreover, the current study analyses interactions between drugs and both of 
TFs and non-TF genes (Drug-TF and Drug-TG), which have not been studied before for NSCLC treatment. 
Figure 1 shows the workflow diagram of the proposed approach.

Result
Module analysis.  For 4218 differentially expressed genes between normal and NSCLC, the gene co-expres-
sion network was reconstructed for NSCLC transcriptomics data using the WGCNA. Accordingly, 21 gene 
modules were discovered from this network (Supplementary Fig. C). The darkorange module is the smallest 
module with 47 genes, while the largest module is blue with 326 genes. The grey module shows genes that are not 
assigned to any other detected modules. This module is not considered for further analysis.

Comparing the modules between NSCLC and normal groups.  Those modules that have changed 
significantly between NSCLC and normal groups could deregulate some biological processes and cause disease. 
Therefore, no-preserve modules between NSCLC and normal groups may cause the NSCLC. As described in 
the method section, the modules with  Zsummary < 2  are considered as no preservation modules for additional 
analysis. In this regard, the purple and magenta modules have Zsummary = 0.93 and Zsummary = 1.3 , respectively 
and are considered as no preservation modules between NSCLC and normal groups (see Fig. 2). These modules 
can represent cancer progression from normal to NSCLC stage. Table 1 shows all extracted modules along with 
their Zsummary.

Enrichment analysis of the gene modules.  In order to study the biological functions of the genes in 
purple and magenta modules, functional enrichment analysis was performed using the DAVID5 (Database for 
Annotation Visualization and Integrated Discovery) database. Gene Ontology (GO) enrichment analysis shows 
that the genes of purple and magenta modules are enriched in 55 and 72 significant (p_value < 0.05) terms, 
respectively. The results show that the genes in the purple module are significantly enriched in some biologi-
cal processes related to respiration and lung including: lung epithelial cell differentiation (p_value < 0.001), lung 
cell differentiation(p_value < 0.001), lung epithelium development (p_value < 0.004), respiratory system develop-
ment (p_value < 0.006), and lung development (p_value < 0.01). As well as, the results show that the genes in the 
magenta module are not significantly enriched in biological processes related to respiration and lung. Therefore, 
the purple module genes are closer to NSCLC than the magenta module. More details for the GO results are 
reported in supplementary file S2.

Moreover, to investigate biological pathways related to the purple and magenta modules, the pathway enrich-
ment analysis was done based on the REACTOME44 database. The results revealed that the purple module is 
significantly enriched in the regulation of the insulin secretion pathway. In addition, the magenta module is 
significantly enriched in five biological pathways, including Gap junction assembly, TP53 Regulates Metabolic 
Genes, Tandem of pore domain in a weak inwardly rectifying K + channels (TWIK), Tight junction interactions, 
and Synthesis of 12-eicosatetraenoic acid derivatives (see supplementary file S2).

TF–TG regulatory network.  In order to identify a list of transcription factor (TF) genes that regulate 
magenta and purple modules’ genes, the TF–TG regulatory network was reconstructed. Regulatory information 
of TFs and TGs was retrieved from the TRRUST40 online database. After reconstructing the TF–TG regulatory 
network for magenta and purple modules, we obtained a network with 178 nodes and 182 regulatory interac-
tions. This network contains 107 TFs and 71 TGs. In this network, MUC1 with 11 input degrees and SP1 with 16 
output degrees are high TG and TF nodes, respectively. Figure 3 shows the TF–TG regulatory network. A list of 
TF–TG regulatory interactions is reported in supplementary file S3.

Drug‑TG and Drug‑TF Interaction networks.  The Drug Gene Interaction Database (DGIdb42) was 
used to detect potential drugs for NSCLC treatment. This database is comprehensive and contains drug–gene 
interaction information. Using DGIdb, we found 277 candidate drugs that target purple and magenta modules’ 
genes. These drugs could have a regulatory effect on NSCLC progression. The drug–gene interaction network 
was reconstructed based on the obtained drugs and the purple and magenta modules’ genes. The Cytoscape43 
v.3.8.2 software was used to reconstruct and visualize this network. This network is shown in Fig. 4, and further 
details are reported in Supplementary file S4. This network shows nine drugs, including Methotrexate, Olanzap-
ine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel Verapamil, Dexamethasone, and Docetaxel, are high-degree 
nodes. These nine drugs, along with target genes, are selected from the network, and then a sub-network is 
drawn for these drugs and genes (see Fig. 5). In this sub-network, expression levels of genes in NSCLS samples 
compared to normal samples are shown with blue (Dow-Regulation) to red (Up-Regulation) colors. Among 
these genes, UGT1A9 has the highest up-regulation, and ATP1A2 has the highest down-regulation expression 
level in NSCLC group compared to the normal group. METHOTREXATE is a hub node in this sub-network and 
regulates 6 genes of the purple and magenta modules. High-degree drugs in the network regulate more genes and 
can have important regulatory effects. The details of target genes’ expression level in 9 drugs of NSCLC group 
compared to the normal group are reported in Supplementary file S6.

Moreover, a list of drugs that target those TFs regulating magenta and purple genes was retrieved from the 
DGIdb database. A list of TFs with regulatory relationships with magenta and purple modules’ genes is available 
in supplementary files S3. Supplementary Fig. D shows the Drug-TF interaction network, and the details of this 
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Figure 1.   The workflow diagram of the proposed method. This study applies a gene co-expression network 
and a drug–gene regulatory network analysis to reposition candidate drugs for NSCLC treatment. (a,b) 
At first, a transcriptome profile for normal and NSCLC samples was downloaded from the GEO database 
with the accession number GSE21933. (c,d) Then, a gene co-expression network was reconstructed for the 
differentially expressed genes (p_value < 0.01) of normal and NSCLC groups using the WGCNA package in the 
R programming environment, and two significant gene modules (purple and magenta) were extracted from the 
NSCLC co-expression network. (e) Next, a list of transcription factor genes, which regulate purple and magenta 
modules’ genes, were obtained from the Trrust V2.0 40 online database. (f,g) Subsequently, two drug–gene 
interaction networks, named drug-TG (target gene) and drug-TF (transcription factor gene), were drawn using 
the DGIdb V4.042 online database. (e) Finally, 18 candidate drugs are proposed for NSCLC treatment.
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a b

Figure 2.   Magenta (a) and Purple (b) modules. The circle nodes represent genes (this figure was drawn in the 
Cytoscape43 v.3.8.2 software).

Table 1.   The Zsummary  of NSCLC co-expression modules compared to the normal gene expression data.

Module name Size Zsummary

Purple 167 0.93

Magenta 183 1.3

Orange 52 2.2

Darkgreen 81 2.7

Red 222 3.5

Grey60 101 4

Midnightblue 112 4.3

Greenyellow 160 4.6

Lightgreen 92 4.6

Cyan 133 5.5

Darkred 84 5.5

Lightcyan 108 5.8

Lightyellow 90 5.8

Darkturquoise 70 6.7

Brown 317 6.9

Blue 326 7.4

Royalblue 87 8.1

Darkorange 47 10

Salmon 140 14

Gold 17

Black 192 27

Grey 42 0.46
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network are reported in Supplementary file S5. This network contains 723 nodes, including 675 drugs and 48 TFs. 
The highest degree drug node is Cisplatin which regulates 11 TF genes, including NFE2L2, TP53, ESR1, BRCA1, 
ATM, MYC, E2F1, SMAD4, MYCN, TP73, and STAT1. Daunorubicin is the second highest degree drug node 
that regulates ten TF genes. Among all drugs, those with degree 7 or above along with target TFs were selected 
from the network, and then a sub-network was drawn for these drugs and TFs. Figure 6 shows this drug-TF sub-
network. In this sub-network, the expression level of TF genes in NSCLC samples compared to normal samples 
is demonstrated with blue (Dow-Regulation) to red (Up-Regulation) colors. Furthermore, the TFs’ expression 
level in 9 drugs of the NSCLC group compared to the normal group is reported in Supplementary file S6.

In order to investigate and confirm interactions of the candidate drugs and candidate target genes, the 
DrugBank45 database was used. Information for some candidate drugs and candidate target genes is obtained 
from this database and reported in Table 2. For some other drugs there were no interaction information.

The literature review of the recent articles shows that most of the proposed candidate drugs have significant 
effects on NSCLC. Methotrexate and Curcumin are introduced as novel therapeutic strategies to treat NSCLC46. 
The Methotrexate component of MTX-Gd is reported as a chemotherapeutic drug in cancer therapies47. Li-Qing 
Du and colleague noticed that this drug inhibit the expression of RAD51 in cancer cells48. Daye Zhang et al. 
reported that Lenvatinib and Dexamethasone inhibit the invasion and migration of NSCLC49. According to 
Haiyan Ge and colleagues, pemetrexed-induced senescence alleviates in NSCLC by Dexamethasone50. In another 

Figure 3.   The TF–TG interaction network. This network contains 178 nodes and 182 regulatory interactions. 
Out of 178 nodes, 107 and 71 nodes are TFs and TGs, respectively. All of the TG nodes are from the magenta 
and purple modules. The red circles and green triangles represent TGs and TFs, respectively (this figure was 
drawn in the Cytoscape43 v.3.8.2 software).
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Figure 4.   The drug–gene interaction network. Totally, 277 candidate drugs were identified as regulators of the 
purple and magenta modules of the NSCLC network. The red circle shapes and blue hexagon shapes represent 
genes and drugs, respectively (this figure was drawn in the Cytoscape43 v.3.8.2 software).
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study, Tatjana Sarcev and colleagues concluded that Dexamethasone significantly decreases weight and appetite 
in lung cancer patients51. Furthermore, Juan P Cata et al. demonstrated that intraoperative Dexamethasone 
administration to NSCLC patients is not related to its impact on recurrence-free survival (RFS) and overall 
survival (OS)52.

Xin Wang and colleagues revealed that the combination of Ondansetron and Olanzapine has better efficacy 
in preventing vomiting and chemotherapy-induced nausea in NSCLC patients53. According to Thierry André 
and colleagues, combining Oxaliplatin, Fluorouracil, and Leucovorin could improve colon cancer treatment54. 
In a similar study, Herbert Hurwitz et al. reported that Bevacizumab and Fluorouracil composition significantly 
improved the survival among patients with metastatic colorectal cancer55. Furthermore, the combination of 

Figure 5.   The expression level of hub drugs’ target genes in the NSCLC group compared to the normal group. 
The circle and hexagon shapes represent genes and drugs, respectively. The size of a node indicates its degree 
(this figure was drawn in the Cytoscape43 v.3.8.2 software).

Figure 6.   The expression level of hub drugs’ target TFs in NSCLC group compared to the normal group. The 
triangle and hexagon shapes represent TF genes and drugs, respectively. The size of a node indicates its degree 
(this figure was drawn in the Cytoscape43 v.3.8.2 software).
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Fluorouracil and Curcumin was studied in cancer treatment by Yumeng Wei and colleagues56. Barbora Chovan-
cova and colleagues reported that calcium channel blocker Nifedipine inhibits immune escape and colorectal can-
cer progression57. Moreover, in several studies, it has been proved that Nifedipine can promote breast cancer58,59.

According to Alan Sandler and colleagues, the combination of Paclitaxel, Bevacizumab, and Carboplatin has 
a significant survival benefit with the risk of increased treatment-related deaths for NSCLC patients60. Moreover, 
Atsuto Mouri and colleagues reported that the combination of Carboplatin and Paclitaxel could be effective and 
feasible in patients with SCLC, especially those with interstitial lung disease61. In another study, Dongjie Ma 
et al. showed that Paclitaxel increases the sensitivity of lung cancer cells to lobaplatin62.

Chundi Zhang and colleagues reported that Verapamil might change the expression level of NW23 and EGFR 
in lung cancer by post-transcriptional and transcriptional levels, respectively63. In addition, S Merry et al. studied 
the role of Verapamil in overcoming cytotoxic drug resistance in human lung cancer64. Zhiyuan Shen and col-
leagues expressed that circular RNA Foxo3 reduction promotes chemoresistance and prostates cancer progres-
sion to Docetaxel65. In another study, Hai-Hong Zhou and colleagues recounted that combining Docetaxel and 
erastin may offer an effective administration for chemo-resistant ovarian cancer patients66. Furthermore, Marta 
Prieto-Vila et al. reported that Quercetin and Docetaxel combination could be a promising therapeutic approach 
in breast cancer treatment67. Juan Valle and colleagues introduced Cisplatin plus Gemcitabine as an effective 
option for treating advanced biliary cancer68. In another study, Deborah K Armstrong and colleagues noted that 
Cisplatin and Paclitaxel combination improved survival in patients with ovarian cancer69. Moreover, Kazumasa 
Noda et al. reported that Cisplatin plus Irinotecan could effectively treat small-cell lung cancer70. According to 
Ana Catarina Alves and colleagues, Daunorubicin coactions with membranes of cancer cells71. Furthermore, 
Yuanyuan Wang and colleagues found that Daunorubicin can be an effective strategy in NSCLC71 treatment. In 
a study by Jia Guo and colleagues, the Daunorubicin and Tamoxifen combination was reported as an option to 
eliminate both cancer stem cells and breast cancer cells72. Lilia Antonova and colleagues reported that the expres-
sion of the breast cancer susceptibility gene BRCA1 was down-regulated by stress hormone Hydrocortisone in 
mouse cell line73. Yuan Hong and colleagues reported that Doxorubicin and Curcumin combination could be 
a method for Lung cancer therapy74. In a similar study, Abolfazl Akbarzadeh et al. reported the combination 
of Doxorubicin β-elemene co-loaded as a way to treat lung cancer75. Moreover, Vanesa Gregorc and colleagues 
showed that the NGR-hTNF plus Doxorubicin could be a way for SCLC76 treatment. According to Yang Yang and 
colleagues’ report, Trichostatin and Azacitidinecan amalgamation decreased tumorigenic of lung cancer cells77. 
Taofeek K Owonikoko and colleagues found that Vorinostat increased Carboplatin and Paclitaxel activity in 
NSCLC cells78. In Sang Eun Park and colleagues’ study, Vorinostat and EGFR‑TKI combination was evaluated in 
NSCLC to reverse EGFR‑TKI resistance79. Furthermore, Chun-Hao Pan and colleagues reported that Vorinostat 
increased the cisplatin-mediated anticancer effects in SCLC cells80. Moreover, Doxorubicin Hydrochloride and 
Haloperidol were tested on different cancer treatments in humans and other organisms81–87.

Gene set enrichment analysis and candidate drugs validation.  In order to validate the proposed 
drugs for NSCLC treatment, the GSEA was performed based on the Enrichr88 database. We considered high-
degree drug nodes from the drug-TG sub-network, including Methotrexate, Olanzapine, Haloperidol, Fluoroura-
cil, Nifedipin, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel. In addition, high-degree drug nodes from 
the drug-TF sub-networks, including Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, 
Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin Hydrochloride, were considered. Out of these 18 drugs, 2 
drugs, including Dexamethasone and Methotrexate, are common between drug-TG and drug-TF sub-networks. 
Therefore, 16 drugs are assumed as potent candidate drugs for NSCLC treatment, and the CMAP analysis was 
performed for these drugs.

The results show that Methotrexate and Paclitaxel downregulate GLS2 and NFE2, respectively, and Haloperi-
dol and Dexamethasone up-regulate HTR3A and GLS, respectively. Moreover, the Azacitidine up-regulates the 
DNMT 3A TF gene. Moreover, there was no information regarding other drugs. Romero-Benitez and colleagues 
studied the impact of paclitaxel on NFE2 in vivo, and they revealed that the expression of NFE2 was up-regulated 
on day 389. In another study, Anna Schuhmacher et al. 90 assessed functional and coding variants of the HTR3A 
subunits in response to haloperidol. Moreover, Takuma Kusabe and colleagues91 reported that the expression 
level of GLS is reduced by treatment dexamethasone.

Table 2.   Confirmation of the candidate drugs and candidate target genes thanks to the DrugBank database.

Drug name Type Target gene

Methotrexate Transporter Folate receptor alpha (FOLR1)

Methotrexate Transporter Solute carrier organic anion transporter family member 1B3 (SLCO1B3)

Olanzapine Target 5-Hydroxytryptamine receptor 3A (HTR3A)

Paclitaxel Transporter Solute carrier organic anion transporter family member 1B3 (SLCO1B3)

Docetaxel Transporter Solute carrier organic anion transporter family member 1B3 (SLCO1B3)

Vorinostat Target Histone deacetylase 1 (HDAC1)

Vorinostat Target Histone deacetylase 1 (HDAC2)
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Method
Dataset and preprocessing.  In this study, the transcriptomics data with accession number GSE21933 was 
downloaded from the Gene Expression Omnibus (GEO) database. This data contains 42 male samples, includ-
ing 21 normal and 21 primary non-small cell lung cancer (NSCLC) samples. The mean and standard deviation 
of the age for all samples in healthy and NSCLC are about 70 and 7.8, respectively. The annotation file with acces-
sion number GPL6254 was used to assign probes to gene IDs.

Hierarchical clustering was done for the normal and NSCLC samples independently to check outlier samples. 
Results show no outlier samples among the normal and NSCLC samples (see supplementary Fig. A). Therefore, 
all 42 samples, including normal and NSCLC, are considered for further analysis.

Gene co‑expression network and gene modules.  First of all, differentially expressed genes (GEGs) 
were calculated between the normal and NSCLC groups applying the adjusted p-value and Benjamini & Hoch-
berg’s method based on the GEO2R tool. Overall, 4218 genes with adjusted p_value less than 0.01 were consid-
ered as the initial gene list (see supplementary file S1). This gene list was used in gene co-expression network 
reconstruction.

Then, the gene co-expression network from NSCLC expression data was reconstructed through the Weighted 
Gene Co-expression Network Analysis (WGCNA35) package. This package can reconstruct the gene co-expres-
sion network in three different ways: "signed", "unsigned", and "signed hybrid". In this project, the type of gene 
co-expression network is signed hybrid. To adjust the scale-free property of the network, the β (soft thresholding 
power beta) parameter is applied in this package.

The soft threshold power beta is determined according to the standard scale-free network92. This parameter 
was set to 7 in NSCLC network (see supplementary Fig. B) to gain the scale independency of the network, where 
the scale-free index R2 was 0.9. To extract modules for the gene co-expression network, the hierarchical clustering 
algorithm was applied in WGCNA (see supplementary Fig. C).

Module preservation analysis.  To analyze module preservation, the Zsummary score was used. The mod-
ules with  Zsummary < 2  is considered as no preservation93. The calculation of the Zsummary is shown in Eq. (1) 
94. In this equation, Zconnectivity and Zdensity are the connectivity and density of the subnetwork, respectively95. The 
Zsummary score in NSCLC network compared to normal data expression is calculated for all extracted modules 
(see Table 1). It should be noted that the grey module shows the genes which are not assigned to other detected 
modules. Two modules including purple and magenta (see Fig. 2) have Zsummary < 2 and considered as no pres-
ervation modules. The gene list of these modules is reported in supplementary file S1. These genes could have 
crucial rules in NSCLC.

Enrichment analysis.  To identify the biological mechanisms of the genes in purple and magenta modules, 
we used functional enrichment analysis based on the DAVID96,97 (The Database for Annotation, Visualization, 
and  Integrated  Discovery) database. Moreover, a pathway enrichment analysis was done for these modules’ 
genes using the Reactome98 pathway database.

TF–TG regulatory relationships.  In order to obtain regulatory information of Transcription factor(TF) 
genes and target genes(TG), the TRRUST40 V2.0 online database was utilized. TRRUST is a manually curated 
database containing transcriptional regulatory information for mice and humans. This version of TRRUST con-
tains 8444 TF–TG regulatory information of 800 human TFs. After obtaining TF–TG regulatory relationships, a 
TF–TG network, which contained TFs regulating magenta and purple modules’ genes, was reconstructed.

Drug–gene interaction network.  To identify the candidate drugs that target purple and magenta genes, 
the DGIdb42 (Drug Gene Interaction Database) was used. This database is connected to 22 other related data-
bases. This database brings back the target genes based on 24 related databases. In the current project, to identify 
drug–gene interactions information, only experimentally validated interactions were considered.

Gene set enrichment analysis (GSEA).  The gene set enrichment analysis (GSEA) was performed as 
a validation method to test whether the proposed candidate drugs can counteract the gene expression per-
turbations caused by NSCLC. To this end, the Connectivity Map (CMAP99) analysis was performed using the 
Enrichr88 database. To perform the CMAP analysis, the genes of purple and magenta modules were submitted to 
the Enrichr88 database to retrieve up-regulated or down-regulated genes in the cells treated with different drugs. 
Two datasets of CMAP-up and CMAP-down, which contained the genes up-regulated or down-regulated by 
different drugs, were extracted. We quested for our proposed candidate drugs in CMAP-up and CMAP-down 
datasets. Totally, 16 drugs were proposed as potent candidate drugs for NSCLC treatment, which was evaluated 
using the Enrichr database.

Guangda Li and colleagues100 identified some hub genes by combining WGCNA, DEG analysis, and functional 
enrichment analysis in NSCLC. Moreover, in vitro experiments along with the CMAP database were applied to 
predict and verify small molecule drugs in NSCLC. These researchers reported cephaeline and Emetine with 
the potential to overcome resistance using CMAP database. In another study, Ying Zheng et al. 101 applied the 

(1)Zsummary =
Zconnectivity + Zdensity
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CMAP database to predict the anesthetic drugs that regulate the differential expression of RNA binding proteins 
in cervical squamous cell carcinoma.

They reported 65 differentially expressed RNA binding proteins in cervical squamous cell carcinoma. Moreo-
ver, they obtained four anesthetics containing procaine, tetracaine, benzocaine, and pentoxyverine. Mengnan 
Zhao and colleagues102 have done a study in order to identify a prognostic ferroptosis and iron-metabolism signa-
ture for esophageal squamous cell carcinoma and they identified 20 potential compounds using CMAP database.

Moreover, Hang Yang et al.103 have done multi-omics-based research and they used CMAP for chemotherapy 
drug analysis and screening for drugs which reduce the expression of high-risk genes. In other study, Zetian 
Gong and colleague104, explored several potential small molecule drugs using CMAP based on the mRNAs co-
expressed with autophagy-related lncRNAs.

Discussion
This study applied a gene co-expression network analysis to identify potent candidate drugs for NSCLC treat-
ment. To this end, at first, transcriptomics profiles of normal and NSCLC samples were collected, and 4218 
genes with a significantly different expression between normal and NSCLC samples were selected for future 
analysis. Then, a gene co-expression network analysis was reconstructed based on the WGCNA package. Then, 
two significant gene modules named purple and magenta were identified. Next, a list of transcription factor genes 
regulating these two modules’ genes was gathered from the TRUST V2.0 online database, and a TF–TG regulatory 
network was drawn. Subsequently, a list of existing drugs that target TF–TG network genes was collected from 
the DGIdb V4.0 database, and then two drug–gene interaction networks, including drug-TF and drug-TG, were 
drawn. In data collection, 675 and 278 drugs were identified for the drug-TF and drug-TG networks, respectively. 
Consequently, nine high-degree drugs from the drug-TF and drug-TG networks were selected separately and 
introduced as potent candidate drugs for NSCLC treatment. Eventually, 16 drugs were introduced as potent 
candidate drugs to treat NSCLC. Out of 16 selected drugs, nine drugs (Methotrexate, Olanzapine, Haloperidol, 
Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexamethasone, and Docetaxel) were selected from the drug-TG 
network, and nine drugs (Cisplatin, Daunorubicin, Dexamethasone, Methotrexate, Hydrocortisone, Doxorubicin, 
Azacitidine, Vorinostat and Doxorubicin Hydrochloride) were selected from the drug-TF sub-network. Out of 
these 18 hub drugs, Methotrexate and Dexamethasone are common in drug-TF and drug-TG networks.

In order to evaluate the gene ontology and biological pathways for purple and magenta modules’ genes, 
the DAVID online tool was used. Magenta and purple modules were enriched in 72 and 55 Go terms with 
a p_value < 0.05, respectively. The results showed that purple and magenta modules were more significantly 
enriched in phospholipid translocation biological process with a p_value ≈ 0.0007 and skin development biologi-
cal process with a p_value < 1.015e−9, respectively. Moreover, five significant biological process terms of purple 
module are related to lung and respiratory. These five significant terms are: lung epithelial cell differentiation 
(p_value < 0.001), lung cell differentiation(p_value < 0.001), lung epithelium development (p_value < 0.004), res-
piratory system development (p_value < 0.006), and lung development (p_value < 0.01). Whereas, none of the 
significant biological process terms of magenta module are related to lung and respiratory. In conclusion, the 
purple module genes can be important compared to the magenta module in NSCLC studies.

In addition, a pathway enrichment analysis was done for these two modules based on the REACTOME 
database. The results show that the purple module was significantly enriched in the "regulation of the insulin 
secretion" pathway. Three genes of the purple module, including CACNA1C, RAPGEF3, and GNAI2, are involved 
in the regulation of the insulin secretion pathway. Talip Zengin et al.105 introduced the RAPGEF3 for prognostic 
risk prediction according to overall survival time for lung adenocarcinoma patients. Xiao Wang and colleagues106 
have done genome sequencing analysis for lung adenocarcinoma and introduced CACNA1C as a cancer-related 
gene. Moreover, they reported that this gene was mutated in lung adenocarcinoma tumor tissue. Furthermore, 
the magenta module was significantly enriched in five biological pathways, including: "Gap junction assembly", 
"TP53 Regulates Metabolic Genes","Tandem of pore domain in a weak inwardly rectifying K + channels (TWIK)", 
"Tight junction interactions", and "Synthesis of 12-eicosatetraenoic acid derivatives".

The "Gap junction assembly" pathway involves four magenta module genes (GJB2, GJB4, GJB5, GJB6). Deng 
Yun Li et al.107 and Seon-Sook Han et al. 108 reported that GJB2 expression is aberrantly higher in Lung adeno-
carcinoma than in control tissue. In a study that Yi-Pei Lin and colleagues109 have done, GJB4 was reported 
as a novel biomarker for lung cancer. "TP53 Regulates Metabolic Genes" pathway involves five genes of the 
magenta module containing GPX2, SESN3, GLS2, SFN, and TP63. In their research, Kui Liu et al.110 revealed 
that up-regulation of GPx2 is correlated with worse overall survival for NSCLC patients. Besides, Shuhao Li and 
colleagues111 reported that SESN3 has high expression in lung cancer patients compared to healthy patients.

Moreover, this gene was reported as an oncogene in esophageal squamous cell carcinoma cells112. Rakibul 
Islam et al.107,113 have done a survival analysis, and their results show a worse overall survival value for SFN, 
and Outcomes show that SFN may play a crucial role in the development of NSCLC. "Tandem of pore domain 
in a weak inwardly rectifying K+ channels (TWIK)" pathway involves two genes of the magenta module, includ-
ing KCNK7 and KCNK1. Wen Wang and colleagues114 constructed a ceRNA network, and they concluded 
that KCNK1 is specific to LINC00467 in Lung adenocarcinoma. The "Tight junction interactions" pathway involves 
three genes of the magenta module containing PRKCI, CLDN20, and PARD6G. Yongfeng Wu et al. 115 demon-
strated that mutation of PRKCI and some other genes are identified to be correlated with NSCLC metastasis.

Similarly, Fei Yuan and colleagues116 reported that PARD6G is differentially expressed between Lung ade-
nocarcinoma and lung squamous cell cancer. Finally, the last significant pathway for the magenta module is 
"Synthesis of 12-eicosatetraenoic acid derivatives". This pathway contains two genes of the magenta module 
containing GPX2 and ALOX12B. Szymon Zmorzyński et al.117 showed that the changes in the activity of the 



12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9417  | https://doi.org/10.1038/s41598-022-13719-8

www.nature.com/scientificreports/

GPX2 isoform might be associated with other cancers development. In another study, Chao Ma et al.118 reported 
that ALOX12B could predict lung adenocarcinoma accurately.

Conclusion
In conclusion, we used a gene co-expression network analysis to identify potent candidate drugs for the NSCLC 
treatment in this study. To this end, at first, a gene co-expression network was reconstructed for the transcriptom-
ics data of the NSCLC patients. Then, two significant gene modules, namely magenta and purple, were discovered 
from the constructed co-expression network. After that, a TF-TG regulatory network was drawn for magenta and 
purple modules’ genes and the TFs targeting these modules’ genes. Next, two drug–gene interaction networks, 
namely drug-TG and drug-TF, were constructed. Subsequently, from each drug-TG and drug-TF network, nine 
high-degree drugs were selected and reported as potent candidates for NSCLC treatment. Consequently, 16 drugs, 
including Methotrexate, Olanzapine, Haloperidol, Fluorouracil, Nifedipine, Paclitaxel, Verapamil, Dexametha-
sone, Docetaxel, Cisplatin, Daunorubicin, Hydrocortisone, Doxorubicin, Azacitidine, Vorinostat, and Doxorubicin 
Hydrochloride, were introduced as potent candidate drugs to treat NSCLC. Moreover, gene ontology and pathway 
enrichment analyses were run for the magenta and purple modules.

Data availability
The corresponding author can provide the datasets utilized in this study on a reasonable request. The raw dataset 
is available on Information Gene expression Omnibus (GEO) with GSE21933 accession number (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE21​933).
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