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Abstract

Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis 

with life-threatening complications including liver failure, portal hypertension, hepatocellular 

carcinoma. A key unmet medical need is robust non-invasive biomarkers to predict patient 

outcome, stratify patients for risk of disease progression and monitor response to emerging 

therapies. Quantitative imaging biomarkers have already been developed, for instance, liver 

elastography for staging fibrosis or proton density fat fraction on magnetic resonance imaging 

for liver steatosis. Yet, major improvements, in the field of image acquisition and analysis, are 

still required to be able to accurately characterize the liver parenchyma, monitor its changes and 

predict any pejorative evolution across disease progression. Artificial intelligence has the potential 

to augment the exploitation of massive multi-parametric data to extract valuable information 

and achieve precision medicine. Machine learning algorithms have been developed to assess 

non-invasively certain histological characteristics of chronic liver diseases, including fibrosis and 

steatosis. Although still at an early stage of development, artificial intelligence-based imaging 

biomarkers provide novel opportunities to predict the risk of progression from early-stage chronic 

liver diseases toward cirrhosis-related complications, with the ultimate perspective of precision 

medicine. This review provides an overview of emerging quantitative imaging techniques and the 

application of artificial intelligence for biomarker discovery in chronic liver disease.
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Introduction

Over the last decades, the prevalence of chronic liver diseases (CLD) and their associated 

morbidity and mortality markedly increased, especially with the rise of non-alcoholic fatty 

liver disease (NAFLD). A substantial proportion of patients will indeed ultimately develop 

liver fibrosis and eventually progress toward cirrhosis. Cirrhosis is the end-stage of disease 

with life-threatening complications (e.g., liver failure, portal hypertension, hepatocellular 

carcinoma), which accounts for approximately 1.8% of deaths [1]. When chronic liver 

injuries progress, decompensation of the disease (e.g., ascites, jaundice, gastrointestinal 

bleeding or hepatic encephalopathy) may occur, resulting in a dramatic decrease in the 

overall survival rate [2]. Currently, the clinical predictors of the risk of decompensation 

have a limited impact on the patients’ management and we are unable to accurately monitor 

the changes or any pejorative evolution of liver parenchyma on imaging alone (e.g., using 

CT, MRI, ultrasound) [3–5]. The characterization of reference of CLD relies on invasive 

methods such as liver biopsy, to assess fibrosis, steatosis, and “activity” (i.e., inflammation) 

or trans-jugular catheterization for portal hypertension (i.e., measure of the hepatic venous 

pressure gradient). Such invasive and expensive gold standards are obviously inappropriate 

for screening and sequential monitoring. Additionally, liver biopsy is also prone to risks 

of under-sampling [6] and/or inter-reader variability [7]. All this leads to a necessary 

and ongoing transition toward non-invasive assessment of CLD progression and prognosis. 

Image-based biomarkers can provide a quantitative and reproducible representation of the 
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liver parenchyma including pathogenesis, molecular and genetic pathways and, particularly, 

of its evolution [8, 9]. Indeed, they can be used at initial diagnosis or at any time during the 

evolution of the disease, creating the opportunity to impact clinical management.

Several image-based quantitative biomarkers have already emerged. For instance, fibrosis 

can be non-invasively assessed by ultrasound- or MRI-based elastography techniques. 

Approaches have been developed to estimate steatosis, exploiting the attenuation of 

ultrasonic waves or employing advanced MRI acquisitions techniques (e.g., multi-echo 

DIXON, spectroscopy). Several bio-clinical scoring systems based on routine parameters 

and liver elastography have proven valuable to predict the first liver-related event and overall 

survival in patients with cirrhosis [10–12].

Recently, artificial intelligence (AI) has gained spectacular popularity in the scientific 

community, suggesting that we are at the dawn of a revolution in patients’ care and 

management. The major strength of AI is its potential to augment the exploitation of massive 

multi-parametric data, often non-structured and unexploited, to extract valuable information 

and achieve personalized clinical decisions for patients [9, 13]. AI has the potential to go 

beyond the human eye and previously cited tools, to finally make biopsy outdated. This 

review article aims to provide a precise overview of quantitative imaging techniques of 

diffuse liver diseases, together with an explanation of the different concepts of artificial 

intelligence, with short- and long-term potential clinical applications for risk stratification 

and early diagnosis.

Artificial intelligence in imaging

Artificial intelligence (AI), a subfield of computer science, is a “fancy” term gathering 

different concepts including among others radiomics and machine learning. More precisely, 

machine learning is the umbrella term referring to the approaches seeking to learn from 

data without explicit programming. Machine learning can achieve tasks of classification, 

prediction, segmentation, detection, or images optimization (e.g., faster image acquisition, 

increased signal-to-noise ratio, etc.). The tasks of segmentation, detection and optimization 

of images will not be discussed in this article as not directly related to the characterization of 

CLD.

To achieve classification or prediction of clinical outcomes, different approaches exist, 

according to the available data and the objectives. The machine can learn from labeled 

data (e.g., tumor types) to pursue a defined objective (e.g., tumor type classification) or 

from unlabeled data to reveal unknown structural patterns across data. These approaches are 

respectively called supervised and unsupervised.

Therefore, AI-based imaging models, or the machine learning process, will seek to identify 

and combine new imaging biomarkers, inaccessible to the human eye, in a mathematical 

model [14]. It aims to provide predictive and/or prognostic information about patients and 

their pathologies, based on sophisticated statistical analysis [8]. Such imaging biomarkers 

are called radiomics. They are image descriptors reflecting the tissue heterogeneity and 

indirectly its molecular and genetic substrate [15]. They are reproducible, quantitative, 

Dana et al. Page 3

Hepatol Int. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human-engineered (so-called “traditional”) or free (so-called “deep” and automatically 

calculated). “Traditional” radiomics should be extracted, selected, and combined using a 

classifier (support vector machine, random forest, etc.) through a high-quality pipeline to 

ensure its robustness. These key steps should always be detailed to ensure the repeatability 

of the work. To provide reproducible and standardized processing workflow, but also 

consistency between studies, the image biomarker standardization initiative (IBSI) proposed 

biomarkers definitions and reporting guidelines for radiomics studies, including among 

other data description, image processing or image biomarker computation [16]. Compared 

to “traditional” radiomics, “deep” radiomics are free of human design, inaccessible to our 

understanding, and may highlight the most informative imaging markers to solve research 

hypotheses.

Deep learning (DL) [13, 17], a subclass of machine learning, refers to the deep convolutional 

neural network (CNN), named by analogy with human neurons (Fig. 1). Input data 

are weighted based on their importance and undergo a non-linear transformation, called 

activation function, to result in an output. During the training process, these input weights, 

or parameters, are computed and optimized, to allow the model to reach the highest 

diagnostic performances by minimizing the loss error function through a process called 

back-propagation. Upstream of the adjustment of the weights, designing a DL model 

requires the right choices regarding the most appropriate CNN architecture and hyper-

parameters (number of hidden layers and units, weights initialization, type of activation 

function, learning rate, regularization technique to prevent overfitting, etc.) for the specific 

task to be achieved [13, 18]. The more hidden layers there are, the deeper a convolutional 

neural network is and the more complex the network is. Complexifying a neural network 

allows the identification and pooling of images features of a higher level of abstraction, thus 

increasing its performances. However, convolutional neural networks can be so powerful 

that they can perfectly adjust to a specific dataset, so-called overfitting, resulting in very 

high diagnostic performances on the training dataset, but preventing its external validation.

It is therefore evident that the quality of data has a major impact on the performance and 

reliability of AI-based models. First, training datasets should represent the wide spectrum of 

disease expression. As training datasets are usually built from retrospective data, selection 

bias should be of critical concern. Because available data in medicine are limited and 

positive cases of the disease are usually the minority class, techniques of data augmentation 

(i.e., simple geometric transformations of images or artificial creation of fake data from 

the original dataset using DL techniques—e.g., generative adversarial network) or transfer 

learning (i.e., pre-training on larger—not necessarily medical-related— datasets leading to 

pre-trained model parameters and, faster and more effective training) have been developed. 

However, techniques of data augmentation should be used with great caution in the field 

of medical research and only to optimize model training, not to test it. They should be 

applied by considering disease prevalence and heterogeneity. Furthermore, creating fake 

images can result in impaired model training. Therefore, samples of such images should be 

checked by experts. Secondly, testing a model, preferably prospectively, on an independent 

dataset, as a safety check, is crucial to evaluate its true performance and ensure that there 

is no overfitting. Moreover, a special focus should be made on the exhaustivity of the 

representation of the disease spectrum in the testing dataset. These quality steps are of 

Dana et al. Page 4

Hepatol Int. Author manuscript; available in PMC 2022 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



critical importance because machine learning algorithms can be difficult, if not impossible, 

to understand. To facilitate the quality assessment of AI-related studies, quality scores have 

been proposed (e.g., radiomics quality score [19], simplified and reproducible AI quality 

score [20]). Unfortunately, a significant number of research studies does not respect these 

quality pre-requisites. This explains the limited number of studies cited in this review. 

However, this cannot fully explain the discrepancy between the considerable number of 

publications, increasingly following standardized reporting guidelines (e.g., IBSI, CLAIM 

[16, 21]), and their poor implementation in clinical routine. Multiple obstacles arise. As 

previously explained, neural networks rely on complex non-linear interactions using hidden 

factors, making the concepts of transparency, explainability, intelligibility and provability 

inaccessible, although critical for their acceptability by physicians and patients [22]. The 

presence of different manufacturers (i.e., vendors), the heterogeneity of imaging acquisition 

protocols (e.g., different times of contrast injection between centers; use of conventional 

CT or on dual-energy reconstruction; different T2-weighted MR images depending on 

the center-specific and non-consensual choice of echo time and repetition time; etc.), 

and the absence of large and free databases are a direct limitation to the robustness 

and safety of AI-based models that are even more crucial in medicine. Furthermore, AI-

based models should be time-efficient to reach the clinical routine. For instance, manual 

segmentation cannot be seriously considered and implies developing robust and reproducible 

automatic segmentation algorithms. Besides these technical limitations, ethical and legal 

considerations are at stake: how should the patient be informed that medical decisions are 

enhanced by AI-based algorithms? How can patient privacy be preserved once data are 

shared with AI developer partners? Who owns the intellectual property of the AI model, 

computer scientists or data owners? Who will be accountable and responsible for decision-

making with AI including potential errors and harm? [23]

Imaging biomarkers for liver fibrosis

Over the past years, significant efforts have been made to develop new quantitative imaging 

biomarkers, aiming to replace liver biopsy to assess fibrosis, steatosis, iron overload and 

inflammation (Table 1).

Fibrosis is the inevitable consequence of all progressive CLD. It is mainly caused 

by sustained liver insults, resulting in pathological deposition of collagen extracellular 

matrix and, ultimately, parenchyma and vascular distortion with regenerative nodules [24]. 

Currently, conventional imaging modalities fail to properly characterize liver fibrosis. 

Accurate detection of early-stage fibrosis is necessary because appropriate therapeutic 

management could stop the evolution of fibrosis to cirrhosis. Morphological changes, 

irregular contours and coarse texture have limited sensitivity to predict significant fibrosis (≥ 

METAVIR F2) and poorly correlate with fibrosis stages [25]. Quantitative measurement of 

the liver surface nodularity may improve consistency for the imaging diagnosis of cirrhosis 

(i.e., METAVIR F4 stage) [26]. This biomarker has also been associated with the detection 

of portal hypertension and has proven relevant for preoperative assessment of operative 

risks in patients with resectable hepatocellular carcinoma (HCC) [27, 28]. Gadoxetic acid-

enhanced MRI could also be used to estimate fibrosis stages, as relative enhancement on the 

hepato-biliary phase (at 20 min) negatively correlated with fibrosis [29].
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Non-invasive assessment of liver fibrosis has undergone a breakthrough with the rise 

of elastography techniques (quantitative methods). Liver stiffness, based on the elastic 

properties of liver tissue, is the non-invasive biomarker of choice for the diagnosis of 

liver fibrosis, even at an early stage. Elastography techniques demonstrated higher staging 

performance than serum fibrosis indexes [30], such as the aspartate aminotransferase 

to platelet index (APRI) or the Fibrosis-4 index (FIB-4), even if their association may 

be beneficial and complementary [31–33]. Different modalities are available, including 

vibration-controlled transient elastography (Fibroscan, Echosens, Paris, France), ultrasound-

guided elastography [such as point shear wave elastography (pSWE) and 2D shear wave 

elastography (2D SWE)] and magnetic resonance elastography (MRE) [34, 35]. Transient 

elastography (TE) estimates the liver stiffness by measuring the speed of a shear wave 

propagating through the liver parenchyma using pulsed echo ultrasound acquisition. It has 

been exhaustively evaluated and shown to be effective in predicting advanced fibrosis 

stages (AUC > 0.72 for ≥ F2 stages and AUC > 0.90 for F4 stage) [36–43]. As it is not 

associated with any imaging modality, this technique will not be further discussed in this 

review. However, the same technology has been applied to ultrasound, allowing targeted 

measurements guided by the imaging abnormalities of the liver parenchyma, with at least 

equivalent diagnostic performances [44–51]. Unlike pSWE, which only enables a focal 

measurement of liver stiffness, 2D SWE provides a real-time 2D color mapping of liver 

stiffness. Unfortunately, each manufacturer providing ultrasound-guided elastography has its 

specificities, preventing cross-comparison and complexifying the use of cut-off values. In 

addition, the reproducibility of measurements is affected by the experience of the operator 

[52]. If 2D SWE is perfectly suited for clinical practice, as it is performed during a 

conventional ultrasound, its diagnostic performances have been outperformed by MRE, 

which quickly became the surrogate biomarker of liver fibrosis [53]. This technology is 

based on shear waves emitted by an external acoustic driver. Indeed, the wave propagation 

speed and the damping of shear waves are impacted by the frequency vibration due to the 

dispersion of elastic waves in soft tissues [54]. 3D MRE should be based on multi-frequency 

excitations because it increases the consistency and reproducibility of the measurements. 

MRE demonstrated higher accuracy than 2D SWE or TE, especially for early-stage 

liver fibrosis, with strong reliability for longitudinal follow-up and without inter-observer 

variability [53, 55–63]. Furthermore, it can be performed in the presence of ascites and 

measurements are not affected by steatosis [64]. However, MRE is not recommended in 

routine clinical practice given its cost and limited availability [33]. In addition, 2D SWE also 

demonstrated high accuracy in predicting first liver-related event, all-cause mortality and 

infection requiring hospitalization [11].

If the association of conventional imaging and non-invasive assessment of liver stiffness 

is powerful for grading fibrosis, artificial intelligence can maximize the diagnostic 

performances of these techniques, by identifying new features (Table 2). In patients at risk 

of advanced CLD, liver ultrasound is the first imaging modality performed, because of its 

advantages (i.e., available, non-invasive, radiation-free, less expensive) compared to other 

techniques (CT or MRI) and the possibility of performing shear wave elastography during 

the same examination. The same reasons should provide strong relevance for ultrasound-

based AI models in clinical routine. A recent study demonstrated high accuracy for the 
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prediction of fibrosis stages using a Deep Convolutional Neural Network trained on B-mode 

gray-scale ultrasonography images [65]. In an external testing dataset, consistent with 

acceptable generalizability, the accuracy of the model to predict significant fibrosis (≥ F2) or 

cirrhosis (F4) was 0.87 and 0.86 respectively. Moreover, applying radiomics analysis to the 

images of the 2D SWE color mapping could further improve its diagnostic performances. 

Wang et al. reported increased diagnostic performances of a deep learning model using 

2D shear wave elastography (2D SWE) images in predicting liver fibrosis stages [66]. The 

diagnostic performances of this AI model in predicting significant fibrosis (≥ F2) were 

higher (AUC = 0.85) than that of 2D SWE alone (AUC = 0.77) or biomarkers, such as APRI 

(AUC = 0.60) or FIB-4 (AUC = 0.62). Finally, B-mode and 2D SWE images could prove 

complementary in the training of DL models as suggested by Xue et al. [67].

MRI is the most performant, exhaustive and reproducible imaging modality. This explains 

the predominance of this modality in the AI literature on this problematic. Different studies 

demonstrated strong diagnostic performances of radiomics [68] and deep learning models 

[69, 70], either on T2-weighted or on post-contrast sequences. Hectors et al. developed a 

deep learning model on hepatobiliary phase images, with similar performances to MRE 

(AUC = 0.91 for predicting significant fibrosis) [69]. However, these encouraging results 

should be tempered by the constraints of clinical practice. MRI remains a time-consuming 

and costly technique, especially when compared to the existing efficient ultrasound-based AI 

models.

Finally, it is interesting to note that the deep learning approach can also be extremely 

performant using CT images, whereas CT-scan is not the modality of choice in liver 

imaging. A deep learning algorithm trained on 7461 portal venous phase CT scans 

with pathologically confirmed liver fibrosis largely outperformed radiologists’ reading 

and fibrosis biomarkers (APRI and FIB-4) [71]. This model achieved high diagnostic 

performances, regardless of the etiology of liver disease, with an AUC value of 0.96 for 

predicting significant fibrosis (≥ F2) in a large testing dataset of 891 patients.

Imaging biomarkers for liver overload

In the context of the increasing prevalence of overweight and type 2 diabetes mellitus, the 

prevalence of NAFLD is expanding [72]. It covers a wide spectrum of diseases, ranging 

from isolated liver steatosis to nonalcoholic steatohepatitis, resulting in severe complications 

including cirrhosis, liver failure, portal hypertension and hepatocellular carcinoma [73–75]. 

Liver steatosis can be easily assessed. Indeed, steatosis can be evaluated either by TE 

using the controlled attenuation parameter, ultrasound (e.g., hepato-renal B-mode ratio, 

attenuation coefficient [76], sound speed [77, 78]) or MRI (e.g., Dixon method with in- and 

out-of-phases, spectroscopy, proton density fat fraction—PDFF [79]). If the quantification of 

steatosis on a non-enhanced CT-scan appears easy, as there is a linear correlation between 

liver attenuation and steatosis, enabling quantitative CT liver fat measurements, CT scan is 

not a suitable modality for steatosis assessment, due to its poorer diagnostic performance 

and its ionizing aspect [80]. The controlled attenuation parameter (CAP) and the attenuation 

coefficient (AC) are the most routinely performed biomarkers with the hepato-renal B-mode 

ratio. They are based on the same principle of ultrasonic attenuation of the echo wave by 
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the steatotic liver. Measurement of this attenuation allows the estimation of steatosis. The 

diagnostic performance of CAP and AC in predicting any grade of steatosis, or moderate 

to severe steatosis (grade 2 and 3), is good, with AUC values of 0.93 versus 0.81 and 0.76 

versus 0.89, respectively [77, 81]. The hepato-renal B-mode ratio is defined as the ratio of 

the echo-genicity of the liver parenchyma to the renal cortex. Moret et al. demonstrated 

that the diagnostic performances of the B-mode ratio and the CAP were not significantly 

different in the same population [81]. Lastly, ultrasonic adaptive sound speed estimation, 

decreased in the presence of steatosis, has been proposed but is still at a preliminary stage 

of evaluation [77, 78]. Alternatively to the CAP and the AC, MRI offers multiple techniques 

to estimate steatosis, with unequal diagnostic performances. The Dixon method (1984) is 

a chemical-shift imaging method using the in-phase/out-of-phase cycling of fat and water, 

due to different rates of precession. In the presence of steatosis, the signal intensity of 

the liver drops on the out-of-phase sequence. However, this method is highly subject to 

inter-reader variability and does not allow quantification of the steatosis. Quantification of 

steatosis has been achieved by the application of multi-echo Dixon, which compensates for 

multiple confounders including the T2* relaxation effects and the spectral complexity of 

fat [82]. This method is named proton density fat fraction (PDFF), defined as the fraction 

of mobile protons (H1) linked to the triglyceride relative to those of water [e.g., IDEAL 

IQ (General Electrics), mDixon-Quant (Philips) and Multi-echo VIBE Dixon (Siemens)]. 

Finally, steatosis can also be assessed by MR spectroscopy, which directly measures the 

relative proton quantity from water and triglycerides signals. However, this method is 

limited by the delicate spectral analysis of data and its sampling volume. PDFF-MRI is 

considered the method of reference, as it allows quantification of steatosis in the entire liver 

and because it is easy to perform and analyze [82]. It should also be noted that thresholds 

for grading steatosis differ between PDFF-MRI (6.4%, 17.4%, and 22.1%) and histological 

analysis (5%, 33%, and 66%). Indeed, the methods of evaluation of steatosis are different 

[82]. PDFF-MRI considers the proportion of mobile protons within fat molecules in a 

three-dimensional voxel, whereas histological analysis evaluates the fractions of hepatocytes 

with fat vacuoles in a two-dimensional plane.

However, if MRI-PDFF is the non-invasive gold standard to assess steatosis, it gathers the 

limitations of MRI in routine clinical practice (time-consuming and costly technique). The 

most original and interesting AI-based approach has been published by Han et al. [83]. They 

developed a one-dimensional deep learning model using raw radiofrequency ultrasound data 

to diagnose NAFLD and quantify the hepatic fat fraction. If inaccessible to the medical 

framework, raw radiofrequency ultrasound signals are richer in information than gray-scale 

B-mode images. It allowed a strong correlation between the ultrasound-based predicted fat 

fraction and MRI-PDFF (Pearson r = 0.85; p < 0.001), with excellent accuracy (96%) for 

NAFLD diagnosis in the test cohort. However, the diagnostic performances of the model 

decreased when MRI-PDFF was greater than 18%.

Besides steatosis, MRI is also the non-invasive gold standard to detect and quantify liver 

iron concentration [84, 85]. It is a reliable method based on multi-echo gradient-echo 

sequences, available on every device, either 1.5 or 3-Tesla MRI. Liver iron overload results 

in lower liver intensity due to T2 and T2* relaxation time shortening. Quantification can 

be obtained by the computation of T2* (or R2*), by measuring the liver to muscle signal 
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intensity ratio (SIR) or by combining both methods. It can be coupled with that of liver 

steatosis by the DIXON method. As iron deposition in the liver is responsible for toxicity, 

monitoring liver iron overload could become a prognostic factor of progression of CLD [86, 

87]. Neither ultrasound nor CT scan, whether or not enhanced by AI, has proven valuable 

for the detection or quantification of iron overload.

Pejorative evolution of chronic liver diseases

The prediction of the risk of progression of CLD is in the spotlight. It is particularly true 

with the increasing prevalence of NAFLD as its progression to steatohepatitis (NASH) 

predisposes to cirrhosis and HCC. NASH is characterized by the presence of steatosis with 

lobular inflammation and hepatocyte ballooning, leading to necrosis, apoptosis, increased 

collagen extracellular matrix and ultimately, fibrosis. In this field, the development of 

noninvasive markers is at its preliminary stages. Recently, 2D SWE demonstrated greater 

capabilities in liver characterization than solely stiffness assessment using shear waves 

speed. Indeed, shear waves disperse as they pass through the liver. Such dispersion can 

be estimated using a mathematical parameter called the dispersion slope. Sugimoto et al. 

suggested that this parameter was indirectly impacted by lobular inflammation, which could 

be helpful to detect and grade inflammation [88, 89], gold standard but could also be biased 

as it correlates with liver fibrosis [90, 91]. The combination of this parameter with the 

assessment of steatosis (using the attenuation coefficient) and fibrosis (using shear wave 

elasticity) could become an acceptable substitute to the pathology gold standard in NASH. 

These concepts have also been explored using MR elastography. The damping ratio, derived 

from the complex shear modulus, could discriminate NASH, even without advanced fibrosis, 

raising the possibility of reflecting inflammation [92]. Besides fibrosis as mentioned above, 

Bastati et al. also showed that gadoxetic acid-enhanced MRI could be used to distinguish 

NAFLD from NASH, as the relative enhancement on the hepato-biliary phase (at 20 min) 

negatively correlated with the degree of lobular inflammation and ballooning, but not with 

steatosis [29]. Other MRI-derived parameters, such as the T1 relaxation time, have also 

proven valuable in identifying NASH when combined with fat fraction and liver stiffness 

[93, 94]. Proton-decoupled phosphorus 31 MR spectroscopy may also help because of 

the changes in metabolites concentrations in NASH including NADPH (reduced form of 

nicotinamide adenine dinucleotide phosphate), a marker of inflammation and fibrinogenic 

activity in the liver [95]. The relative failure of accurately assessing non-invasively liver 

inflammation may be overcome by AI-based techniques in future.

In compensated advanced CLD, as the problem is no longer to predict the risk of progression 

of fibrosis, it is relevant to focus on the patient survival cliff which is characterized by the 

occurrence of HCC, portal hypertension decompensation or liver failure.

If HCC risk stratification models based on clinical-biological (age, sex, diabetes, AST/

ALT, albumin, platelets, etc.) parameters exist [96–102], they cannot consider the direct 

analysis of the liver parenchyma, which is the pathophysiological substrate of hepato-

carcinogenesis. In the 1990s, several authors studied the incidence of HCC according to the 

liver echostructure [103–105]. They concurred on the excess risk of a nodular heterogeneous 
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echostructure with an estimated relative risk of up to 20 [103]. Unfortunately, this did not 

lead to the development of reliable imaging risk stratification models.

Clinically significant portal hypertension (CSPH), defined by a hepatic venous pressure 

gradient (HVPG) ≥ 10 mmHg, is critical for CLD prognosis. If the definition relies on 

the invasive measurement of the HPVG, different non-invasive liver-based approaches 

have been developed. As previously discussed, liver stiffness is a robust biomarker of 

liver fibrosis. It was therefore expected to observe a correlation between liver stiffness 

and HPVG and a capability to discriminate patients with CSPH [106–110]. Furthermore, 

liver stiffness was also proven to have a prognostic value for portal hypertension-related 

complications including clinical decompensation and variceal bleeding [111–113]. As liver 

surface nodularity is also a biomarker of cirrhosis, it has been shown to have a similar 

performance to liver stiffness for the detection of CSPH [114]. However, such diagnostic 

performances are only true in portal hypertension secondary to cirrhosis, not in pre- 

or post-sinusoidal portal hypertension. In contrast, spleen stiffness could prove to be a 

promising technique for monitoring HPVG [115]. On the other hand, an innovative approach 

consisted of the development of a computational model for estimating HVPG based on CT 

angiographic images [116]. Recently, AI-based models, either traditional radiomics or deep 

learning, have been developed for CT and/or MRI, with very high diagnostic performances 

[117–120]. More precisely, Liu et al. developed two DL CNN models (CT- and MRI-based) 

on liver and spleen images that achieved strong diagnostic performances for identifying 

patients with CSPH with an AUC value of 0.93 (CT) and 0.94 (MRI) on an independent 

testing dataset. These models outperformed liver stiffness (AUC = 0.73) [118].

Predicting liver failure is also crucial for patient management, either during the natural 

course of CLD or preoperatively before major hepatectomy. To this date, the decision of 

portal vein embolization before major hepatectomy still relies on the simple measurement of 

the liver volume. Accurate prediction of postoperative liver failure is still not implemented 

in the clinical routine. This could beneficiate from the development of AI-based models. 

Indeed, several studies reported performant predictive radiomics models for identifying 

patients at risk of liver failure after major hepatectomy [121–123].

Future perspectives

To date, reproducible quantitative imaging biomarkers are available to assess liver fibrosis, 

steatosis, and iron overload. If MR imaging with elastography is the most exhaustive 

modality to assess CLD, as these biomarkers can be evaluated during a single examination, 

without the need of contrast agents (Fig. 2), liver ultrasound with the concomitant 

performance of US-guided elastography during the same examination seems the most 

relevant and time-efficient first-line technique for clinical routine. Artificial intelligence 

has already proven valuable to create new biomarkers [124] and/or increase the diagnostic 

performances of the existing ones [66], but has not integrated routine clinical practice yet. 

As MRI cannot be extensively recommended in routine clinical practice given its cost and 

limited availability, AI could help maximize diagnostic performances of ultrasound. AI may 

also help in automatizing time-consuming tasks such as measurement of the liver volume 

using deep CNN [125, 126], a simple prognostic biomarker of the pejorative outcome of 
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acute liver failure [127]. But to become clinical tools, AI models should be developed 

following a high-standard process to achieve generalizability and transferability including 

training on datasets representing the wide spectrum of the disease expression to avoid 

selection biases, and independent and prospective testing to avoid overfitting [20].

Furthermore, despite the remarkable rise of quantitative imaging biomarkers for the 

prediction of pathological features, some decisive clinical needs remain unmet. The 

assessment of the short- and long-term risk of progression of CLD toward a pejorative 

outcome (e.g., liver failure, portal hypertension decompensation or HCC [96–102]) still 

requires the development of reliable non-invasive tools. This absence can be explained by 

the difficulty of implementing studies that would need to be exhaustive and prospective 

over a long period to collect a large number of pejorative events. If fibrosis and steatosis 

appear as decisive markers for the characterization of CLD, they fail to accurately 

predict the progression of early-stage CLD to cirrhosis-related complications. Assessing 

the disease activity, or inflammation, would better reflect the risk of progressive fibrosis 

and thus its complications. Refining risk stratification of progressive disease from initial 

diagnosis would majorly impact therapeutic management. Unfortunately, at the date of this 

review article, only preliminary research tools exist, without currently clinical transfer and 

applicability, and none was based on AI techniques. Stratification of the disease progression 

is crucial for the accurate selection of patients who will most benefit from treatment, 

therefore avoiding side effects if no benefit is expected, to achieve the best clinical outcome/

cost ratio.

Conclusion

As varied as they are, image-based biomarkers can provide a comprehensive representation 

of the liver parenchyma at the time of initial diagnosis, or at any time during the 

disease, creating the opportunity to outdate invasive gold standards and impact on clinical 

management. Artificial intelligence provides opportunities to revolutionize liver imaging, 

by creating novel reproducible and quantitative imaging biomarkers and augmenting human 

intelligence to improve decision-making and operational processes. It aims to be part of 

personalized care, from diagnosis to treatment, as it learns without explicit programming. To 

achieve this goal, certain limitations need to be overcome. Extensive work is still required 

to substantiate AI by pathology, molecular and genetic substrate. Precision medicine may 

ultimately be achieved by integrating clinical, biological (such as single-cell RNA-seq, 

exome sequencing), serological (such as blood-based biomarkers) and imaging data.

A future challenge for meeting the clinical needs of CLD is the stratification of the risk 

of disease progression to pejorative outcomes, aiming at identifying patients who will most 

benefit from treatments. In this regard, it is of paramount importance that AI models will 

be developed with the concept of a future integration as part of the clinical routine enabling 

their widespread application.
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Fig. 1. 
Concepts of deep learning. By analogy to human neurons, deep learning generally refers 

to neural networks. Input data are weighted based on their importance and undergo a 

non-linear transformation, called activation function, to result in an output. These input 

weights, or parameters, are computed and optimized to allow the model to reach the highest 

diagnostic performances by minimizing the loss error function through a process called 

back-propagation
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Fig. 2. 
Magnetic resonance imaging-based quantitative biomarkers for steatosis (fat fraction), iron 

overload (R2*) and fibrosis (MR elastography)
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