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ABSTRACT
◥

Innate immune cells participate in the detection of tumor cells via
complex signaling pathways mediated by pattern-recognition
receptors, such as Toll-like receptors and nucleotide-binding and
oligomerization domain–like receptors. These pathways are finely
tuned via multiple mechanisms, including epigenetic regulation. It
is well established that hematopoietic progenitors generate innate
immune cells that can regulate cancer cell behavior, and the

disruption of normal hematopoiesis in pathologic states may lead
to altered immunity and the development of cancer. In this review,
we discuss the epigenetic and transcriptional mechanisms that
underlie the initiation and amplification of innate immune signaling
in cancer. We also discuss new targeting possibilities for cancer
control that exploit innate immune cells and signaling molecules,
potentially heralding the next generation of immunotherapy.

Introduction
Host immunity can be classified into innate immunity, which is

rapid to develop but less specific, and adaptive immunity, which is
slower to develop but more specific. Innate immunity plays an
important role in host defense against infection and cancer, recog-
nizing various antigens via pattern recognition receptors (PRR). Innate
immune cells comprise a wide range of myeloid and lymphoid cell
types that share common hematopoietic origin (1). Two major con-
ceptual advances have highlighted our rapidly evolving understanding
of innate immunity. First, bone marrow hematopoietic stem and
progenitor cells (HSPC) can sense systemic inflammation and adapt
by increasing their proliferation rate and skewing differentiation
toward myeloid cells. Such HSPC adaptations are beneficial in elim-
inating pathogens during the acute phase of infection. However, they
may contribute to chronic inflammation, and to HSPC malfunction
and exhaustion when sustained (2). Second, innate immune cells and
HSPCs can exhibit adaptive characteristics, termed trained immunity;
previous exposure to a pathogen leads to an enhanced innate immune
response upon rechallenge (3). In this review, we focus on the
epigenetic and transcriptional regulation of innate immune cells and
signaling in different cancers. Also, we summarize how targeting
innate immunity can spur the development of next generation cancer
immunotherapies.

Regulation of the Genesis of Innate
Immune Cells
HSPCs

HSPCs generate a variety of cells that participate in innate immu-
nity. IFNs play an important role in the response of HSPCs to
inflammation. Activation of the type 1 IFN signaling pathway, medi-
ated by IFNa/b receptor IFNAR, drives the proliferation of dormant
HSCs (4) while its inhibition, such as by the negative regulator, Irf2,
promotes hematopoietic stem cell (HSC) quiescence (5). Additional
mechanisms against IFNa-induced HSC dysfunction include retinoic
acid signaling (6), and the circular RNA cia-cGAS that antagonizes
cyclic GMP-AMP (cGAMP) synthase cGAS-mediated virus DNA
sensing (7). The effects of IFNg on HSCs are context-dependent. For
example, HSC proliferation is promoted by IFNg-STAT1 signaling in
response tomycobacterium infection (8). However, upon lymphocytic
choriomeningitis virus infection, IFNg inhibits the proliferation of
HSCs by reducing STAT5 phosphorylation (9). IFNg also induces
myeloid differentiation dependent on Batf2 activity (10). TNF induces
HSC proliferation andmyeloid lineage differentiation by upregulating
PU.1 (11). IL3, produced by innate response activator B cells, induces
myelopoiesis (12). The IL6/IL12 cytokine family members, including
IL27, also act on HSPCs to promote emergency myelopoiesis (13, 14).
IL1 directly accelerates cell division and myeloid differentiation by
activating a PU.1-dependent gene program (15). This allows for rapid
myeloid recovery following acutemarrow injury; however, chronic IL1
exposure compromises HSC self-renewal and restricts HSC lineage
output (15).

Neutrophils
The generation of neutrophils from HSCs is regulated by a number

of transcription factors (TF), including CAAT/enhancer binding
protein (C/EBP), GATA1, and PU.1. C/EBP-a induces early myeloid
precursors to differentiate by negatively regulating the expression of
c-Myc, via an E2F binding site in the c-Myc promoter (16). Then, the
acetylation of C/EBP-e at K121 and K198, together with the absence of
GATA-1, triggers CMPs to commit to terminal neutrophil differen-
tiation (17). PU.1 recruits histone deacetylase 1 (HDAC1) to inhibit
the accessibility of AP-1 binding motifs, thereby preventing the
hyperactivation of neutrophils (18). AP-1 is a heterodimeric TF that
is activated by inflammatory cytokines, growth factors, and infection,
which activate kinases that modulate its transcriptional activity (19).
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AP-1 cooperates with other TFs, includingNF-kB and IRF to stimulate
the expression of type I IFNs and proinflammatory cytokines (20).

Our understanding of the roles that neutrophils play in cancer is
growing. The prognostic value of circulating neutrophils and tumor-
associated neutrophils have been assessed in various cancers (21).
Antitumor (N1) and protumor (N2) subpopulations of neutrophils
have been identified (22). N1 are characterized by an immunostimu-
latory profile (TNFahigh, CCL3high, ICAM-1high, Arginaselow) and
cytotoxic activity towards tumor cells, whereas N2 exhibit upregula-
tion of chemokine production (CCL2, 3, 4, 8, 12, and 17, andCXCL1, 2,
8 and 16; ref. 23). The fate switch between N1 and N2 is controlled by
TGFb, which promotes the N2 phenotype (24), and IFNb, which
promotes the N1 phenotype (25). TGFb signaling is transduced via
SMADproteins that regulate chromatin remodeling and transcription,
either by direct DNA binding or indirectly through other TFs (26).
IFNb signaling is mediated by the activator of transcription (STAT)
family of TFs (27). However, the epigenetic mechanisms that regulate
cytokine and chemokine gene expression in neutrophils, in response to
TGFb or IFNb, remains to be determined.

Macrophages
Macrophages phagocytize microorganisms and apoptotic cells, and

produce inflammatory cytokines (28). Tissue-resident macrophages
are established during embryonic and fetal hematopoiesis, but they can
also arise from circulating monocytes after local macrophage deple-
tion, inflammation, and normal aging (29). Regardless of their cell of
origin, the major regulator of the macrophage lineage is the colony
stimulating factor (CSF) 1 receptor (30). Expression ofMafB and c-Maf
also play a role in driving terminal macrophage differentiation (31).
Moreover, the NAD-dependent lysine deacetylases, Sirtuins 1 and 2,
play a critical role inmacrophage differentiation via a direct interaction
with DNMT3B (32). Notably, tumor-associated macrophages (TAM)
are mostly protumorigenic in solid tumors, functioning to promote
carcinogenesis, neoangiogenesis, immune-suppressive tumor micro-
environment, chemoresistance, and metastasis. Reprogramming of
immune-suppressive TAMs by pharmacologic approaches has gath-
ered much interest in recent years to improve cancer therapies (33).

Macrophages can be classified intoM1 (classically activated macro-
phages, or kill-type macrophages) that are primed by Th1 cytokines
such as IFNg and bacterial products, and M2 (alternatively activated
macrophages, or repair-type macrophages) that are primed by Th2
cytokines such as IL4 and IL13 (34). IFNg plays a pivotal role in
promoting immunity against cancer (35). IFNg triggers the receptor
association of the JAK1 and JAK2 tyrosine kinases, which then induce
the phosphorylation of STAT1 and STAT2. This promotes the binding
of STAT1 homodimers to consensus DNA sequences termed GAS
elements, triggering the expression of IFN-stimulated genes (36). In
contrast, IFNa leads to phosphorylation of STAT1 and STAT2, which
heterodimerize and bind to an IFN-stimulated response element
(ISRE) in conjunction with IRF9 (37). M1 macrophages elicit rapid
proinflammatory responses to infection and tissue damage by sensing
lipopolysaccharide and damage-associatedmolecular patterns, respec-
tively, while M2 macrophages possess anti-inflammatory activities
that enable these cells to resolve inflammation and promote tissue
repair (38).

Epigenetic mechanisms that control macrophage polarization are
being uncovered. M1 polarization, which can be driven by LPS and
IFNg , requires dynamic metabolic reprogramming and a two-stage
remodeling of the tricarboxylic acid (TCA) cycle, including the
transient accumulation and subsequent decrease in metabolites such
as succinate and itaconate (39). The tumor environment provides

signals such as PGE2 or TGFb that inhibit M1 activation, thus M2
macrophages predominate in most human cancers, where they pro-
duce growth-promoting molecules for tumors (40). Jumonji domain–
containing protein D3 (Jmjd3), a key H3K27 demethylase, whose
activity is dependent on glutamine metabolism, controls M2 macro-
phage activation (41, 42); the production of a-ketoglutarate via
glutaminolysis promotes M2 macrophage activation via fatty-acid
oxidation and the Jmjd3-dependent epigenetic reprogramming of
M2 genes (43). IL4-induced M2 polarization of liver macrophages is
dependent on the activation of STAT6-JMJD3 signaling and suppres-
sion of TLR4–NF-kB signaling (44). Macrophage heterogeneity is not
fully represented by a dichotomy between M1 and M2. Macrophages
also exhibit intermediate phenotypes and are in fact a continuum
of polarization states from the two ends marked by M1 and M2.
Heterogeneous subpopulations of macrophages take on a variety
of roles depending on tissue type and the specific pathology (45).
Macrophages even show plasticity after polarization (46). Thus,
altering macrophage polarization dynamics, such as triggering an
M2 to M1 macrophage transition, could slow or stop cancer growth,
a strategy that form the basis for novel cancer immunotherapy (40).

Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSC) are cells of myeloid

origin with potent immune-suppressive functions (47). MDSC gen-
eration occurs in two phases in cancer, an expansion phase driven
mainly by tumor-derived growth factors that promote the accumu-
lation of immature myeloid cells, and an activation phase driven
mainly by tumor stroma-derived proinflammatory cytokines, which
convert immature myeloid cells into MDSCs (48). A complex
network of extracellular signals, chromatin modulators, and TFs
is involved in the regulation of MDSCs. For example, the increased
production of IL6 in mouse myeloid cells results in STAT3 acti-
vation and MDSC expansion (49). Hypoxia-inducible factor 1a
(HIF1a) positively regulates the V-domain Ig suppressor of T-cell
activation (VISTA) promoter, increasing VISTA expression on
myeloid cells and facilitating MDSC-mediated suppression of T-
cell activity (50). DNMT3A downregulation erases MDSC-specific
hypermethylation and abolishes their immunosuppressive capacity
in cancer (51). Moreover, NLRP3 is expressed in MDSCs (52);
Nlrp3-deficient mice exhibit decreased MDSCs at the tumor site,
implicating NLRP3 in MDSC expansion and/or recruitment (53).

The epigenetic regulation of the generation of different MDSC
subsets is being defined. STAT3 signaling, induced by various
soluble mediators, is required for monocytic MDSC generation (54).
The IFNg-STAT1-IRF1 axis appears to be specifically crucial for
monocytic MDSC suppressive activity (55). In contrast, the gen-
eration of human granulocytic MDSCs is less clear. These cells are
morphologically heterogeneous, ranging in appearance from imma-
ture to mature neutrophils (56), and recent studies suggest that
immunosuppressive granulocytic MDSCs can be derived from
mature neutrophils (57). STAT3 can also trigger polymorphonu-
clear (PMN)-MDSC accumulation by increasing the expression of
several components of the NADPH complex, such as S100A9, that
leads to increased reactive oxygen species (ROS) production (58).
IRF8 limits MDSC generation, particularly the PMN-MDSC subset,
in mouse mammary tumor models (59). The biology and regulatory
mechanisms of MDSC subsets need further characterization.

Innate lymphoid cells and dendritic cells
Innate lymphoid cells (ILC) and dendritic cells (DC) also contribute

to the innate arm of the immune system. ILCs are a heterogeneous
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group of cells that derive from common lymphoid progenitors but
lack rearranged antigen receptor genes. Five classes of ILCs [natural
killer (NK) cells, ILC1, ILC2, ILC3, and lymphoid tissue-inducer
cells] have been defined based on differences in TF expression and
their cytokine production. We refer readers to two recent reviews
that comprehensively cover the roles of NK cells and other ILCs in
cancer (60, 61).

DCs represent a heterogeneous family of immune cells that
bridge innate and adaptive immunity, as impaired DC activation,
licensing, or maturation also compromises antigen-specific T-cell
immunity. The importance of DC biology in antitumor immunity
has gained attention recently. DC-based antitumor vaccines have
been FDA-approved for treating prostate cancer, while similar and
other approaches are begin studied and assessed in clinical trials.
Given space constraints, we refer readers to two recent reviews that
cover this growing field (62, 63).

Innate Immune Signaling in Cancer
PRRs mediate innate immune signaling and can be classified based

on their subcellular localizations: membrane-bound receptors, includ-
ing Toll-like receptors (TLR) and C-type lectin receptors (CLR), and
intracellular receptors, including nucleotide-binding and oligomeri-
zation domain (NOD)–like receptors (NLR), AIM2-like receptors
(ALR), and RIG-I–like receptors (RLR; ref. 64). Upon recognition of
“nonself” antigens, the innate immune system responds by producing
cytokines, chemokines and IFNs, and by activating phagocytosis,
autophagy, and cell death (Fig. 1).

TLRs
TLRs are expressed in antigen-presenting cells (APC) and other

immune cell types including mast cells, NK cells, regulatory T cells,
monocytes, neutrophils, and basophils (65). TLRs are also expressed
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Figure 1.

Innate immune signaling pathways. TNF binding to TNFR1 triggers the assembly of LUBAC complex, and the activation of TAK1 and subsequently IKK. TLR4, or IL1R1
triggers the interaction of the MyD88-IRAK complex, which engages TRAF6. Activated TLR4 can also be endocytosed and signaled via RIPK1. RIG1 binding to dsRNA
promotes its association to MAVS complex, which converges on TRAF6. MAVS also interacts with TRAF3, TBK1, and STING to activate IRF3 and IRF7. NLRP3 triggers
secretion of IL1b and IL18.
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by tumor cells, where they play anti- or protumor roles depending
on cell context (66). Upon ligand binding, the TLRs dimerize and
signal through different sets of adaptor proteins, including (i) the
Toll/IL1 receptor (TIR)-containing adaptor protein (TIRAP) and
the protein myeloid differentiation primary response 88 (MyD88;
TIRAP/MyD88), (ii) TRAM/TRIF, the TIR domain–containing
adaptor-inducing IFNb (TRIF) and the TRIF-related adaptor mol-
ecule (TRAM; TRAM/TRIF), (iii) the mitochondrial antiviral sig-
naling protein (MAVS), and (iv) Apoptosis-associated speck-like
proteins containing a caspase recruitment domain (CARD; ASC),
which allow for different transcriptional outputs (64).

Intriguingly, TLRs are also expressed byHSPCs. TLR ligand binding
blocks HSPC expansion (67) and induces myeloid differentiation in a
MyD88-dependent manner (68). The activation of TLRs in short-term
HSCs and MPPs also results in substantial cytokine production via
activation of NF-kB. Loss of TLR signaling enhances HSC repopulat-
ing capacity, as HSCs from Tlr2�/�, Tlr4�/�, Tlr9�/�, or MyD88�/�

mice show an advantage over normal HSCs (69, 70). Similarly, TLR
activation leads to compromised self-renewal and HSPC exhaustion,
mediated by TRIF, rather than MyD88, with the production of ROS
and activation of the MAPK p38, leading to replication stress (71, 72).
These findings highlight the role of TLR signaling in regulating the
behavior of HSPCs, cancer cells, and host defense.

Aberrant TLR signaling is also linked to malignant hematopoiesis.
Overexpression of TLR genes in HSCs may contribute to the
pathogenesis of myelodysplastic syndrome (MDS; ref. 73). A recent
study of 149 patients with MDS showed that TLR1, TLR2, and TLR6
andmultiple TLR downstream genes are significantly overexpressed in
CD34þ MDS bone marrow cells (74). TLR signaling is promoted by
several bromodomain and extraterminal (BET) proteins, which bind
to acetylated proteins including histones H3 and H4, and promote
tumor growth in several lymphoma models (75). BET inhibitors
suppress the expression of TLR2/4 and the transcription of IL1b, IL6,
and TNFa and thus may have antitumor activity (76).

NLRs and the inflammasome
NLRs are cytoplasmic receptors that mediate the innate immune

response (77). Members of the NLR family of PRRs possess a
C-terminal leucine-rich repeat (LRR) domain, a central nucleotide
binding domain (NBD), and a distinct N-terminal domain that differs
between subfamilies (78). The two most prominent NLR subfamilies
have either a pyrin domain (PYD) at their N-terminus, or one or more
CARDs (79). Upon sensing pathogens or host derived proteins, NLRs
oligomerize and assemble the inflammasome, which serves as a
caspase-1–activating scaffold to activate the proinflammatory IL1
family of cytokines, IL1b and IL18, triggering a specific type of inflam-
matory cell death, termed pyroptosis (80). NLR-inflammasome path-
ways have been linked to both solid tumors and hematologic
malignancies (81, 82).

Priming signals are required for the expression of inflammasome
components, which can be induced by TLR ligands, or via the TNF or
IL1b signaling pathways that lead to NF-kB activation (83). Hypo-
methylation of CpG sites within other inflammasome genes such as
NLRC4 and NLRP12, and IL1b has been associated with upregulation
of their expression in Kawasaki disease (84). Furthermore, increased
expression of C-terminal–binding proteins (CtBP), together with p300
and AP-1, activates NLRP3 expression, which aggravates the inflam-
matory response in osteoarthritis (85). HDAC6, inhibits the activation
of the NLRP3 inflammasome in mouse bone marrow–derived macro-
phages by directly associating with ubiquitinated NLRP3 through its
ubiquitin-binding domain (86). Inflammasomes also regulate hema-

topoiesis and the generation of innate immune cells; loss of inflam-
masome components or caspase-1 inhibition inhibits myelopoiesis, in
a GATA1-dependent manner (87). The impact of cross-talk between
epigenetic modifiers and the various NLR-inflammasome pathways is
largely unknown in specific cancers.

CLRs, RLRs, and AIM2-like receptors
CLRs, characterized by C-type lectin-like domains, form a large

heterogeneous group of transmembrane and soluble receptors (88).
The roles of CLRs in immunity and cancer are being delineated and
were recently reviewed (89, 90). However, little is known about the
epigenetic regulation of CLR generation or function. The TF NFATc2
activates the expression of specific cytokines and chemokines inDCs in
response to CLR dectin-1 stimulation, and induces the H3K4 tri-
methylation that is associated with enhanced gene expression (91).
Manipulation, i.e., a decrease in the activity of the histone lysine-
methyltransferase Ezh2 increases the generation of IL15R(þ) CD122(þ)

NK precursors and mature NK progeny from mouse and human
HSPCs (92). The enhanced NK cell expansion and cytotoxicity against
tumor cells are associatedwith the upregulation of bothCD122 and the
CLR NKG2D (92).

RLRs induce the transcription of type I IFNs and other genes by
sensing viral and host-derived RNAs. The regulatory mechanisms
that control the generation of RLRs, their roles in viral infection,
autoimmunity, and cancer, and their therapeutic potential, have
recently been reviewed (93). ALRs represent a newly recognized
class of PRRs that function in cytosolic and nuclear pathogen DNA
sensing. ALRs recruit ASC and caspase-1 to form inflammasomes,
which elicit inflammatory responses by producing IL1b and IL18,
and by triggering pyroptosis (94). The epigenetic regulation of ALRs
is yet to be studied.

Trained Immunity in Cancer
Transcriptional and epigenetic reprogramming

The molecular basis of trained immunity is only partially under-
stood, but it is clearly regulated by transcriptional and epigenetic
reprogramming, involving chromatin organization at the level of the
topologically associated domains (TAD), long noncoding RNAs, and
reprogramming of cellular metabolism (Fig. 2; refs. 95, 96). Trained
immunity occurs in part via the epigenetic regulation of themonocyte-
to-macrophage differentiation transition, where roughly equal num-
bers of promoters are turned on or off (97). Furthermore, DNA
methylation patterns in peripheral blood mononuclear cells can also
reflect their capability of undergoing trained immunity (98, 99). Dur-
ing adaptive NK cell responses, specific TFs promote permissive
histone modifications and chromatin accessibility, including RUNX
family members, STAT family members, IRF8, IRF9, KLF12, and
T-box TFs (100–105).

Trained immunity also occurs within HSPCs. For example,
exposure to b-glucans, which are fungal cell wall polysaccharides,
promotes the expansion of myeloid progenitors and increases
innate immune signaling in mice (106). Likewise, Bacille Calm-
ette-Gu�erin (BCG), an attenuated version of Mycobacterium bovis,
increases the chromatin openness of specific TADs in mouse
HSCs (107). Intriguingly, inflammasomes promote trained immu-
nity at the level of HSPCs. Transcriptomic and epigenomic repro-
gramming induced by a high-fat diet is dependent on NLRP3 (108).
Recently, trained immunity that occurs in HSPCs is termed central
trained immunity, which in part explains the long-lasting pheno-
type of trained immunity (96).
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Immunometabolism and inflammaging
Metabolic intermediates can function as signaling nodes, substrates,

cofactors, or inhibitors for chromatin-modifying enzymes (109).
Trained monocytes show increased glycolysis, which is dependent on
activation of mTOR through the dectin-1/Akt/HIF1a pathway (110).
Subsequent studies show that glycolysis, glutaminolysis, and the
cholesterol synthesis pathway are essential for the induction of trained
immunity in monocytes (111, 112). Accumulation of fumarate
induces the epigenetic reprogramming of monocytes by inhibiting
KDM5 histone demethylases (111), while mevalonate, an interme-
diate in the cholesterol synthesis pathway, contributes to the
training of human monocytes, via activation of IGF1R and mTOR
and via subsequent histone modifications in inflammatory path-
ways (113). These findings indicate that rewiring of cellular metab-
olism toward aerobic glycolysis and cholesterol synthesis may be
integral to trained immunity.

How metabolic changes affect trained immunity in cancer is not
well characterized. However, chronic, sterile, low-grade inflammation,
termed inflammaging, has been studied in age-related diseases, includ-
ing cancer (114). Clonal hematopoiesis of indeterminate potential
(CHIP), more common in the elderly, is associated with an increased
risk ofdevelopingmyeloidmalignancies and atherosclerosis (115, 116).
Individuals with CHIP frequently have mutations in epigenetic
modifiers such as DNMT3A, TET2, or ASXL1. Intriguingly, Tet2-
deficient HSPCs demonstrate clonal expansion and accelerate athero-
sclerosis in mice, in a NLRP3 inflammasome/IL1b pathway-
dependent manner (117). Circulating monocytes of patients with
atherosclerosis exhibit enhanced cytokine production and glycolytic
metabolism, with epigenetic reprogramming at the level of histone
methylation (118, 119). These findings highlight the role of metabolic
and epigenetic changes in aging and age-related diseases. Further
studies are needed to dissect the links between metabolic and epige-
netic remodeling, trained immunity, aging, and cancer.

Targeting Innate Immunity: Next
Generation of Cancer Immunotherapy

The current, FDA-approved immunotherapies for cancer rely
largely on the adaptive immune system. However, advances in our
understanding of innate immunity provide a novel framework for
targeting this aspect of immune homeostasis to maintain health and
prevent disease (Table 1). b-glucans and BCGhave been evaluated in a
variety of cancers, including neuroblastoma, bladder cancer, and lung
cancer (120, 121). The protective effect of BCG vaccine relies
on trained immunity, specifically the epigenetic reprogramming of
monocytes at the level of H3K4m3 (122). Similarly, b-glucans
induce trained immunity at the HSPC level and promote myeloid
differentiation, innate immune signaling, and metabolic adapta-
tions (106). b-glucans, given in combination with cetuximab in
patients with KRAS-mutant colorectal cancer, have promising
clinical activity in a phase II trial (123). While increases in the
histone marks H3K4me3 and H3K9me3 underlie both BCG-
induced and b-glucan–induced trained immunity (111, 112, 124),
how this control trained immunity is unclear.

The synthetic peptide conjugate muramyl dipeptide (MDP), a
peptidoglycan minimal bioactive motif common to all bacteria, acti-
vates innate immune cells through NOD2, activating NF-kB and
inducing epigenetic rewiring and trained immunity (125). The ketone
metabolite b-hydroxybutyrate and the small-molecule inhibitor
MCC950 can inhibit NLRP3 inflammasome-mediated trained immu-
nity (108, 126, 127). Combinatorial use of epigenetic drugs with
immunotherapy is also being investigated. For example, DNMT
inhibitor 5-azacytidine triggers immune response via double-stranded
RNA (dsRNA) sensing pathway, sensitizing melanoma cells to anti-
CTLA4 therapy (128).

TLR agonists are being exploited as adjuvants for cancer vaccines
as well as direct cancer therapeutics. Imiquimod binds to TLR7

Table 1. Immunotherapies in cancer.

Drugs Targets Effect on epigenetics or biology

Targeting trained immunity

BCG vaccine Mycobacterium
tuberculosis

H3K4 trimethylation of monocytes

B-glucans Dectin-1 and
complement
receptor 3 (CR3)

H3K4 and H3K9 trimethylation

MDP NOD2 Activate NF-kB pathway
Statins Mevalonate Change DNA methylation and prevent trained immunity induction
B-hydroxybutyrate
and MCC950

NLRP3 Inhibit NLRP3 inflammasome-mediated trained immunity

Targeting innate immune signaling

ODNs TLR9 Active innate immune responses by producing proinflammation cytokines and Th1 cells
Imiquimod TLR7 Reverse local immunosuppression and induce tumor cell specific apoptosis
poly(I:C) TLR9 Induce stable maturation of functionally active dendritic cells

TLR3 Induce cancer cell apoptosis
Flagellin-protein
fusions

TLR5 Induces inflammatory responses through the activation of APCs

IRAK1/4 inhibitor I IRAK1/4 Suppresses solid tumor growth in several distinct combination therapies
NCGC1481 FLT3-IRAK1/4 Eliminates adaptive resistance of FLT3-mutant AML cells
NG25 TAK1 Inhibits colorectal cancer cell proliferation, especially for KRAS-mutant cells
5Z-7-oxozeaenol TAK1 Enhances the sensitivity of glioblastoma cells to chemotherapy

Suppresses triple-negative breast cancer metastasis by altering TAK1-p38 signaling
C-178, C-176 STING Inhibits STING palmitoylation and attenuates autoinflammatory features in mice
NCGC00138783,
Pep-20, etc.

CD47/SIRPa Small-molecule inhibitors targeting macrophage checkpoints that induce phagocytosis

Abbreviations: MDP, muramyl dipeptide; ODN, CpG oligo-deoxynucleotides.
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to reverse local immunosuppression and induce skin cancer
cell apoptosis (129). Flagellin fusion proteins can induce specific
immune responses, mediated by TLR5 activation on target
APCs (130). CpG oligo-deoxynucleotides, which are TLR9 agonists,
have shown promising results as vaccine adjuvants and when used
in combination with cancer immunotherapy (131). Polyriboinosi-
nic-polyribocytidylic acid [poly(I:C)], which targets TLR3 and
TLR9, can boost immune system activation and promote anticancer
effects (132).

Given the established track record of kinase inhibitors being
approved to treat cancer, and other disorders, inhibitors of the kinases
involved in innate immunity are being studied. IRAK functions
downstream of TLRs and IL1R to regulate the expression of inflam-
matory molecules. These kinases play a protumor roles in several
cancers (133): For example, inhibition of IRAK1/4 synergizes with
sorafenib in suppressing the growth of hepatocellular carcinoma in a
xenograft mouse model (134), while the combination of IRAK1/4
inhibition and lenvatinib decreases tumor volume in a mouse
anaplastic thyroid cancer model, better than either therapy
alone (135). A multikinase FLT3-IRAK1/4 inhibitor displays super-
ior efficacy, compared with current FLT3-targeted therapies to
eliminate adaptive resistance of FLT3-mutant acute myeloid leu-
kemia (AML; ref. 136). Other kinase inhibitors, such as those
targeting TAK1 kinase, which is downstream of TLR and TNFR
pathways, also show therapeutic efficacy in various cancer
models (137–139). Taken together, kinase inhibitors and other
drugs that target aspects of innate immunity, such as the cGAS-
STING pathway or macrophage checkpoints (CD47/SIRPa axis)
show important promise. Several of these approaches have recently
been reviewed (140, 141).

Perspectives
The study of innate immunity in cancer is fast growing and

drugs that target protumorigenic cellular infiltration or inflammation

are being tested preclinically and clinically. However, multiple chal-
lenges exist, given the complexity of the interactions between tumor
cells and their environment and the importance of targeting only
certain aspects of the immune system, without impairing others. On
the molecular level, a better understanding of the mechanistic details
underlying the intricate interactions between cancer biology, innate
immunity signaling, and inflammation is needed. Clearly, the effects of
feedback and compensatory pathways on tumor growth are hard to
predict or control, despite the research advances we have outlined
above. On the cellular level, the heterogeneity and plasticity of the
immune cells that infiltrate tumors must be taken into account in
cancer to target the biology of a specific immune cell type or the
interactions between cell types. Also, the roles that aging or the
microbiome have on the outcome of anti-inflammatory therapies
remain to be characterized (142).

Notably, trained immunity provides a compelling layer of control
on myeloid cell function by integrating epigenetic, transcriptional,
and metabolic regulations, although the precise mechanisms are just
beginning to be discovered. The presence of persistent epigenetic
marks in trained innate immune cells, generated following a pathologic
process or during aging, could underlie an increased susceptibility to
certain cancer events. Innate immunity can be therapeutically manip-
ulated, at the level of epigenetic modifiers, TFs, cellular metabolism,
and signaling pathways.Moreover,mediators of innate immunity such
as IFNs and cytokines can enhance adaptive immunity-based therapy
by sensitizing tumor cells (143, 144). Mechanistic studies of innate
immunity regulation in cancer are underway, which will help lay the
groundwork for the development of innate immunity-based mono- or
combination therapies.
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