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Abstract

When two or more amino acid mutations occur in protein systems, they can interact in a 

nonadditive fashion termed epistasis. One way to quantify epistasis between mutation pairs in 

protein systems is by using free energy differences: ϵ = ΔΔG1,2 - (ΔΔG1 + ΔΔG2) where ΔΔG 

refers to the change in the Gibbs free energy, subscripts 1 and 2 refer to single mutations in 

arbitrary order and 1,2 refers to the double mutant. In this study, we explore possible biophysical 

mechanisms that drive pairwise epistasis in both protein-protein binding affinity and protein 

folding stability. Using the largest available datasets containing experimental protein structures 

and free energy data, we derived statistical models for both binding and folding epistasis (ϵ) with 

similar explanatory power (R2) of 0.299 and 0.258, respectively. These models contain terms and 

interactions that are consistent with intuition. For example, increasing the Cartesian separation 

between mutation sites leads to a decrease in observed epistasis for both folding and binding. Our 

results provide insight into factors that contribute to pairwise epistasis in protein systems and their 

importance in explaining epistasis. However, the low explanatory power indicates that more study 

is needed to fully understand this phenomenon.
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1. Introduction

Multiple amino acid mutations can interact in biological systems, leading to nonadditive 

effects termed epistasis. While a general understanding of the concept of epistasis has 

existed for many years, the prevalence of epistasis, or its importance in biological systems, 
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is still a matter of debate1-5. Some believe it is a major force in evolution, either by 

constraining the available pathways for systems to evolve, by counteracting mutations that 

reduce fitness through compensatory effects, or by contributing to a more rugged fitness 

landscape6-18. Others have explored the epistatic effect between sets of beneficial mutations, 

finding that epistasis is pervasive and a key aspect of adaption, but leading to diminishing 

returns or negative epistasis10,19,20,20-22. Other studies using RNA viruses have shown that 

epistasis is prevalent and likely a mechanism for their evolution23-28. Epistasis has also 

been shown to be a likely contributing factor to drug and antibody resistance of influenza 

A, HIV-1 and other pathogens12,24,29,30, and for general disease susceptibility in humans31. 

Finally, the complexity that epistasis provides in understanding mutation effects must be 

accounted for in protein engineering and design32-35.

For pairs of simultaneous mutations in proteins (we will refer to these as “double 

mutations”), epistasis can be expressed in terms of free energy differences:

ϵ = ΔΔG1, 2 ‐ (ΔΔG1 + ΔΔG2) (EQ 1)

Where ΔΔG1,2 corresponds to the change in the folding or binding free energy due to the 

double mutation, and ΔΔG1 + ΔΔG2 refers to the sum of the constituent single mutation 

free energy changes. There are other definitions for epistatic effects such as ratios of folding 

changes34. However, our null assumption was the case of perfect additivity (ϵ=0) leading to 

our definition for epistasis being deviations from additivity. This nonadditivity can be caused 

by direct interactions between mutational sites, or by indirect effects such as conformational 

perturbations. Epistasis is positive when the double mutant is more stabilizing than the sum 

of the constituent singles (ϵ < 0) and negative when the double mutant is more destabilizing 

than the sum of the constituent singles (ϵ > 0).

Despite its importance to understanding biological systems, a comprehensive mechanistic 

picture of the drivers of epistasis in proteins is not known. An early attempt to 

explain epistasis mechanisms is a study by Wells36; they concluded that features like 

separation distance, electrostatic interactions, and conformational perturbations were likely 

contributors. However, this conclusion was based on a small data set containing a total of 12 

folding and binding systems, with less than 75 total multiple mutations. More recent studies 

have examined specific protein systems like TEM-1 β-lactamase37,38 and the IgG-binding 

domain of protein G39, finding pervasive negative epistasis. Long-range epistasis has also 

received attention. Gromiha et al. proposed that distant residues that are part of a specific 

local group (they defined this as a rigid cluster) could lead to epistasis40. Other researchers 

have used tools like molecular dynamics to analyze if networks of interactions can mediate 

long-range epistasis41. Classification systems have also been developed. Jemimah et al. used 

structural features to build a model to classify whether mutational pairs would be additive 

(i.e., not epistatic)42. These previous studies provide a basis for understanding possible 

contributors to epistasis and some even offer predictive capability, however they do not 

provide a complete understanding of epistasis mechanisms and their interactions.

In this study, we determine biophysical drivers of pairwise epistasis in protein systems 

and rank their contribution to the observed epistasis, ϵ (EQ 1). We used protein structural 
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data, protein-protein binding affinities, and protein folding stabilities from the largest, 

most diverse datasets currently available. We explored possible relationships between the 

observed epistasis and features that are intrinsic to both the proteins and the mutated 

residues. A statistical model selection procedure was performed to determine the features 

that are most important to explaining the observed epistasis. The models determined for 

binding and folding have similar and modest predictive power. Both models contain similar 

features that include separation distance and charge interactions. Our work serves as a 

stepping stone to further our understanding of the biophysical drivers of epistasis, and to 

build future models with more complex features and interactions.

2. Methods

2.1: Curating experimental data

Experimental binding affinity data was obtained from SKEMPI v2.0 43 and folding stability 

data from ProTherm 444. Since the focus of our study is pairwise epistasis, we extracted 

a subset of the data consisting of all instances where there was data for a double mutant 

and the corresponding constituent singles. For both folding and binding data, values were 

converted to kcal/mol. A temperature of 298 K was used if not specified in the dataset. 

Averages were calculated for mutations that included multiple free energy values. The 

attributes in the resulting curated folding and binding datasets used in our study include the 

PDB ID, protein complex name, the mutation(s), and either binding or folding free energy 

values. The total number of data points for double mutants with constituent single mutants 

were 572 from 58 protein-protein complexes for binding, and 204 from 30 protein systems 

for folding. Epistasis was calculated for each double mutation data point using EQ 1, that 

is, by taking the difference between the free energy change due to the double mutation and 

the sum of the free energy changes due to the constituent single mutations. Protein structures 

used for analysis were acquired from the RCSB Protein Data Bank (PDB)45.

2.2: Extracting Features as Possible Drivers of Epistasis

For electrostatics, and other categorical features described below, the explicit wildtype-

mutant pairs are henceforth denoted separated by a semicolon for simplicity: 

wt1wt2;mut1mut2.

Amino Acid Properties—To investigate the effect of electrostatics on epistasis, we 

classified amino acids as positively charged (+), negatively charged (−), or neutral 

(0). To incorporate every wildtype-mutant pair state would be infeasible due to 

overparameterization, as it would result in 34=81 possible categories (++;−−, ++;−+, ++;+−, 

+−;−−, …). To avoid overparameterization, we explored various abstractions of this data, 

incorporating this into our model selection process (detailed below). The resulting charge 

contribution was given by a simplified charge-interaction scheme with pairs belonging to 

one of three categories: attractive (+− or −+, denoted “A”), repulsive (−− or ++, denoted 

“R”), and neutral (all other cases, denoted “0”). The reverse of each wildtype-mutant states 

were classified as the same (e.g. 0;A = A;0), resulting in four categories: 0A, 0R, AR, and 

00 to capture all possible electrostatic interactions. Note that the AR case was not present in 

either dataset.

Barnes et al. Page 3

Proteins. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To include the change in size for the constituent amino acids we used the van der Waals 

volume in Å. To capture the net effect due to the change in size for both sites we used the 

metric (referred to as sizenet.

sizenet = ∣ sizem1 ‐ sizewt1 ∣ + ∣ sizem2 ‐ sizewt2 ∣ (EQ 2)

where wt and m correspond to the wildtype and mutant amino acids, respectively, and 1 

and 2 denote the amino acid sites in an arbitrary order. Under this scheme, if one or both 

sites undergo a large/small change in volume occupancy the corresponding metric will be 

large/small respectively, even if they are in opposing directions.

To include the effect of hydrophobicity, each residue is classified as either “H” for 

hydrophobic or “P” for polar. Using all possible 16 categories would be possible, but risk 

overfitting. We instead found the following abstraction: a boolean value (“0” or “1”) that 

denotes whether the net hydrophobicity of the pair changed upon mutation. For example, 

HP;PH would give 0 since the net hydrophobicity remained the same. By contrast, PP;HP or 

PP;HH would both give 1, since the net hydrophobic state changed upon mutation.

Structural Properties—Separation distance was defined as the Cartesian separation 

between the alpha carbons for each mutational site. This Euclidean distance r was calculated 

using the x, y, z coordinates for the mutation sites via the standard formula:

r = (xwt1 − xwt2)2 + (ywt1 − ywt2)2 + (zwt1 − zwt2)2 (EQ 3)

Secondary structure information was included by considering whether a given mutational 

site was located in an alpha helix (“H”), beta sheet (“S”), or loop (“L”). Secondary 

structure content was determined using a PyMol script46. As with other categorical features 

overparameterization may be a concern, though in this case the explicit consideration 

only has nine possible cases. We tested the possible abstractions, ranging from explicit 

consideration of the structures at each site (e.g., HL,LL,LS,…) to the simplest case of a 

boolean value denoting whether both sites belong to the same type of structure (“0”) or 

different structures (“1”).

We also considered the effect of solvent accessible surface area (SASA): a metric describing 

whether a residue is exposed or buried. To calculate the SASA, we first prepared the 

PDB files using pdbfixer from the OpenMM software suite47, to add missing residues, 

replace non-standard residues with their standard equivalents, and add missing hydrogens. 

The repaired structures were then processed with FoldX48 to generate mutations using the 

BuildModel command. DSSP v 3.0.049 was then used to calculate the absolute SASA 

(SASAabs) for each residue of interest. Both absolute and relative SASA were considered, 

relative SASA (SASArel) was calculated using the empirical max accessible surface area 

(ASAmax) generated by Tien et al50 via the formula:

SASArel = SASAabs ∕ ASAmax . (EQ 4)
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Since SASA changes affect both wildtype and mutant residues, we used a modified version 

of EQ 2 replacing sizenet with SASA.

We also included classification information. For binding, we included the type of protein-

protein complex broken into five categories, based on the information provided in 

the SKEMPI v2.0 database: antibody-antigen (AB/AG), T cell receptor-peptide bound 

major histocompatibility complex (TCR/pMHC), Cytokine-Cytokine receptor (Cyto/Cyto), 

GTPase-other, and non-specific protein-protein interaction (Pr/PI) which functioned as the 

reference category for the statistical models. We also included a boolean value indicating 

whether or not the mutational sites occur on the same (“0”) or different (“1”) protein chains, 

as sites which occur on the same chain may have a different effect on binding than if 

they occur on opposing chains. For folding, we included the system size given by the total 

number of residues acquired from the PDB.

2.3: Statistical Analysis

To analyze the relationship between epistatic effect and separation distance, we conducted 

a likelihood ratio test that compares a null model (where separation distance is unrelated to 

epistasis) against an alternative model (where epistasis decays with increasing separation). 

More precisely, we defined the null model to be that epistasis values are sampled from 

a normal distribution that is independent of the separation between residues. For the 

alternative model, epistasis values are sampled from a normal (same mean as the null case) 

with a standard deviation that decays exponentially as a function of separation according 

to a eαr where r is the separation between residue site alpha-carbons (EQ 3) and a and α 
are the curve’s parameters estimated by maximum likelihood for the dataset. This maximum 

likelihood was determined by a grid-search method, considering all possible a and α, taking 

the resulting model with the largest likelihood. The likelihood ratio is given by the ratio of 

the log of the two likelihoods of the data under the two models:

Λ(ϵ) = ℒ(θ0 ∣ ϵ)
ℒ(θ1 ∣ ϵ) log(Λ(ϵ)) = log(ℒ(θ0 ∣ ϵ)) − log(ℒ(θ1 ∣ ϵ)) (EQ 5)

where ℒ refers to the likelihood, log is the natural logarithm, and θ0 θ1 correspond to 

the null and alternative models respectively. Small values of Λ indicate that the alternative 

model has more explanatory power than the null. We first calculated the likelihood ratio for 

the experimental data, Λexp. In order to determine statistical significance of Λexp we then 

obtained the distribution of Λ under the null through parametric simulation. Specifically, we 

simulated datasets using the mean and standard deviation of the experimental epistasis data. 

We then repeated the fitting exercise used on the real dataset for the simulated dataset, using 

the same separation data, and calculated Λ. This process was repeated 1000 times to obtain 

the distribution of Λ under the null: Λsim. The p-value for the test was then calculated as the 

proportion of Λsim less than or equal to Λexp.

Linear statistical models were used to determine the biophysical features that are best able to 

explain the observed epistasis. The absolute value of the epistasis, ϵ, was used as a response 

variable for our model building. The choice to use the absolute value was necessary to 

ensure a monotonic relationship between the features and the response variable, as assumed 
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when using linear models. One could imagine analyzing positive and negative epistasis 

separately; however, this was not possible due to small sample sizes. All features described 

above were considered in a standard model selection procedure, including all pairwise 

interactions terms. For any features where we considered more than one level of abstraction, 

only one level was included in any given model. To evaluate model performance, the 

corrected Akaike information criterion (AICc) was used. The corrected criterion was chosen 

over the standard AIC due to the potential for overfitting models that contain a large 

number of terms given a small amount of data51. Models were generated and tested using R 

software52 by considering all permutations of abstracted and non-abstracted features. Model 

selection was performed using a modified form of stepAIC from the MASS53 package 

to perform forward and backward selection based on AICc (further verified by the AICc 

function of AICcmodavg54 and compared to standard AIC). Forward selection explores 

model space by starting with a term-less model and systematically adding terms to find 

the model with the best value for a given criterion. Conversely, backward selection starts 

with the complete full-term model and removes terms to find the best model. This model 

selection process was performed twice with randomized input terms to avoid potential 

ordering bias (terms treated differently based on their position in the initial list) and the 

lowest AICc values were compared for consistency. Once we verified that there was no 

ordering bias, the model with the lowest AICc for both binding and folding was used for 

further analysis.

To rank the importance of features present in the final statistical models for their effect on 

epistasis we compared R2 values with and without each feature and its interactions. Features 

with larger explanatory power of the observed epistasis will have a larger change in R2 when 

removed.

2.4 - Quantification of Experimental Error and Model Validation

In order to develop a model for epistasis, it is important to quantify how much of 

the observed epistasis could be attributed to error, or noise, in the experimental data. 

Quantification of overall error is based on the error in three values (ΔΔG1,2, ΔΔG1, ΔΔG2), 

each of which were determined using a broad range of techniques and conditions from 

diverse studies (e.g., 60+ for binding). A survey of six studies that contained some of the 

largest observed epistasis for binding showed the experimental standard error for ΔΔG to 

be in the range 0.05 - 0.3 kcal/mol55-57. However, some studies do explicitly include the 

error for epistasis (frequently termed the coupling energy). For example, in the case of 

barnase-barstar, Schreiber et al., reports errors in ϵ from 0.2 - 0.39 kcal/mol across 33 

mutation pairs58 and Goldman et al. reports an error of 0.3 kcal/mol across 13 pairs for 

an Idiotype-AntiIdiotype Protein-Protein complex59. There are outliers, such as the study 

from Pielak, et al. with six mutational pairs in the Iso-1-cytochrome C Peroxidase complex60 

found to have an error range of 0.4 - 1.0 kcal/mol with an average error of 0.75 kcal/mol for 

six samples; an unusually large error. In summary, the reported error for our curated binding 

and folding datasets are in the range of 0.2 - 1.0 kcal/mol, with mean around 0.4 kcal/mol. 

For the remainder of this study, we will use a slightly more conservative estimated error of 

0.5 kcal/mol to quantify the amount of observed epistasis.
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Since our binding and folding data comes from many different protein systems collected by 

a diversity of methodologies and laboratories, there is an inherent imbalance in the quantity 

and quality of data for each system. To test the robustness of our model to this bias, we 

applied a modified “leave-one-out” procedure. We randomly removed 10% of the protein 

systems and their data, creating a subset from the remaining 90% of systems. The model 

selection procedure was performed on this subset to generate a new model. This process 

of removing 10% of the systems and running model selection was repeated 100 times. 

The resulting 100 subset models were analyzed and compared to determine which terms 

appeared, their frequency of appearance, and average performance or ranking when present 

in a model.

3. Results

To build a statistical model for epistasis in proteins we used data for binding curated from 

SKEMPI v2.0 (572 mutation pairs), and for folding curated from ProTherm 4 (204 mutation 

pairs). We first considered the extent to which epistasis was present in our data set. To 

determine this, we defined an epistasis cutoff; values where ∣ϵ∣ is larger than the cutoff are 

considered epistatic, and other values are not. Ideally, the cutoff would be chosen based 

on the experimental error or uncertainty, however, given that our data come from a broad 

spectrum of methods and sources, this is not possible to determine for the dataset as a whole 

(see supplemental Figure S1 for the dataset divisions with various cutoffs).

Figure 1 shows the free energy change of the double mutant as a function of the sum of 

individual free energies for both binding and folding datasets with a cutoff of 0.5 kcal/mol. 

Both figures 1 and 2 show that epistasis is present in binding and folding. In both datasets 

there is a marked trend for large sums of constituent single mutations (sum in EQ 1) 

to correspond to a double mutant with free energy falling below the 1:1 line (i.e., more 

stabilizing that predicted by additivity). The opposite is true for constituent mutations with 

smaller sums.

After ascertaining the extent to which epistasis is present in our data, we investigated how 

well the separation between mutation sites could explain the epistatic effect. Figure 2 shows 

the relationship between separation distance and the observed epistasis for binding (top) 

and folding (bottom). Both show the general expected trend of less epistasis as separation 

increases. Both also show a larger number of data points for distances with the largest ϵ 
values, or spread in ϵ (around 6-10 Å).

Figure 3 shows our analysis to determine whether the apparent decrease in epistasis with 

increasing separation distance (Figure 2) is due to an actual relationship or a consequence 

of the larger number of data points at small distances. Figure 3A shows null model (σ(ϵ) 

is not a function of r) and alternative model (σ(ϵ) exponentially decreases as a function of 

r) for the likelihood ratio analysis. Figure 3B and 3C show the simulated distribution of the 

likelihood ratio, Λ,from the analysis with 1000 samples for binding and folding respectively. 

The experimentally observed likelihood ratio is well outside the distribution of null ratios 

given by the label “EXP” and has a value of −5.50 compared with the tail of the simulation 
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distribution minimum of −4.59 in the case of binding. In simple terms, this results in a 

p-value of p < 1/1000 (p<0.001) in strong support of the alternative model.

Table 1 shows a summary of the binding (1A) and folding (1B) statistical models for 

epistasis in protein systems. Both models have similar predictive power in the range of 

25-30%. The final selected binding model contains all features that we considered except for 

hydrophobicity (seven features, 28 terms including interactions) and depends on SASAabs 

and secondary structure in addition to binding specific features like the complex type. 

The folding model is simpler (five features, 12 terms with interactions), and depends 

on hydrophobicity and SASArel. Features are listed in order according to their relative 

contribution to the explanatory power of the full model. That is, the highest-ranked feature is 

the one whose removal leads to the greatest reduction in R2. For the binding epistasis model, 

the largest contributor was the complex type, with a change in R2 of 0.128 upon removal 

followed by charge with a change in R2 of 0.078 upon its removal. The remaining terms 

each contribute ~5% or less to the predictive power of the binding model. For the folding 

epistasis model, the largest contributor was hydrophobicity with a change in R2 of 0.151 

upon removal, followed by both size and charge with similar contributions (change in R2 

of 0.0765 and 0.0695 with their removal respectively). The remaining terms each contribute 

~4.5% or less to the predictive power of the folding model.

Table 2 shows the results of 100 trials of our "leave-10%-out" robustness test where 10% 

of the available systems were randomly removed. These results show that both of our 

full models are highly robust -- with the binding model being slightly more robust than 

the folding model. All terms present in the full models are present in the leave-10%-out 

analysis, most occurring in all trials. Additionally, the mean ranks of most terms are 

identical to the full-data binding model with more variance in the folding model. Graphical 

representation of our robustness tests shown in supplemental Figure S2.

Figure 4 further illustrates the results of our statistical model for epistasis in binding. 

For charge, the subcategory for interactions involving an attractive pairing (0A) contains 

the most strongly epistatic mutations. While mutations in this subcategory cover a broad 

range of values, many tend towards positive epistasis; the largest value belongs to this 

subcategory. Neutral or constant charge states (00) show a near normal distribution centered 

on zero with some low levels of epistasis. Changes involving a repulsive interaction (0R) 

contain the least number of data and have a narrow distribution, with fewer large values 

for ϵ in either direction. For the complex type category, the antibody-antigen subcategory 

shows the most epistasis, including the most positive. TCR/pMHC also contains a large 

amount of positive epistasis. Cytokine-cytokine is the only subcategory with a negative 

mean suggesting that mutations in this subcategory tend to have negative epistasis. Generic 

protein-protein complexes show similar behavior to the neutral charge category; centered on 

zero, broad spread, but low numbers of epistatic data points. Other categorical features are 

shown in supplemental Figure S3.
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4. Discussion

Before building linear models we first determined the extent to which our datasets contain 

meaningful epistasis. That is, considering there is uncertainty in the data, where should we 

draw the line between epistatic and non-epistatic values of ϵ? We estimated (see Methods) 

that the error for both datasets fall between 0.2 - 1.0 kcal/mol with an average around 0.5 

- 0.6 kcal/mol. From this, we estimated a cutoff of 0.5 kcal/mol, i.e., ∣ϵ∣ > 0.5 kcal/mol 

are considered epistatic. There are further limitations of our dataset; the data is not from 

randomized studies. Instead, the experiments were generally conducted in a targeted fashion 

with a priori knowledge of function. This may explain why we find more positive epistasis 

(more stabilizing that additivity predicts) than negative epistasis (more destabilizing that 

additivity predicts) as shown in Figure 1. Alternatively, it is possible that more positive 

epistasis is present in the data because negative epistasis could lead to protein misfolding or 

non-binding events in the experiments. The former reasoning is an artifact of how the data 

was generated, and the latter is related to biophysical features of the proteins; both carry 

different implications for the dataset and warrant future work.

Separation distance is the most intuitive feature expected to contribute to epistasis, because 

residues that are near each other are more likely to interact than those far apart. Simple 

comparisons show a decreasing spread of epistasis with increasing distance (Figure 2). 

The folding data show this most strongly with a sharp peak around the shortest separation 

distances of approximately 6 Å, dropping to near zero at larger distances. The binding data 

show a possible peak around 10 Å, however, the trend is not as clear. Additionally, with 

binding there is a paucity of data from 25 Å to 40 Å with only one data point around 40 

Å. Our tests using likelihood ratio methods (Figure 3) confirm that separation does play a 

role in epistasis for both binding and folding. Our alternative model (width of possible ϵ 
values depends on separation) was a better explanation than the null model (no relationship 

between separation and ϵ), with a p-value of p < 0.001 in the case of binding, and p < 0.002 

in the case of folding. The effect of separation is also confirmed in our models (Table 1) 

where both folding and binding models have negative coefficients for separation distance, 

which corroborates the results from the likelihood ratio analysis. In the folding model, a 10 

Å increase in separation between residues results in a decrease in epistasis of 0.416. In the 

binding model, the effect of separation alone is an order of magnitude less than the folding 

model and has less significance in the model (p=0.8074). Instead, the effect of separation 

in the binding model is most strongly characterized by the interaction with charge. With 

charge alone, changes involving attractive pairings show an increase in epistatic effect 

whereas changes involving a repulsive pairing show a decrease. The interaction between 

charge and separation contributes an opposing effect: as separation between residues 

increases, changes involving attractive and repulsive pairings cause a decrease and increase 

in epistatic effect respectively. Intuitively, as separation between charged residues, regardless 

of categorization, increases the net effect of charge on epistasis tends towards zero (Δϵcharge 

+ Δϵcharge:separation ~ 0). Furthermore, interaction terms can drive the inclusion of terms with 

low linear significance. For example, “separation:charge_0A” and “separation:charge_0R” 

have p-values of 0.0001 and 0.0401 respectively, orders of magnitude less than the p-value 

of the linear separation term (p=0.8074). Due to the high significance in the interaction 
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terms, the separation must also be included in the model as a linear variable (albeit with low 

significance).

In addition to separation distance, amino acid size is present in both models. Size is another 

feature one might intuitively expect to contribute to epistasis: large absolute changes in size 

imply that voids are created when residues change from larger to smaller, or that smaller to 

larger residues create steric clashes. In both models the coefficient is positive (increases in ϵ 
occur with change in size) with more of an effect in the case of folding (on the order of 10−2 

vs 10−3 in the case of binding). Size interaction terms differ between binding and folding. 

In the case of binding, when there are changes in size that occur on different protein chains, 

there is a reduction in epistasis as indicated by the negative coefficient for the interaction 

term in Table 1 (sizenet:interaction side). Otherwise, for all complex types, changes in size 

lead to an increase in epistasis, most strongly with Antibody-antigen complexes. For folding, 

sizenet interacts with hydrophobicity and SASArel leading to decreases in epistasis. This will 

be discussed further with the features specific to the folding model.

In the case of both binding and folding, there are unique features that contribute significantly 

to the observed epistasis. In the case of binding, these elements only apply to binding 

interactions such as the type of complex (defined by function) and whether both mutations 

occur on the same side of the binding interaction. Complex type is the most significant 

contributor to the observed epistasis (ΔR2 = 0.17) with most complexes showing less 

epistatic effect compared to the reference category of generic protein-protein complexes. 

There is an exception with Cytokine-cytokine complexes that shows a small increase 

in epistasis with a coefficient of +0.4677. The interaction side is a smaller contributor 

compared to complex type (ΔR2 = 0.0465), with a slight increase in epistatic effect when 

mutations occur on opposite sides of the binding interaction. This is consistent with 

intuition; if both mutations are near the binding interface and on opposite sides, they are 

more likely to directly interact, or propagate effects at the interface. Additional features 

that contribute to epistasis in binding are secondary structure and SASAabs. Secondary 

structure has a minor contribution, with a slight increase in epistatic effect when residues 

belong to different secondary structure types. This is counterbalanced by an interaction with 

separation distance, where residues that occur in different secondary structures, and are also 

far apart, lead to a decrease in epistatic effect. This could be due to direct interactions 

between sites; if they are close together but belong to different secondary structures, they 

can change these structures either directly or indirectly. This is less likely to happen if they 

are further apart. SASAabs is the penultimate feature in the model ranking with a very small 

coefficient (−0.006). This implies that changes in the total exposed surface area due to the 

two mutations lead to small reductions in the epistatic effect.

Unique to the folding model, hydrophobicity is present, and is the strongest contributor to 

epistasis with a ΔR2 of 0.1506. Changes in the net hydrophobicity lead to an increase in the 

observed epistasis. This is consistent with other studies that have shown that hydrophobicity 

contributes to predicting folding stabilities with double mutations61. Most of the other terms 

present in the folding model interact with hydrophobicity leading to a stronger effect on 

epistasis, and a reduction when paired with changes in size, and changes in charge involving 

attractive interactions.
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Since our statistical models for both binding and folding explain approximately 25-30% of 

the observed epistasis, an important question is: what explains the other 70-75%? We believe 

the answer lies in dynamical properties that are beyond the scope of what we investigated 

here. Protein complexes are not static objects, thus static features like those considered in 

this study are only likely to capture some of the true physical effect they can have on these 

systems. While a tool like molecular dynamics could potentially help address this question, 

given the number of mutations and systems considered here, the computational cost would 

be unreasonably large and will be left as a topic for future study.

Given the size of our datasets, and the imbalanced nature of the data in terms of protein 

systems, we performed a “leave-10%-out” validation procedure to test the robustness of our 

models and determine whether there are system-specific effects (see Table 2). We found that 

our binding model was very robust; all terms appearing in the full model were also present 

in the validation trials effectively 100% of the time (the least significant term, secondary 

structure, was missing from three trials). The mean rank was also consistent between the 

validation trials and the full model ranking for the three most significant terms, the 4th 

and 5th are switched but close enough to be within a margin of error, the 6th and 7th 

were also consistently ranked. The folding model was slightly less robust. The effect of 

hydrophobicity was very robust being ranked first in the full model and appearing in 99 of 

the 100 validation trials with a mean rank of one. The remaining folding model terms appear 

between 96% to 100% of the time, however their mean rankings are generally inconsistent 

with their full model rank, indicating that while they are important to explaining epistasis we 

cannot be as certain of their relative contribution.

A limitation in the current study, that is also a limitation for all similar studies, is the 

lack of comprehensive, diverse, and unbiased datasets. Given the challenges associated with 

measuring binding or folding free energies for a large number of mutants, these datasets are 

built with narrow focus and small sample sizes. Such databases tend to be biased toward 

systems of particular interest. Additionally, they will not contain mutations that result in a 

nonviable protein or system. This does not make the data any less relevant since in nature 

proteins must be viable, and thus we should expect similar results (e.g., the preponderance 

of positive epistasis observed in this study). If we want to understand the nature of epistasis 

at the level of protein stability, we need to study it across more protein systems in a more 

systematic fashion. To build a truly predictive model of epistasis, dynamic properties would 

need to be considered and a larger, more representative sample of data would need to be 

accessible.

5. Conclusion & Future Work

In this study we investigated possible mechanisms and determined statistical models for 

pairwise epistasis in proteins based on the largest, most diverse, experimental data available. 

Mechanistic features were investigated that are intrinsic to the mutating amino acids (e.g., 

charge, hydrophobicity) or to the proteins (e.g. secondary structure, distance between 

mutational sites). Using a model selection procedure we ranked these features by their power 

in explaining the observed epistasis. The resulting models for both binding and folding had 

similar explanatory power of 25-30% and were composed of similar high-ranked features. 
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The features included in both models were charge, separation distance, and residue size. 

The largest contributing features were complex type for binding, and hydrophobicity for 

folding. Our results shed some light on the mechanisms for pairwise epistasis in proteins, 

and highlights the need for larger datasets. Our study also suggests that development of a 

truly predictive model for epistasis will likely require difficult to ascertain features such as 

conformational changes, bond formation, and other propagated mutational effects.
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Figure 1: 
Epistasis scatterplots for binding (A) and folding (B). Both figures use a cutoff of 0.5 

kcal/mol and show data characterized as no epistasis (black), positive epistasis (blue), and 

negative epistasis (red).
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Figure 2: 
Observed epistasis as a function of alpha-carbon separation between mutation sites for 

binding (A) and folding (B). Black indicates no-epistasis using our cutoff of 0.5 kcal/mol, 

and blue and red indicate positive and negative epistasis, respectively.
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Figure 3: 
(A) Comparison between the alternative (left) and null (right) models for epistatic effect, 

ϵ, as a function of separation distance, r. Results of log(likelihood) ratio test for separation 

distance with 1000 samples for simulated data for binding affinity (B) and folding stability 

(C). These plots show the alternative model is a significantly better explanation of the data 

than the null model.
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Figure 4: 
Comparison of binding model of epistasis for the categories of charge (A) and complex 

type (B). The mean value for a given subcategory is indicated by a black dot. The barplots 

show the histograms within the categories. In parenthesis is the number of mutation pairs 

belonging to each category. For the complex type, the number of complexes belonging to 

each category are shown in square brackets.
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Table 1:

Summaries of epistasis models for binding (A) and folding (B). The leftmost column (column one) contains 

features. Any categorical abstractions are listed directly below the category with right justification. Column 

two gives the specific number of mutation pairs for a given category, where applicable. For complex type 

specifically, the number of complexes of that type are indicated in parentheses. Column three is the change 

in R2 (ΔR2), i.e., how much poorer the model fits the data after removing this feature. In the case of the full 

model, column three is the R2. Removal of a feature also removes all subcategories and any interaction terms 

involving the feature. Column four lists coefficients for the feature/interaction term in the full model. The 

rightmost column contains p-values for the features, and features within a given category.

1A: Binding Model

Feature CategoricalBreakdown Removal (ΔR2) Coefficient P-value

Full Model 572 0.2991

Intercept 0.6994 0.0000

Complex Type 0.1275

AB/AG 66 (8) −0.8401 0.0120

Cyto/Cyto 69 (4) 0.4677 0.3738

GTPase/other 85 (7) −0.4134 0.3153

TCR/pMHC 58 (9) −1.0090 0.0071

Pr/PI 294 (30) 0.0000 0.0000

Charge 0.0778

0 450 0.0000 0.0000

0A 69 1.0195 0.0041

0R 53 −0.7424 0.0131

Separation 0.0522 −0.0025 0.8074

Interaction Side 0.0464 0.5889 0.0055

1 399

0 173

Sizenet 0.0427 0.0022 0.1345

SASAabs 0.0327 −0.0060 0.0002

Secondary Structure 0.0162 0.5837 0.0014

1 315

0 257

Binding Model Interaction Terms

Feature1:Feature2 Coefficient P-value

Separation:Secondary Structure −0.0331 0.0246

Sizenet:Interaction Side −0.0052 0.0081

Separation:Charae 

0A −0.0882 0.0001

0R 0.0454 0.0401

SASAabs:Complex Type
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1A: Binding Model

Feature CategoricalBreakdown Removal (ΔR2) Coefficient P-value

AB/AG −0.0140 0.0207

Cyto/Cyto 0.0072 0.2340

GTPase/other 0.0072 0.0789

TCR/pMHC 0.0062 0.1631

Sizenet:Complex Type 

AB/AG 0.0130 0.0000

Cyto/Cyto 0.0023 0.4650

GTPase/other 0.0008 0.7843

TCR/pMHC 0.0060 0.0754

Interaction Side:Charge 

0A 0.7289 0.0089

0R 0.1460 0.5625

Interaction Side: Complex Type 

AB/AG 0.1376 0.6577

Cyto/Cyto −1.4297 0.0004

GTPase/other −0.3189 0.3331

TCR/pMHC 0.0062 0.9824

1B: Folding Model

Feature Categorical Breakdown Removal (ΔR2) Coefficient P-value

Full Model 204 0.2578

Intercept −0.0607 0.8513

HP 0.1506 0.0746 0.0018

0 133

1 71

Sizenet 0.0765 0.0120 0.0000

Charge 0.0695

0 174 0.0000 0.0000

0A 13 1.8631 0.0015

0R 17 −0.7356 0.0133

Separation 0.0446 −0.0416 0.0054

SASArel 0.0383 0.3269 0.8546

Folding Model Interaction Terms

Feature1:Feature2 Coefficient P-val

SASArel:Sizenet −0.0437 0.0174

SASArel:Separation 0.1577 0.1324

Sizenet:HP −0.0103 0.0085

SASArel:HP 2.7022 0.0459

HP:Charge 

0A −2.0467 0.0016
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1A: Binding Model

Feature CategoricalBreakdown Removal (ΔR2) Coefficient P-value

0R 0.8380 0.0391
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Table 2:

Results from 100 trials of our “leave-10%-out” model robustness test for binding (A) and folding (B). The 

feature is indicated by the first column. The second column indicates the average rank across all trials the 

given feature appeared in, lower numbers suggest more robust features. The third column shows the standard 

error associated with the average. The fourth column indicates the average ΔR2 from all trials the feature 

appeared in (higher numbers suggest more robustness), the fifth column indicates the total number of trials a 

given feature occurred in out of 100 possible, the sixth column indicates whether the feature was present in the 

full model, and the last column indicates the rank of the feature in the full model.

2A Binding Validation

Feature
Mean
Rank

Mean Rank
SE

Average
ΔR2

Number of Models
(/100)

In Full
Model

Full Model
Rank

Complex Type 1.04 0.02 0.134 100 Yes 1

Charge 2.01 0.036 0.082 100 Yes 2

Separation 3.66 0.118 0.0560 100 Yes 3

Sizenet 4.45 0.097 0.047 100 Yes 5

Interaction side 4.66 0.118 0.046 100 Yes 4

SASA 5.64 0.097 0.0380 100 Yes 6

Secondary Structure 6.68 0.087 0.022 97 Yes 7

Hydrophobicity 7.469 0.018 0.018 32 No N/A

2B Folding Validation

Feature
Mean
Rank

Mean Rank
SE

Average
ΔR2

Number of Models
(/100)

In Full
Model

Full Model
Rank

Hydrophobicity 1.212 0.062 0.15 99 Yes 1

Charge 3.083 0.122 0.082 96 Yes 3

SecondaryStructure 3.213 0.164 0.0810 47 Yes N/A

Sizenet 3.22 0.127 0.074 100 Yes 2

Separation 3.98 0.126 0.058 100 Yes 4

SASA 4.897 0.092 0.041 97 Yes 5

Number Residues 5.269 0.113 0.0380 26 No N/A
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