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Abstract

Susceptibility induced distortion is a major artifact that affects the diffusion MRI (dMRI) data 

analysis. In the Human Connectome Project (HCP), the state-of-the-art method adopted to correct 

this kind of distortion is to exploit the displacement field from the B0 image in the reversed phase 

encoding images. However, both the traditional and learning-based approaches have limitations in 

achieving high correction accuracy in certain brain regions, such as brainstem. By utilizing the 

fiber orientation distribution (FOD) computed from the dMRI, we propose a novel deep learning 

framework named DistoRtion Correction Net (DrC-Net), which consists of the U-Net to capture 

the latent information from the 4D FOD images and the spatial transformer network to propagate 

the displacement field and back propagate the losses between the deformed FOD images. The 

experiments are performed on two datasets acquired with different phase encoding (PE) directions 

including the HCP and the Human Connectome Low Vision (HCLV) dataset. Compared to two 

traditional methods topup and FODReg and two deep learning methods S–Net and flow–net, 

the proposed method achieves significant improvements in terms of the mean squared difference 

(MSD) of fractional anisotropy (FA) images and minimum angular difference between two PEs 

in white matter and also brainstem regions. In the meantime, the proposed DrC-Net takes only 

several seconds to predict a displacement field, which is much faster than the FODReg method.
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I. INTRODUCTION

DIFFUSION magnetic resonance imaging (dMRI) is a non-invasive technique to investigate 

the structural connectivity in the brain. It is typically acquired using echo planar imaging 

sequences, which take less imaging time but are very sensitive to off-resonance fields 
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because of the small bandwidth along the phase encoding (PE) direction. The off-resonance 

field is caused by 1) the head disrupting the main magnetic field, which is known as 

susceptibility induced distortion [1]; 2) strong and rapidly switching diffusion encoding 

gradients, which is known as eddy-current induced distortion [2]. In this paper, we will 

focus on the susceptibility-induced distortion. To reduce the influence of this kind of artifact, 

commonly used approaches can be characterized as three types: (i) B0 field mapping; 

(ii) nonlinear registration of B0 image to T1-/T2-weighted images; (iii) estimating the 

undistored image from the reversed phase encoding scans.

The B0 field mapping method requires the acquisition of field maps representing the field 

inhomogeneity across the imaging field of view [1]. It usually takes two gradient-echo 

(GRE) scans with different echo time (TE) and one magnitude image to calculate the shift 

distance of each voxel from the field map. The undistorted image can be obtained by 

coordinate calculation and linear interpolation in the postprocessing step. The benefit of this 

method is the relatively little extra acquisition time needed in the scanning of whole dMRI 

data. However, the intensity variation problem cannot be fixed by this way and the quality of 

the field map restricts the correction of residual artifacts [3], [4]. Moreover, there could be 

challenges to correct the region near tissue edges with the field map due to high variation in 

the background magnetic field.

Another common method to correct the distortion relies on nonlinear registration between 

the B0 image and T1-/T2-weighted MRI. To achieve this multi-modal image registration, 

many methods were proposed. optic flow was used to warp the B0 image to the anatomically 

correct T2-weighted fast spin echo images and match the local intensity by transforming 

the labeled T2 regions [5]. Merhof et al. [6] proposed to use B-spline and simultaneous 

perturbation stochastic approximation to efficiently register the B0 image and T1 image. 

However, challenges still exist due to the high computational expense and limited tissue 

contrast of dMRI data. Moreover, image registration based method failed to correct for areas 

with erroneous signal void or pileup [7].

With the success of the Human Connectome Project (HCP) [8], the connectome imaging 

protocols have been widely applied to acquire multi-shell dMRI data, where the HCP-

Pipeline [9] is used to process the raw data. This protocol needs to acquire two images with 

reversed phase encoding directions [4], [10], which are then used to estimate the undistorted 

image based on the topup tool in FSL [10]. It estimates a smooth 3D displacement field 

using discrete cosine basis functions and redistributed the signal with a least-squares based 

method. More recently, a method called “Dr-BUDDI” (Diffeomorphic Registration for Blip-

Up blip-Down Diffusion Imaging) was proposed to improve the quality of the registration in 

the presence of large deformations and in white matter regions [11]. DR-BUDDI does not 

require the distortions in blip-up and blip-down images to be the exact inverse of each other. 

However, it requires the acquisition of extra structural MRI scans to guide the registration 

and help the correction in white matter regions.

With the recent development of machine learning techniques in medical image analysis, 

many methods were proposed to solve the susceptibility induced distortion problem in 

dMRI data using artificial neural networks. Schilling et al. [12] proposed to synthesize 

Qiao and Shi Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



an undistorted non-diffusion weighted image from the structural image using a generative 

adversarial networks (GANs), and used the non-distorted synthetic image as an anatomical 

target for distortion correction using topup. This method has a better matching of the 

geometry of undistorted anatomical images and reduced variation in diffusion modeling. 

However, it only learns the synthesized B0 image in the structural T1-weighted image 

space and lacks information from real B0 images. In addition, this model is a 2.5D multi-

slice, multi-view network and thus susceptible to 3D inconsistencies for dMRI images. To 

mitigate these artifacts, they proposed to use 3D U-Net to learn the synthesized B0 image 

directly from the structural T1 image and real B0 image [7]. In the meantime, Zahneisen 

et al. [13] used a flow-net to predict the displacement field in an unsupervised manner, 

but it treated each slice of a volume as an independent training example, which would 

result in inconsistent alignment between slices. Duong et al. [14] also proposed a different 

unsupervised deep learning model to predict the displacement field from the images from 

opposite PEs and achieved a significant improvement in correction time. However, these 

methods only used B0 image to train the model and achieved a similar correction accuracy 

as topup, while the rich information from the whole dMRI data was not fully utilized.

While these state-of-the-art methods can usually provide a good distortion correction in 

most brain regions, there are still severe residual distortions in brain regions such as the 

brainstem [15]. In Fig. 1, an example of residual distortion from HCP data is shown. As 

highlighted in Fig. 1, one reason of the failure to correct the distortion in these regions is 

the lack of sufficient information in the B0 images for many previous methods to capture 

the displacement field. Building upon our previous method on fiber orientation distribution 

(FOD) registration based method to correct the susceptibility induced distortion in [16] 

and the success of unsupervised learning in medical image registration [13], [14], [17], 

we propose in this work an unsupervised deep learning framework to greatly improve 

the efficiency and accuracy in distortion correction. The proposed network takes the 4D 

FOD images calculated from the dMRI data from opposite PEs as the inputs and learns a 

displacement field to correct the distortions. It contains an U-net to learn the displacement 

field from the paired 4D FOD images and then uses a transformer to deform the 4D FOD 

images to the undistorted space. The preliminary result of this work was published in a 

conference paper [18]. Here we added detailed methodology descriptions including the fiber 

orientation distribution representation and spatial transformation. Extensive validations were 

performed on different types of dataset and regions of interest (ROIs) with totally new 

results including tractography examples. The proposed method was also compared to our 

previous work FODReg [16], and achieved a significant speedup of the runtime. Furthermore, 

we make the code publicly available on Github (https://github.com/YuchuanQiao/DrC-Net) 

to facilitate research on dMRI.

The rest of the paper is organized as follows. The complete algorithmic framework of our 

proposed method is introduced in Section II. After that, we evaluate our method on two 

datasets as described in Section III and compare with four state-of-art methods in Section IV. 

Finally, conclusions are made in Section V.
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II. METHOD

In this section, the problem definition of our susceptibility induced distortion correction 

method is first introduced and formulated as a registration problem. To utilize the rich 

feature from dMRI data, FOD images calculated from dMRI data are used to align dMRI 

data with two phase encodings (PEs). Finally, the whole framework of our unsupervised 

deep learning based method is developed for susceptibility distortion correction in dMRI 

data.

A. Reversed phase encoding model

To resolve the problem of susceptibility induced geometric distortion, reversed phase 

encoding model is applied to acquire two images with opposite directions. The typical phase 

encoding directions used for acquisition are Anterior-Posterior (AP), Posterior-Anterior 

(PA), Right-Left (RL), Left-Right (LR). We denote RL (or AP) PE image as positive PE 

image I+ and LR (or PA) PE as negative PE image I−. The underlying assumption of 

this model is that the displacement field of each PE image has the same magnitude but 

opposite direction [1], [10]. This displacement field can be estimated by minimizing the 

difference between the deformed positive/negative PE images and undistorted image IM. 

The undistorted image IM is iteratively updated by averaging the deformed positive/negative 

PE image. The minimization problem can be solved by an iterative optimization procedure 

formulated as follows:

ϕ = min
ϕ

Lsim I+ ∘ ϕ, IM + Lsim I− ∘ ϕ−1, IM (1)

where ϕ is the optimal displacement field, I+ ∘ ϕ and I− ∘ ϕ−1 are the deformed images, 

Lsim(·, ·) is the similarity measure function. Note that 4D FOD images share the same 3D 

displacement field.

Many methods can be used as the similarity measure function Lsim including mutual 

information, cross-correlation and mean squared difference. As both PEs are acquired from 

the same scanner with only the difference in phase encoding direction, mean squared 

difference (MSD) is the similarity measure adopted in our method. The Equation (1) can 

then be written as:

ϕ = min
ϕ

I+ ∘ ϕ − IM
2 + I− ∘ ϕ−1 − IM

2
(2)

As IM = I+ ∘ ϕ + I− ∘ ϕ−1 /2 , the above equation can be simplified as:

ϕ = min
ϕ

I+ ∘ ϕ − I− ∘ ϕ−1 2/2 . (3)

To ensure the smoothness of the displacement field, we use the spatial gradient in the 

regularization term Lsmootℎ = p ∈ Ω ∥ ∇ϕ(p) ∥2 , where p denotes image voxel position and 

Ω is the domain of the image.
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The cost function of reversed phase encoding model is finally formulated as follows:

ϕ = min
ϕ

I+ ∘ ϕ − I− ∘ ϕ−1 2/2
Loss1

+ λ ∥ ∇ϕ ∥2

Loss2

,
(4)

where the regularization parameter λ controls the smoothness of the displacement field.

B. Fiber orientation distribution representation

Fiber orientation distribution (FOD) is estimated from dMRI to represent fiber crossings and 

provide more contrast in white matter than conventional tensor models [19], [20]. Spherical 

harmonic (SPHARM) is typically used to represent the FOD at each voxel and obtain a 

numerical representation through spherical deconvolution [20–22]. FODs can be represented 

by SPHARMs up to the order L as follows:

f(p) =
l, m

sl
mΦl

m(p), ∀p ∈ S, (5)

where p is a fiber direction on the unit sphere S, is the m-th real SPHARM basis 

at the order l = 0, 2, … , L, and sl
m is the SPHARM coefficient. As the FOD has 

the property of symmetry on a sphere, only even order SPHARMs are needed. By 

incorporating compartment models with the spherical deconvolution framework, a novel 

FOD reconstruction method developed recently for the multi-shell dMRI of HCP data is 

used in this paper [22]. This method can adaptively estimate the compartment parameters 

together with sharp and clean FODs at each voxel. Tissue fractions of all the compartments 

are normalized to sum of one in [22]. Therefore, a 4D FOD image is obtained with a 

3D volume for each SPHARM coefficient and the 4-th dimension represents the order of 

the SPHARM coefficients. As demonstrated previously in [16], L = 2 can provide enough 

information for displacement field estimation, which means the components of FOD chosen 

here is 6 as calculated from J = (L + 1)(L + 2)/2.

C. U-Net for displacement field

To model the displacement field ϕ between two PEs and the undistorted image, we use a 

3D U-Net architecture with multi-channels to extract the underlying feature from 4D FOD 

images [23], [24]. The input to the U-Net is a N-channel image formed by concatenating 

positive and negative PE 4D FOD images. Note that N = 12 is used in our experiments 

and it can be adapted to new feature images other than FOD image. The output is a 3D 

displacement field of the same size as the input images. Following the parameter settings 

in the previous work [14], [17], the architecture of U-Net is based on convolutional layers 

and formed as encoder-decoder with skip connections and the overview is given in Fig. 

2. There are several convolutional blocks in both encoder and decoder. Each convolutional 

block consists of a 3D convolutional layer with a kernel size of 3 × 3 × 3 and a Leaky ReLU 

activation layer with parameter 0.2.

In the encoding stage, four downsampling blocks are used with 32 convolutional filters 

to reduce the input volume by a factor of two and result in a volume size of (1/16)3 at 

the fourth downsampling block. In the decoding stage, four upsampling blocks are used 
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and followed by 3 refining convolution layers with filter size of 16 to enable the spatial 

alignment accuracy. This U-shape model can produce a coarse-to-fine pyramid to learn the 

features in a multi-scale way. The learned features at each scale are propagated with skip 

connections between the encoding and decoding stage. Finally the spatial displacement field 

is learned from the feature maps extracted from previous steps with a convolutional layer.

From the reversed phase encoding model, the susceptibility induced distortion occurs along 

the PE direction. Therefore the displacement field is constrained to be one dimensional 

along the PE direction. This results in a i-direction displacement field in RL-LR PE data, 

while j-direction displacement field for AP-PA PE data. Note that there is no displacement 

in z-direction. Taking RL-LR PE data as an example, the displacement filed ϕ at voxel x is 

defined as:

ϕ(x) =

xx + ϕi
xy
xz

if PE=RL;

xx − ϕi
xy
xz

if PE=LR.

(6)

D. Dense spatial transformation

To apply the learned displacement field to positive and negative PEs, a spatial transformer 

is implemented with a mesh grid generator and a sampler based on spatial transformer 

network (STN) [25]. The grid coordinates corresponding to each voxel in the input image is 

generated by a mesh grid generator. The sampler linearly interpolates the deformed voxels 

with its neighboring grid voxels.

To be clear, there is only one displacement field learned during training and only the sign 

of the displacement field is changed for two PEs when applying the displacement field. 

For each voxel v, the new position after applying the displacement field is v′ = v + ϕ . The 

intensity at new position can be linearly interpolated using its eight neighboring voxels. 

With the differential property of this interpolation, we can calculate the gradient of the 

transformation and back propagate the losses during the optimization.

E. Overview of the unsupervised learning based distortion correction

By combining the modules described above, we have the unsupervised learning based 

distortion correction as illustrated in Fig. 3. Building upon the framework proposed in [16], 

we utilize 4D FOD images to estimate the displacement field between two PEs and the true 

undistorted image. The whole framework of distortion correction is given in Fig. 3(a). The 

raw dMRI data from two PEs are firstly processed by topup and eddy in FSL to correct 

the susceptibility induced distortion and eddy current induced distortion, respectively. FOD 

representation of the corrected dMRI data is then calculated using the method described 

in Section II-B and feed into DistoRtion Correction Network (DrC-Net) to estimate the 

displacement field along the PE direction. The residual distortion caused by susceptibility 
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in the corrected dMRI data is further corrected using the displacement field estimated from 

DrC-Net. Finally the corrected data from two PEs is merged to generate the final dMRI data.

The detail of the DrC-Net is presented in Fig. 3(b). As described in Section II-C, an U-Net is 

used to learn the feature from 4D FOD images from both PEs and to model the displacement 

field. The displacement field is then applied to both PEs with opposite directions using 

a spatial transformer. The similarity difference between two deformed PEs was evaluated 

by the loss function in Equation (3). With the help of the regularization term in Equation 

(4), a smooth displacement field is obtained during an iterative optimization procedure. A 

stochastic gradient descent strategy is used to ensure the convergence. During the training 

process, no ground truth such as anatomical landmarks or manual segmentation are used to 

supervise the learning procedure.

The proposed DrC-Net was implemented using Keras [26] with a Tensorflow backend [27] 

and some modules from Neuron [28]. Note that DrC-Net accepts images of any size which 

can facilitate the training on new dataset without any change of the code. We use a padding 

module to expand image with zero boundaries for each dimension, which can avoid the 

subpixel downsampling in U-Net. After training, a rollback of the displacement field to the 

original image size is performed.

III. EVALUATION AND DATASET

A. Evaluation methods

Several evaluation methods have been proposed to validate the performance of distortion 

correction methods, including both qualitative and quantitative methods. One can directly 

compare the difference between T1/T2-weighted MRI scans overlaid with displacement field 

[10], [29]. Graham et al. used the simulated DW-MRI data to evaluate the displacement field 

difference and image intensity difference between the true image and corrected image. Other 

works compared the measures derived from tensor based quantities including fractional 

anisotropy (FA) and Trac (TR) [11], [11], [16], [30]. In this paper, we will show both 

qualitative and quantitative results before and after distortion correction.

Fractional anisotropy (FA) of the tensor model is a good way to evaluate the performance 

of distortion correction. In the ideal situation, there would be no difference between the 

FA computed from the corrected data of the positive and negative PE. The mean squared 

difference (MSD) of FA between corresponding voxels of the two scans should be zero. 

Here we evaluated the MSD of FA for a given region of interest (ROI) to quantify the 

performance of the distortion correction.

Additionally, we measured the angular alignment of main fiber directions of the FOD 

images between two PEs after distortion correction. They would be perfectly aligned if the 

distortion of two dMRI images were fully corrected. To quantitatively measure the angular 

differences of the main fiber tracts, a SPHARM order L = 8 was used to compute the FODs, 

which is relatively higher than that used for training in DrC-Net. For each voxel, a main 

fiber direction was defined as the maximum peak value on a spherical mesh. Note that the 

peaks were ordered according to their FOD magnitude only on the top half of the sphere due 
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to the symmetrical property of the FODs. To improve reliability in peak direction estimation, 

we only considered voxels with a salient peak, i.e., its FOD magnitude is larger than a 

threshold. Following the experiment in [16], we chose 0.5 as a threshold. As the main fibers 

in two PEs may not be perfectly matched due to the deformation or numerical difference, 

we took three candidate peaks (top three in peak magnitudes) to calculate the peak angular 

difference. The minimum angular difference (MAD) from the positive PE to the negative 

PE was treated as the minimum angle difference of the main fiber at that voxel. The mean 

value of the MAD on all salient voxels in a given ROI was calculated as the measure of fiber 

alignment from two PEs.

B. Dataset

To evaluate the performance of our proposed method, two datasets are used in our 

experiments: HCP data with the PE direction of RL-LR and the data from Human 

Connectome for Low Vision (HCLV) 1 project with the PE direction of AP-PA.

100 subjects (subject ID from 100206 to 123824) from the 900-subject release of HCP 

were used in our experiments. Each dMRI scan includes image volumes from 97 gradient 

directions distributed over three shells with b-values 1000, 2000, and 3000 s/mm2. The 

image size of each scan is 144 × 168 × 110 and has an isotropic spatial resolution of 1.25 

mm.

The data from HCLV project was acquired on a 3T Prisma scanner and based on the 

LifeSpan protocol of HCP. There are totally 58 subjects in this dataset. Each dMRI scan 

includes the volumes from 98 gradient directions over two shells with b-values 1500 and 

3000 s/mm2. Each dMRI image has a size of 140 × 140 × 92 and an isotropic spatial 

resolution of 1.5 mm

IV. EXPERIMENTS AND RESULTS

A. Experiment setup

We compared the proposed method to two conventional methods: topup [10] in FSL which 

utilizes B0 image from two opposite phase encoding directions to correct the distortions, 

and FOD-based registration for susceptibility distortion correction (FODReg) [16] which 

also used FOD image as the feature image to estimate the residual displacement field in 

a conventional registration way. The default parameter setting is used for topup and the 

parameter setting used in [16] was chosen for FODReg. In addition, we also compared 

the proposed method to two deep learning based methods: S–Net [14] which predicts the 

displacement field from the 3D B0 images with opposite PE and flow–net [13] which 

learns the displacement field from 2D slice images with opposite PE. The default parameter 

setting for S–Net is 0.00008 for learning rate, 0.333 for the weights of the smoothness loss 

and 1500 for the number of epochs, while for flow-net the learning rate is 0.001, the 

number of epochs is 100. For the proposed method, we will introduce the parameter setting 

in detail in the following.

1 https://www.humanconnectome.org/study/crhd-human-connectomes-low-vision-blindness-and-sight-restoration 
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For both the FODReg method and the proposed method, all FOD images used in each 

step were computed with a maximum SPHARM order of 8 using the method in [22]. As 

confirmed in [16], L = 2 can provide enough feature information to estimate a satisfied 

displacement field. We thus used the first 6 FOD coefficient images to conduct the 

registration in our experiments for both methods.

For both the HCP and HCLV data, we used the same parameter setting for training: ADAM 

optimizer with a learning rate of 1e−4 and a regularization parameter of 0.01. As we used the 

mini-batch stochastic gradient descent strategy for optimization, one image pair was chosen 

for each training batch and 1500 epochs with 100 steps in each epoch were used to ensure 

convergence.

The training dataset for HCP data consists of 60 subjects randomly selected from the whole 

100 subjects and the rest 40 subjects form the test dataset which were unseen for the 

DrC-Net. Similarly, we divided the HCLV data with 40 subjects for training and 18 for 

testing. T1 image and raw dMRI image were preprocessed by HCP-Pipeline [9], where 

the T1 image was used for anatomical segmentation. We evaluated the effect of distortion 

correction in both the brainstem with the most severe distortion and the whole white matter. 

The brainstem structures including the pons can be automatically segmented using the tool 

in Freesurfer [31] with the method described in [32]. The whole white matter including 

corpus callosum was segmented using Freesurfer with the Deskian-Killiany atlas [33].

B. Qualitative results

The residual distortions after topup from the HCP subject 121416 were shown in Fig. 4. 

The deformation field was calculated by the proposed method and overlaid with the B0 (Fig. 

4A) and FOD image (Fig. 4B) from the positive PE. The red color means the displacement 

along the direction from positive (right-to-left) PE to negative PE (left-to-right), while the 

blue color means the opposite displacement direction. As we can see in the red box in Fig. 

4B, the white matter region is dramatically distorted even after the application of topup 

based correction.

The qualitative results showing distortion correction effects were given in Fig. 5 for HCP 

subject 121416 as shown in Fig. 1. The slice shown in Fig. 5 is the same as in Fig. 4. The 

left orange box show results of different methods for the ROI delineated by the red box in 

Fig. 4A, while the right blue box compare the results for the ROI defined by the red box in 

Fig. 4B. All images shown in Fig. 5 are the FOD images calculated from dMRI data of each 

PE for each method. As we can see from the left two columns in the orange box, the FODs 

demonstrate a shift of several voxels between the positive and negative PE for corresponding 

locations in results from previous methods, especially topup and flow–net. For both the 

FODReg and DrC-Net methods, the misalignment of FODs between two PEs are corrected. 

In contrast with the forebrain white matter region shown above, we observe more dramatic 

residual distortion artifacts in the brainstem areas as shown in the right two columns in the 

blue box in Fig. 5. The residual distortion from right to left shown in positive PE and the 

opposite direction in negative PE can be seen after the correction of topup, S–Net and 

flow–net, while the FODReg and DrC-Net methods can correct these distortions.
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Next we demonstrate the impact of distortion correction methods on tractography and fiber 

bundle reconstruction. Our goal is to demonstrate both qualitatively and quantitatively that 

severe distortion effects can have visible influences on tractography results. In Fig. 6, the 

corticospinal tract was calculated with the same setting for results from the five distortion 

correction methods. We first linearly aligned T1 image to B0 image (the merged data after 

topup correction) to obtain the linear transformation from T1 image space to B0 image 

space, which was then used to transform the FreeSurfer segmentation to the B0 image 

space. Finally the precentral and paracentrall gyrus regions were obtained in B0 image 

space. We used the precentral and paracentrall gyrus region as the seed region and the pons 

region as the including and stop region to calculate the corticospinal tract using the Trekker 

software [34]. The same ROIs were used for FODs computed from distortion corrected 

data by topup, S–Net,flow–net, FODReg and the proposed method. It can be seen that 

the distortion corrected data from the proposed method allows the generation of a more 

complete representation of the corticospinal tract. For the 100 HCP subjects in our data, we 

applied the same tractography protocol using data generated by all five distortion correction 

methods to quantitatively evaluate the consistency of fiber bundle reconstruction results. For 

each method, we compute the Dice overlap of the corticospinal tract between positive PE 

and negative PE, between positive PE and merged data, between negative PE and merged 

data. The Dice overlap is calculated based on the binarized tract density image [35] of the 

corticospinal tract bundle. Box plots of the Dice coefficients from all methods are shown in 

Fig. 7. For each hemisphere, there are statistically significant improvements of the proposed 

method and FODReg over the topup method (p < 0.05) in all three comparisons of Dice 

coefficients, while there is no significant improvement for S–Net and flow–net over the 

topup method.

The generalizability of the proposed method was validated on HCLV data with the PE 

direction of AP-PA. In Fig. 8, the distortion correction effects were presented in a qualitative 

evaluation for subject 1057. Fig. 8A is the first coefficient image of the FOD image in the 

sagittal view. Fig. 8B–D are the FOD images after topup correction from the positive PE, 

negative PE and merged data, respectively. In the meantime, Fig. 8E–G, Fig. 8H–J and Fig. 

8K–M are results from S–Net, flow–net and FODReg, respectively, while Fig. 8N–P are 

the results from the proposed method. As we can see from Fig. 8B and Fig. 8C, a shift 

of several voxels is highlighted in a red circle between the positive and negative PE for 

corresponding locations. Similar mismatches can be seen from the results of S–Net and 

flow–net. For the FODReg method, the misalignment is only corrected in positive PE, but 

there is still a shift in negative PE. However, for the DrC-Net method, the misalignment of 

FODs between two PEs are corrected.

C. Quantitative results

Compared to the FODReg method, the DrC-Net is computationally more efficient. The 

runtime to predict a deformation field from two opposite PE was around 10 seconds for the 

proposed DrC-Net, while FODReg need almost 150 minutes.

The quantitative results for both datasets are given in this section using the measures 

described in section III-A. As shown in Fig. 9, the proposed method DrC-Net has a 
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significantly smaller MSD of FA value and angular difference of main fiber directions for 

the whole white matter and pons regions in brainstem than the other methods. There is no 

statistical difference of the results between the training dataset and testing dataset. For all 

the methods, the absolute value of MSD in the whole white matter is smaller than the pons 

region, which indicates the distortion is more significant in the pons region. The results 

from all methods are statistically different with topup in terms of Wilcoxon rank test (p < 

0.05), except the MSD of FA value in the pons region for S–Net (p = 0.955). There is also 

a statistically significant difference between the DrC-Net and FODReg methods in terms of 

Wilcoxon rank test (p < 0.05).

For HCLV data, we also performed the same quantitative evaluation and the results are 

shown in Fig. 10. There is no statistical difference of the results between the training 

dataset and testing dataset. Compared to topup, S–Net has a similar performance for both 

measures in the pons region in the brainstem in terms of Wilcoxon rank test (p = 0.913 

for the MSD of FA value, p = 0.372 for the angular difference), but inferior performance 

for both measures in the whole white matter regions (p < 0.05). Compared to topup and 

DrC-Net, flow–net has a significantly larger MSD of FA value and angular difference of 

main fiber direction in terms of Wilcoxon rank test (p < 0.05). For both the whole white 

matter and pons region in brainstem, the proposed method has a significantly smaller MSD 

of FA value and angular difference of main fiber direction than topup under a Wilcoxon 

rank test (p < 0.05). Compared to FODReg, the proposed method also shows a significant 

improvement for both measures in the whole white matter and pons region under a Wilcoxon 

rank test (p < 0.05).

D. Influence of regularization term

The influence of the regularization parameter λ was quantitatively evaluated on HCP data. 

The different choices of λ is chosen from {0.005, 0.01, 0.05, 0.1, 1, 10}. The quantitative 

MSD measures of FA images after correction were given in section III-A. As shown in Fig. 

11, large values of λ > 0.1 result in much increased MSD measure and hence deteriorated 

alignment of corresponding white matter structures. This is also confirmed in the very 

small variations of the Jacobian of the deformation field for large λ values, which means 

the deformation field is overly smoothed. On the other hand, overly decreasing the λ 
parameter will lead to the loss of necessary smoothness in the deformation field to prevent 

the fitting to possible artifacts in the images. Thus, a reasonable range of the selection of 

the regularization parameter λ could be from 0.01 to 0.1. In this paper, we choose λ as 0.01 

for the balance of distortion correction performance and the smoothness of the deformation 

field.

V. DISCUSSION AND CONCLUSION

In this paper, we proposed a deep learning framework (DrC-Net) based on the 4D FOD 

feature image to estimate and correct the residual displacement field in an unsupervised 

manner. The main contributions of this paper are as follows. The proposed network 

consists of the U-Net to capture the information from the 4D FOD images and the spatial 

transformer network to propagate the displacement field and back propagate the losses 
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between the deformed FOD images. Extensive validations on two datasets with different 

phase-encoding directions in RL-LR and AP-PA have shown promising improvement of the 

proposed method compared to two traditional methods topup and FODReg and also two 

deep learning based methods S–Net and flow–net. Moreover, the proposed DrC-Net took 

several seconds to predict a displacement field from paired PE FOD images, which is much 

faster than the FODReg method. We have publicly shared the source codes for the proposed 

method.

The input of the current deep learning framework are FOD images, which is calculated 

from the dMRI data and proved to be useful for the susceptibility induced distortion 

correction in our work. This is especially valuable in brain regions with large residual 

distortions such as the brainstem. However, FOD images need complex processing and is 

computationally expensive to calculate. Therefore, more advanced deep learning frameworks 

could be adopted for distortion correction using raw dMRI data. Currently only the 

low order coefficients of the FOD image are used to drive the alignment of two phase 

encoding images. Fully utilization of the FOD features may be useful to further improve 

the alignment. Thirdly, the current deep learning framework is designed for data acquired 

from two phase encodings, which is not common in clinical protocols. The extension of the 

proposed method to clinical data would be desired. Lastly, the data used in our experiment is 

collected with high quality connectome imaging protocol. In future work, we will apply our 

method to datasets with varied spatial and angular resolutions and examine its performance 

on removing the distortion artifacts.
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Fig. 1. 
Residual distortions in dMRI after correction with topup from HCP data (subject ID: 

121416). (A) and (B) are B0 images from two opposite PEs before distortion correction, 

while (C) and (D) are corresponding B0 images from each PE after distortion correction. 

(E) and (F) are the first coefficient image of FOD images from two PEs after distortion 

correction. (G) and (H) are FOD images from two PEs after distortion correction. The 

red arrows indicate the region with severe residual distortions for each PE after topup 

correction.
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Fig. 2. 
The U-Net to map the displacement field from the FOD image of reversed PE. The input 

of the U-Net is the 4D FOD image (left side) and the output is the 3D displacement field 

(right side). Each blue box means the output feature maps of a convolutional block with the 

number of features in each box. The number below each box is the feature map size relative 

to the full input image size.
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Fig. 3. 
An overview of the proposed framework for distortion correction based on unsupervised 

deep learning. (a) Overall workflow for distortion correction. (b) Details of the DrC-Net, 

where Loss1 is the similarity measure between two deformed FOD images in Eq. 4 and 

Loss2 is the smoothness of the displacement field in Eq. 4.
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Fig. 4. 
The residual deformation field overlaid on the B0 image (A) and FOD image (B) for subject 

121416 in HCP. The red box highlights white matter regions with residual distortion.
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Fig. 5. 
For the two ROIs shown in Fig. 4(A) and (B), the FOD images computed from the distortion 

correction results of topup, FODReg, S–Net, flow–net and DrC-Net are shown to compare 

their performances (The left orange box: ROI in Fig. 4 (A); the right blue box: ROI in Fig. 

4 (B)). The same red box in (A)-(H) in the first four rows highlights the mismatch of FODs 

in the corrected results by the other methods. Similarly, the same red box in (I)-(J) highlights 

the superior alignment of FODs from both PEs achieved by the DrC network.
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Fig. 6. 
An example from subject 100408 in HCP dataset to show the corticospinal tract calculated 

from the distortion corrected data of each PE and the merged data from two PEs. The results 

from the top to the bottom row are for topup, S–Net, flow–net, FODReg and the proposed 

method, respectively.
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Fig. 7. 
The quantitative results of five methods evaluated on the Dice overlap of CST tract for all 

100 subjects in HCP. For all methods, the blue box plot shows Dice coefficients between 

positive PE and negative PE, green box plot shows Dice coefficients between positive PE 

and the merged data and red box plot shows Dice coefficients between negative PE and the 

merged data. Left: left hemisphere; Right: right hemisphere.
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Fig. 8. 
Distortion correction effects shown in FOD images in the brainstem region for subject 1057 

in HCLV data. (A) is the sagittal view of the first coefficient image of the FOD image. The 

five rows are for topup, S–Net, flow–net, FODReg and the proposed method, respectively. 

(B) (E), (H), (K) and (N) are FODs from the positive PE, while (C), (F), (I), (L) and (O) 

are FODs from the negative PE. The last column shows FODs from the merged data after 

correction with different methods.
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Fig. 9. 
The quantitative results of five methods evaluated on two ROIs for HCP data. The top row is 

for the pons region and the bottom row is for the whole white matter region. The left column 

is for the evaluation measure MSD of FA image after correction and the right column is 

for the angular difference of main fiber direction in FOD image after correction. For all 

methods, the blue box plot shows results from training data and red box plot shows results 

from testing data.
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Fig. 10. 
The quantitative results of five methods evaluated on two ROIs for HCLV data. The top 

row is for the pons region and the bottom row is for the whole white matter region. The 

left column is for the evaluation measure MSD of FA image after correction and the right 

column is for the angular difference of main fiber direction in FOD image after correction. 

For all methods, the blue box plot shows results from training data and red box plot shows 

results from testing data.
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Fig. 11. 
Quantitative results of different choices of the regularization parameter λ are obtained on the 

whole white matter region of the HCP data. The left column shows the MSD measures from 

FA images after correction, and the right column shows the standard deviation (std) of the 

determinant of the Jacobian of the deformation field obtained with different choices of the 

regularization parameter λ.

Qiao and Shi Page 25

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 May 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Method
	Reversed phase encoding model
	Fiber orientation distribution representation
	U-Net for displacement field
	Dense spatial transformation
	Overview of the unsupervised learning based distortion correction

	Evaluation and dataset
	Evaluation methods
	Dataset

	Experiments and results
	Experiment setup
	Qualitative results
	Quantitative results
	Influence of regularization term

	Discussion and Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.

