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SUMMARY

Neurological disorders encompass an extremely broad range of conditions, including those 

that present early in development and those that progress slowly or manifest with advanced 

age. Although these disorders have distinct underlying etiologies, the activation of shared 

pathways, e.g., integrated stress response (ISR) and the development of shared phenotypes 

(sleep deficits) may offer clues toward understanding some of the mechanistic underpinnings of 

neurologic dysfunction. While it is incontrovertibly complex, the relationship between sleep and 

persistent stress in the brain has broad implications in understanding neurological disorders from 

development to degeneration. The convergent nature of the ISR could be a common thread linking 

genetically distinct neurological disorders through the dysregulation of a core cellular homeostasis 

pathway.
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Introduction

The brain is subject to unique stresses. Post-mitotic neurons are constrained in their ability 

to undergo cell death and replenish their population. The central neuronal network is an 

extremely metabolically demanding system, requiring approximately 20% of total basal 

oxygen consumption in adult humans, and as much as 50% in children [1–3]. This demand 

is dependent on mitochondrial oxidative phosphorylation, which supplies much of the 

energy and maintains calcium and redox homeostasis to support key processes including 

neurogenesis, cytoskeleton assembly, signal transmission, and plasticity [4–9]. Thus, the 

brain has a highly developed mitochondrial network, which may function to support the 
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intricate synaptic networks and signal transmission necessary to sustain brain function [10]. 

This high metabolic load also produces high levels of reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) as a biproduct of ATP synthesis. While the brain produces 

significant levels of antioxidants, stress and genetics can perturb the balance of oxidation 

and reduction, which along with other susceptibility features in the brain, increases the 

risk of persistent oxidative damage [11]. Together, these factors contribute to a brain 

environment that is rife with free radicals, which can lead to the accumulation of misfolded 

proteins and persistent DNA damage [12–15].

In post-mitotic cells such as neurons, constant repair is required since cell replacement is 

not an option for maintaining cellular function in the brain. Sleep likely plays a critical 

role during development and aging in reducing the metabolic demand of the brain [15,16] 

and repair of wake-induced cellular damage [17,18]. Sleep alters the translational profile 

of the brain to facilitate synaptic normalization and homeostasis [19–21]. Furthermore, 

sleep increases the clearing of metabolites accumulated during wake including misfolded 

proteins and proteolytic byproducts such as amyloid beta (Aβ) [22]. Wake-mediated free 

radicals also induce DNA lesions, which comprise a major class of DNA damage in neurons, 

leading to base pair modification and double-stranded DNA breakage (DSB) [13,18]. Sleep 

plays a direct role in repairing this DNA damage. The repair of enriched wake DSBs 

and gamma-irradiation induced DSBs is delayed or inhibited by sleep deprivation, with 

repair resuming upon the restoration of sleep [18]. In a study of overnight on-call doctors, 

expression of several key DNA repair genes was decreased after acute sleep deprivation [23]. 

Those genes include 8-oxoguanine glycosylase (OGG1), X-ray repair cross complementing 

1 (XRCC1), and excision repair cross-complementing group 1 (ERCC1) in the base excision 

repair (BER) pathway, the primary mechanism for repairing oxidative base pair modification 

in neurons [24–26]. Furthermore, the study demonstrated that DNA breaks and oxidized 

purines were increased, and blood plasma antioxidant capacity was reduced, reflecting the 

role of sleep in DNA damage and repair [23].

Sleep deficiency and persistent oxidative stress leads to the accumulation of damage to 

proteins and DNA, which can further induce cellular stress [12–15]. Cells respond to stress 

through a versatile mechanism called the integrated stress response (ISR). The ISR is a 

signaling network found in all eukaryotic cells and is critical for cellular adaptation and 

homeostasis in response to external and internal stressors. Through the ISR, cells activate 

response programs to alleviate stress induced by misfolded proteins, DNA damage and 

metabolic pressure [27–30]. This includes the preferential activation of gene networks 

that repair and promote cell survival in the brain [31], as neurons must favor prosurvival 

solutions to stress. Wake is energy intensive and stressful [14,15,32,33]. Sleep provides a 

respite from wake and a time to activate homeostatic and repair mechanisms [18,19,22]. 

In fact, brain oxidation and the accumulation of DNA damage during wake play a role 

in triggering the induction of sleep to promote DNA repair [34–37]. Whether the ISR 

is functionally involved in the restorative function of sleep remains to be fully studied, 

however PERK signaling, a core feature of ISR activation, promotes sleep [38]. Parp1, a key 

factor in the initiation of DNA repair, also promotes sleep and the repair of DNA damage by 

inducing repair protein activity and chromosome mobility [36].
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Metabolic stress and biomolecule damage is increased under conditions of sleep 

fragmentation [15,17,39], and inefficient and insufficient sleep are common underlying 

features of many neurological disorders [40–50]. Neurological disorders are highly 

comorbid with sleep abnormalities, suggesting that functions at the intersection of the 

ISR and sleep could contribute to the synaptic and behavioral deficits observed in these 

disorders. Despite the widely shared dysregulation of the ISR and sleep among neurological 

disorders, there is still little clarity on the mechanistic relationship between cellular 

stress and sleep dysregulation in neurological diseases. Evidence of persistent stress and 

stress-related damage to biomolecules along with the manifestation of sleep phenotypes 

is observed in neurological conditions arising by both genetic mutation and injury to the 

nervous system, underscoring the central nature of this relationship (Table 1). The goal 

of this review is to discuss our current understanding of the ISR and sleep, focusing on 

three neurological diseases (Alzheimer’s disease, autism spectrum disorder, and Fragile X 

syndrome) and propose future avenues of research to examine how these processes interact 

to contribute to the progression of neurological dysfunction (Fig. 1).

Alzheimer’s disease

Aging may be associated with a mild decline in mental acuity, however significant cognitive 

decline or memory loss is not a typical feature of healthy aging. Alzheimer’s disease (AD) 

is a progressive disorder, which often initially presents in older adults and worsens with age. 

AD is the most common cause of dementia, and the fifth leading cause of death in adults 

over 65 [51]. Great strides have been made in understanding the etiology and progression of 

AD, however our knowledge is still incomplete and our efforts to slow AD progression have 

yielded little success. The involvement of the ISR in neurodegeneration is widely supported 

and activation of the ISR has been described in both animal models [52–55] of AD as 

well as in brain tissue from individuals with AD [52,54–57]. An abundance of oxidative 

stress, ER stress, and mitochondrial dysfunction are well documented in AD. This cellular 

oxidative stress in AD likely contributes to accumulation of protein and DNA damage that 

feeds back into ISR activation leading to persistent ISR activation in AD. Among the genes 

that are translationally upregulated by the ISR is beta-secretase 1 (BACE1), which has 

important implications in a variety of neurological and neurodegenerative diseases [52,54]. 

BACE1 is involved in the initiation of the amyloidogenic pathway and the buildup of Aβ, 

which is relevant to the pathogenesis of AD.

The awake brain operates at an elevated baseline of oxidative stress [3,11,58]. Elevated 

oxidative damage is highly implicated as a major contributor to cell death and the 

progression of AD potentially due to the pro-oxidative effect of Aβ accumulation [59], 

protein misfolding [60], and/or activation of the inflammatory response [61]. Concurrent 

with elevated levels of oxidative stress, increased oxidative damage, including nuclear 

and mitochondrial DNA oxidation is observed in the brain of individuals with AD [62–

64]. Reduced activity of OGG1, Uracil-DNA glycosylase (UDG), and DNA polymerase 

beta (POLB), key factors in the BER pathway, is observed in the brains of AD patients, 

leading to a BER deficiency [65,66]. Additionally, BER function is impaired in individuals 

with amnestic mild cognitive impairment, which represents a transitional phase between 

normal aging and the development of AD [65]. Both nuclear and mitochondrial DNA 
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oxidative damage is apparent in this early stage of cognitive impairment, reflecting this 

BER deficiency [67,68], and suggesting that BER deficiency may be an early indicator in 

the development of AD. This impairment is observed in both the cerebellum and inferior 

parietal lobule, which correspond to the least and most highly affected regions of the brain, 

respectively [65], indicating that BER deficiency may be a susceptibility feature of the AD 

brain, rather than directly contributing to neuronal cell death, which is not observed in the 

cerebellum.

Even in normal aging, sleep quantity and quality progressively decline with age and 

the association between sleep disturbances, cognitive decline, and the risk of developing 

dementia is widely documented. In a meta-analysis, a random effect model predicted that 

individuals experiencing sleep disturbances had a 1.49-fold increased risk of developing AD 

[69]. Common sleep problems experienced with age include insomnia, sleep fragmentation, 

sleep disordered breathing, disrupted circadian rhythms, and excessive daytime sleepiness, 

which are exacerbated with the development and progression of AD [43,70,71]. The role 

of sleep in the underlying etiology of AD is not understood, however it is likely that the 

progressive development of sleep abnormalities contributes to, or at least aggravates the 

cognitive and behavioral characteristics of AD and neurodegeneration in general.

Autism spectrum disorder

Autism spectrum disorder (ASD) is a behaviorally defined group of neurodevelopmental 

disorders (NDD) characterized by social and cognitive deficits, and is increasingly prevalent, 

with an estimated one in 59 children diagnosed with ASD worldwide [72]. Because ASD 

is currently diagnosed based only on behavioral criteria, there is no single underlying 

etiology, and many genetically distinct disorders are grouped together based on shared or 

similar cellular dysfunctions and phenotypic presentations. Studies in children with ASD 

increasingly implicate oxidative stress, and its deleterious effects on brain and metabolic 

processes, as an important feature of ASD pathophysiology. ER stress is a major contributor 

to ISR activation in ASD. Several genetic models of ASD have been shown to induce 

ER stress [73–76], however because ASD is an extremely heterogeneous disorder, any 

single copy number variant or genetic mutation is found in only a small fraction of ASD 

cases. Using a multivariate model, a recent study showed that ASD status was able to 

predict mRNA levels of ER stress genes including PKR-like ER kinase (PERK), activating 

transcription factor 4 (ATF4), activating transcription factor 6 (ATF6), X-box binding 

protein 1 (XBP1), C/EBP homologous protein (CHOP), and inositol-requiring enzyme 1 

(IRE1). Expression of these genes were significantly upregulated in the middle frontal gyrus 

in individuals with ASD. Additionally, ER stress genes were positively associated with 

stereotyped behavior classified by the Autism Diagnostic Interview-Revised (ADI-R) [77]. 

Not only does protein oxidation lead to the accumulation of damaged and unfolded proteins, 

but mistranslated or mutated proteins are also more susceptible to oxidation, thus eliciting a 

cycle of damage and stress [60].

The effects of oxidative stress are potentially more damaging during early development due 

to low glutathione levels and an immature antioxidant system [78–80]. Thus, children are 

more susceptible to damage from oxidative stress at typical levels, even before considering 
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the elevated levels observed in children with NDD. Elevated oxidative stress has more 

recently become an area of interest in neurodevelopment and the development of intellectual 

disability disorders such as ASD. Accumulation of ROS, decreased antioxidant capacity, 

and damage to biomolecules have been demonstrated in the blood or postmortem brain 

tissue of children with ASD [81–85]. Children with ASD have an elevated concentration of 

8-oxo-dG in the cerebellum and temporal cortex compared to typically developing children 

[81]. BTBR T+ Itpr3tf/J (BTBR) mice, which exhibit autism-like behavioral phenotypes, 

also exhibit elevated 8-oxo-dG levels in the cerebellum, which is inversely correlated with 

a 70–73% decrease in Oggl expression. Male BTBR mice also exhibit significantly more 

mitochondrial DNA damage [86]. It is important to note that BTBR mice differ genetically 

from their C57BL/6J controls, including single nucleotide polymorphisms between the 

strains in the coding and noncoding regions of Oggl. Genomic 8-oxo-dG enrichment is also 

observed in human post-mortem cerebellar samples, providing confidence in the translation 

of these results.

Abnormal sleep is a common feature of NDDs including ASD and related intellectual 

disability disorders [40,41,44–49]. In fact, sleep difficulties are included as a diagnostic 

criterion of many NDDs, and have been reported in 80% of children with intellectual 

disability in general [87] and 44–83% of children with ASD [44,88]. The types of sleep 

disturbances experienced by children with ASD are quite abundant and variable, potentially 

reflecting the underlying variability in etiology, however in one study, 86% of children were 

found to experience at least one sleep problem every day, with insomnia being the most 

commonly reported at 56% [89]. In addition to their prevalence, sleep problems in children 

with ASD also increase over time [46]. Children with ASD who are considered “poor 

sleepers” are more likely to have more affective problems and poorer social interactions than 

“good sleepers” or typically developing children [40]. These persistent sleep deficits and 

their correlation with behavior and social interactions suggest that sleep intervention has the 

potential to improve developmental outcomes of children with ASD.

Fragile X syndrome

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by anxiety, social 

behavioral deficits, cognitive impairment, and sleep abnormalities. Individuals with FXS 

have an increased risk of developing attention deficit disorder (ADD) and ASD. In fact, 

FXS is the most common monogenic cause of inherited intellectual disability and ASD [90]. 

FXS is caused by the loss of fragile x mental retardation 1 (FMR1) gene expression. Its 

encoded protein, fragile x mental retardation protein (FMRP), has well-studied functions as 

a translational regulator [91], however its roles within the nucleus are much less understood. 

FMRP has recently been identified to have roles in gene expression and genome function, 

including the DNA damage response [92,93]. Individuals with FXS express important DNA 

repair genes at lower levels than their typically developing counterparts, including key BER 

factors OGGI and XRCC1 [94]. Some of these genes, and oxidative stress itself, are also 

implicated in trinucleotide expansion, the most common cause of FXS in humans [95–98].

The role of the ISR in the brain in FXS is an active area of investigation. Aβ levels 

are elevated in the brains of FXS patients and Fmr1 KO mice, which also exhibit 
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elevated amyloid precursor protein (APP), thus BACE1 inhibitors have been proposed as 

a potential therapeutic strategy for FXS [99,100]. Fmr1-deficient mice exhibit elevated 

NADPH-oxidase activity, altered antioxidant activity, and increased oxidation of lipids and 

proteins. Interestingly, elevated ROS levels are developmentally dependent, detected at 4 

months of age but not early (newborn and 1 mo old) or late (8 and 12 months old) in 

development [101,102]. FXS phenotypes and deficits at the molecular, cellular, and synaptic 

levels are also highly developmentally regulated [103–106]. Whether the interaction of 

sleep, the DNA damage response, and cellular stress plays a role in orchestrating the 

developmental trajectory of FXS poses an exciting question that remains to be addressed.

Sleep difficulties are a prevalent phenotype of children with FXS, and are detected very 

early in development, suggesting that sleep has the potential to contribute significantly to 

the manifestation or aggravation of other FXS phenotypes. According to a large caregiver 

survey, 32% of children with FXS suffer from sleep difficulties, with sleep latency and 

fragmented sleep being the most common difficulties [49]. Additionally, sleep problems 

in children with FXS were most highly reported to occur in early development, before 

the age of three (71% of males and 64% of females who experience sleep problems), 

with progressively diminishing reports of sleep problems with age (10% of males and 

21% of females after the age of eleven) [49]. If sleep plays a role in the precipitation 

or aggravation of damage accumulation and persistent cellular stress response, these 

phenotypes may also exhibit a variable or developmentally dependent pattern in FXS. 

Consequently, this relationship presents the possibility that the alleviation of sleep deficits 

may have a significant impact on FXS developmental outcomes. Insufficient or poor sleep 

has far-reaching impacts on both physical and mental health including the development of 

metabolic disorders, cancer, cognition and learning deficits, and depression, which can in 

turn, negatively impact sleep [107–110].

Discussion

The relationship between sleep and activation of the ISR involves an interconnected web 

of bidirectional effects, which can escalate through feedback loops to drive neurological 

impairment. The ISR is an elaborate signaling network that integrates intrinsic and extrinsic 

stimuli to moderate the normal cellular stress of a functional organism. Thus, disruptions 

in a wide variety of pathways, which contribute to many different disorders, converge upon 

this central pathway. In this review, we have focused on ISR activation in the brain, which 

is particularly susceptible to oxidative stress. Persistent activation of the ISR in the brain 

has been demonstrated in neurodegenerative and neurodevelopmental disorders of diverse 

etiologies. We present sleep deficiency as another shared feature among these disorders, 

which can activate the ISR through the accumulation of unrepaired damage to biomolecules 

such as DNA and proteins.

Sleep deprivation induces ER stress through the unfolded protein response in the cortex 

[12,111,112]. Due to high metabolic demand during wake, extended wake likely leads to 

the depletion of ATP, inhibiting protein folding and leading the accumulation of misfolded 

proteins [12]. In addition to damage by ROS in the highly oxidative environment of the 

brain during sleep deprivation [23,113], the accumulation of aberrant proteins causes further 
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protein oxidation, promoting a positive feedback loop of stress and damage, which may 

be exacerbated by sleep deficits [12,60]. The connection between sleep and the repair of 

DNA damage has only been demonstrated in recent years and there is still much that 

remains to be understood about how sleep promotes the maintenance of a healthy genome. 

Current evidence supports a role for sleep in mediating the levels and activity of key repair 

enzymes [18,23,36] and regulating chromosome dynamics [36,37] in the repair of DNA 

damage. Deficiencies in sleep-mediated repair or clearance of damaged biomolecules can 

potentially lead to elevated levels of cellular stress, persistently activating the ISR. While 

the effect of sleep deprivation on oxidative stress in the brain is not uniform [113–116], 

dysregulation of the ISR and the accumulation of biomolecular damage may shed light 

on the mechanisms underlying the development of cognitive impairment observed in many 

neurological disorders.

Although neurological disorders are heterogenous in genetic etiology, environmental 

interactions, and phenotypic presentation, sleep disruption is a pervasive feature central 

to disorders across the spectrum [41,69,117,118]. Sleep abnormalities were once considered 

a side effect rather than a central phenotype in these patients, however studies of disorders 

with known genetic etiologies, including FXS, have offered insight into the molecular basis 

of sleep physiology and homeostasis in maintaining a healthy and balanced synaptic network 

[118–121]. Impaired sleep manifests as a variety of deleterious stresses and dysfunction at 

the molecular, cellular, and synaptic levels.

Pharmacological modulation of the ISR has become an area of great interest in the 

treatment of a variety of neurological disorders given its central role in cellular homeostasis. 

Beneficial effects of both inhibitors and enhancers targeting different levels of the ISR 

pathway have been observed, especially in neurodegenerative disorders including AD [16]. 

However, unexpected and undesirable side-effects are of concern when targeting the ISR 

in heterogeneous cell populations. Additionally, modulation of the ISR must be carefully 

regulated, as cells must maintain the ability to respond efficiently to other sources of 

normal stress stimuli. Given the relationship between sleep deficiency and cellular stress, 

a combinatorial approach leveraging both pharmacological and sleep intervention therapies 

presents a potentially more moderate and adaptable mechanism for modulating the ISR in 

a wide variety of neurological disorders, while also providing the many benefits of healthy 

sleep. While we have focused on the brain in this review, sleep deficiency, biomolecule 

damage, and conditions of high cellular stress pose threats to the health of all systems in 

the body and gaining a deeper knowledge of these processes and their relationship will be 

invaluable to our understanding of human health.
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Abbreviations

Aβ Amyloid beta

AD Alzheimer’s disease

ADD Attention deficit disorder

ADI-R Autism Diagnostic Interview-Revised

APP Amyloid precursor protein

ASD Autism spectrum disorder

ATF4 Activating transcription factor 4

ATF6 Activating transcription factor 6

BACE1 Beta-secretase 1

BER Base excision repair

BTBR BTBR T+ Itpr3tf/J

CHOP C/EBP homologous protein

DSB Double-strand break

ERCC1 Excision repair cross-complementing group 1

FMR1 Fragile X mental retardation 1

FMRP Fragile X mental retardation protein

FXS Fragile X syndrome

IRE1 Inositol-requiring enzyme 1

ISR Integrated stress response

NDD Neurodevelopmental disorders

OGG1 8-oxoguanine glycosylase

PERK PKR-like ER kinase

POLB Polymerase beta

RNS Reactive nitrogen species

ROS Reactive oxygen species

UDG Uracil-DNA glycosylase

XBP1 X-box binding protein 1

XRCC1 X-ray repair cross complementing 1
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Practice points

• Sleep deficits are a prevalent phenotype among neurodevelopmental and 

neurodegenerative disorders, and in some cases sleep phenotypes are included 

as a diagnostic criterion.

• The brain is a highly oxidative environment due to the high metabolic load, 

especially during waking activity.

• Sleep deprivation may activate the ISR through the accumulation of 

biomolecular damage and prolonged cellular stress.

• The expression and activity of DNA repair genes is downregulated under 

conditions of sleep deprivation.

Research agenda

• Further elucidate the mechanisms underlying sleep-dependent regulation of 

biomolecule repair.

• Examine how persistent activation of the integrated stress response in the 

brain may contribute to synaptic dysfunction in neurological disorders.

• Assess combinatorial approaches leveraging pharmacological and sleep 

intervention as an adaptable therapeutic strategy for neurological disorders.
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Fig. 1. 
A proposed model of the relationship between sleep and the integrated stress response 

(ISR), drawn from observations described in the literature. Sleep deficiency, a common 

phenotype among neurological disorders, may lead to persistent activation of the stress 

response through these pathways, driving a positive feedback loop of stress and damage in 

the brain.
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