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Accuracy and efficiency 
of automatic tooth segmentation 
in digital dental models using deep 
learning
Joon Im1, Ju‑Yeong Kim2, Hyung‑Seog Yu1, Kee‑Joon Lee1, Sung‑Hwan Choi1, Ji‑Hoi Kim1, 
Hee‑Kap Ahn3 & Jung‑Yul Cha1*

This study evaluates the accuracy and efficiency of automatic tooth segmentation in digital dental 
models using deep learning. We developed a dynamic graph convolutional neural network (DGCNN)-
based algorithm for automatic tooth segmentation and classification using 516 digital dental models. 
We segmented 30 digital dental models using three methods for comparison: (1) automatic tooth 
segmentation (AS) using the DGCNN-based algorithm from LaonSetup software, (2) landmark-based 
tooth segmentation (LS) using OrthoAnalyzer software, and (3) tooth designation and segmentation 
(DS) using Autolign software. We evaluated the segmentation success rate, mesiodistal (MD) width, 
clinical crown height (CCH), and segmentation time. For the AS, LS, and DS, the tooth segmentation 
success rates were 97.26%, 97.14%, and 87.86%, respectively (p < 0.001, post-hoc; AS, LS > DS), the 
means of MD widths were 8.51, 8.28, and 8.63 mm, respectively (p < 0.001, post hoc; DS > AS > LS), 
the means of CCHs were 7.58, 7.65, and 7.52 mm, respectively (p < 0.001, post-hoc; LS > DS, AS), 
and the means of segmentation times were 57.73, 424.17, and 150.73 s, respectively (p < 0.001, 
post-hoc; AS < DS < LS). Automatic tooth segmentation of a digital dental model using deep learning 
showed high segmentation success rate, accuracy, and efficiency; thus, it can be used for orthodontic 
diagnosis and appliance fabrication.

Abbreviations
LS	� Landmark-based tooth segmentation
DS	� Tooth designation and segmentation
AS	� Automatic tooth segmentation
MD width	� Mesiodistal width
CCH	� Clinical crown height
DGCNN	� Dynamic graph convolutional neural network
GLMM	� Generalised linear mixed model

The first step of successful orthodontic treatment is accurate diagnosis and establishing an optimised treatment 
plan. An orthodontist collects various types of patient data, such as clinical examinations, radiographs, intra- and 
extra-oral clinical photographs, and dental models, prepares a problem list, sets treatment goals, and establishes 
orthodontic treatment plans accordingly. Several treatment options are typically available depending on patients’ 
individual needs, even with similar orthodontic conditions. In this situation, a diagnostic model setup showing 
expected treatment outcomes helps patients and orthodontists make decisions.

Manual setup using plaster models requires considerable time and effort in an orthodontic lab. Furthermore, 
comparing the various options using plaster models is difficult and cannot be used for all treatment cases. In 
contrast, a virtual setup1 with a digital model provides information on changes in tooth movement, angle, and 
arch form by superimposition, which helps determine various treatment options. Moreover, studies have found 
no significant difference in reliability when compared with a manual setup2. At present, digital orthodontic 
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solutions, such as computer-aided-design/computer-aided manufacturing (CAD/CAM) software and intra- and 
extra-oral scanners, are used by orthodontists to diagnose and fabricate orthodontic appliances3,4.

Diagnostic setup aids in extraction, interproximal reduction, anchorage preparation, and treatment mechan-
ics, enabling precise treatment plans5,6. Hou et al.7 reported that using a digital setup changed treatment plans in 
23.6% of diagnostic cases, and the reliability of the treatment plan selected was enhanced, especially in difficult 
cases and cases in which residents made the decision with little clinical experience. Many orthodontists routinely 
use virtual setups for various digital orthodontic procedures, such as clear aligners8, individual jigs for indirect 
bonding9, custom brackets, and arch wires10.

Representative commercial orthodontic CAD/CAM software, such as OrthoAnalyzer (3Shape, Denmark), 
SureSmile (Dentsply Sirona, USA), OrthoStudio (Maestro 3D, Italy), OrthoCAD, (Align Technology, USA) 
ClinCheck, and Autolign (Diorco, Korea), contain functions for segmentation of digital tooth models, three-
dimensional (3D) tooth movement, virtual setup, and orthodontic device production. The early versions of 
orthodontic CAD/CAM software were less efficient because they required considerable manual intervention. 
Since then, the algorithms have improved, increasing the accuracy and efficiency of tooth segmentation, clas-
sification, and automation levels.

Accurate tooth segmentation is essential for model setup. The tooth segmentation methods used in digital 
models may affect the model analysis and setup as the shape of the proximal surface and mesiodistal (MD) width 
recorded may vary depending on the method. The MD width of each tooth in a digital setup model was shown to 
be shorter than the conventional plaster setup model in most cases11, and the arch perimeters of the virtual setup 
of the digital model tended to be shorter than those of a manual setup with a plaster model12. This is because the 
plaster model can easily reproduce the proximal surface of the tooth by trimming after segmentation, whereas 
the digital model obtains a hollow image based on surface data; thus, reproducing the shape of the proximal 
surface that cannot be scanned is difficult.

Several studies have introduced their own methods for 3D object segmentation. Various deep learning 
techniques have been developed to segment 3D objects. General segmentation methods can be classified into 
region-based and feature curve-based methods13. Region-based methods include k-means clustering, random 
walk, fitting primitives, and fast marching watershed, which distinguish the mesh using the similarity of sur-
rounding regions but have difficulties in defining tooth models with variable shapes as semantic regions. Fea-
ture curve-based methods include the snake evolution method, morphological skeleton extraction, and plan-
view range image; among these, the snake evolution method is considered the most popular method for tooth 
segmentation14. It is, however, sensitive to curvature noise and has poor reliability when the scanned data are 
poor13. The specificity of the tooth shape, the tight line between teeth and gingiva, and the close contact between 
adjacent teeth make automatic and precise tooth segmentation difficult15.

Recently, various deep learning techniques have been developed to segment 3D objects, and point cloud deep 
learning models16–18 that work directly with raw point clouds are active research subjects19. Dynamic graph con-
volutional neural networks (DGCNNs) have also been applied to segment 3D objects, which can be further used 
for the segmentation and classification of digital dental models20. DGCNNs improve segmentation performance 
by combining edge convolution based on PointNet16, a deep learning model using point clouds, which are the 
basic units for reproducing 3D objects. This technique can be utilized in tooth segmentation and classification.

The purpose of this study is to compare and evaluate the accuracy and efficiency of the DGCNN-based seg-
mentation and classification of digital dental models with two existing commercially available software programs. 
Herein, ‘the three different tooth segmentation methods of the digital tooth model do not significantly differ in 
the success rate, time, and tooth size’ is set as the null hypothesis.

Results
We analysed the reliability of measurements and found that the intraclass correlation coefficients (ICCs) for the 
intra-rater reliability were 0.987–0.997 (Table 1). In the final assessment, we reviewed the intra-rater agreement 
(success vs failure) as well as Cohen’s kappa statistic and its p-value. Table 2 shows the statistical analysis results 
of the degree of agreement within the evaluator on the success and failure of tooth segmentation with nominal 
variables. The range of kappa values in the three different segmentation types ranged from 0.885 to 1.000, show-
ing very high reproducibility between the first and second assessments. 

Table 1.   Reliability analysis of tooth measurement. MD width and CCH, presented as continuous variables, 
were verified for intra-rater reliability using ICC. The ICC of MD width and CCH were 0.994–0.997 and 
0.989–0.993, respectively, showing very high reproducibility. ICC > 0.7: excellent.

Segmentation type

MD width CCH

ICC (95% CI) p value ICC (95% CI) p value

LS 0.994 (0.992–0.995)  < 0.0001 0.992 (0.990–0.994)  < 0.0001

DS 0.987 (0.983–0.989)  < 0.0001 0.989 (0.985–0.991)  < 0.0001

AS 0.997 (0.997–0.998)  < 0.0001 0.991 (0.998–0.993)  < 0.0001

REF 0.997 (0.997–0.998)  < 0.0001 0.993 (0.990–0.994)  < 0.0001
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The success rates for automatic segmentation were 97.26% and 97.14% in the AS and LS, respectively, which 
were higher than the 87.86% success rate of the DS (Table 3). These rates were significantly different between 
the three groups (p < 0.001, post hoc test: LS, AS > DS).

Furthermore, we compared the MD width, height, and segmentation time of the three segmentation types 
(Table 4). The means (95% CI) of the MD widths were 8.28 (8.15, 8.41), 8.63 (8.49, 8.76), and 8.51 (8.37, 8.65) 
mm in the LS, DS, and AS, respectively. There was a significant difference in the MD widths of the three groups 
(p < 0.001, post hoc test: DS > AS > LS). The CCH means (95% CI) were 7.65 (7.52, 7.78), 7.52 (7.39, 7.65), and 
7.58 (7.45, 7.70) mm in the LS, DS, and AS, respectively. CCH was significantly higher in the LS than the DS and 
the AS (p < 0.001, post hoc test: LS > DS, AS). The means (95% CI) of segmentation times were 424.17 (404.28, 
444.05), 150.73 (140.70, 160.77), and 57.73 (54.43, 61.04) s in the LS, DS, and AS, respectively. We found a sig-
nificant difference in the segmentation times of the three groups (p < 0.001, post hoc test: LS > DS > AS).

We compared the tooth size error by tooth group (Table 5). The means (95% CI) of the MD width error 
ranged from −0.31 (−0.35, −0.28) to −0.08 (−0.14, −0.02) mm, −0.09 (−0.14, −0.04) to 0.68 (0.60, 0.76) mm, 
and −0.35 (−0.39, −0.31) to 0.61 (0.51, 0.71) mm in the LS, DS, and AS groups, respectively. There were statisti-
cally significant differences in all tooth groups (p < 0.001, post hoc: DS > AS > LS in upper incisal, lower incisal, 
lower canine, and lower premolar; DS, AS > LS in upper canine, upper and lower molar, DS > LS, AS in upper 
premolar). The means (95% CI) of CCH error ranged from −0.03 (−0.07, 0.01) to 0.00 (−0.02, 0.02) mm, −0.21 
(−0.26, −0.16) to −0.09 (−0.14, −0.04) mm, and −0.11 (−0.15, −0.07) to −0.06 (−0.08, −0.04) mm in the LS, DS, 
and AS groups, respectively. There were statistically significant differences in all tooth groups (p < 0.001, post 
hoc test: LS > DS, AS).

Table 2.   Kappa statistics of agreement of measurement results on success/failure of tooth segmentation. 
Success and failure of segmentation, presented as nominal variables using Cohen’s kappa, indicated very high 
evaluation reproducibility from 0.885 to 1.000. Kappa values were interpreted as follows: poor,  < 0.0; slight, 0.0 
to 0.2; fair, 0.2 to 0.4; moderate, 0.4 to 0.6; substantial, 0.6 to 0.8, and almost perfect, 0.8 to 1.0.

Segmentation type

First

Kappa p valueSuccess Failure Total

LS Second

Success 271 (100.0%) 0 (0.0%) 271 (96.8%)

1.000  < 0.0001Failure 0 (0.0%) 9 (100.0%) 9 (3.2%)

Total 271 (100.0%) 9 (100.0%) 280 (100.0%)

DS Second

Success 244 (99.6%) 0 (0.0%) 244 (87.1%)

0.984  < 0.0001Failure 1 (0.4%) 35 (100.0%) 36 (12.9%)

Total 245 (100.0%) 35 (100.0%) 280 (100.0%)

AS Second

Success 270 (99.3%) 0 (0.0%) 270 (96.4%)

0.885  < 0.0001Failure 2 (0.7%) 8 (100.0%) 10 (3.6%)

Total 272 (100.0%) 8 (100.0%) 280 (100.0%)

Table 3.   Comparison of success rate among three methods. Success rates for automatic segmentation were 
97.26 and 97.14% for the AS and LS, respectively, which were higher than the 87.86% success rate of the DS. 
Data are given as n (percentage). a p values were derived from Cochran’s Q test; *p < 0.05.

LS DS AS pa value Post hoc test

Success 816 (97.14%) 738 (87.86%) 817 (97.26%)  < 0.001* LS, AS > DS

Failure 24 (2.86%) 102 (12.14%) 23 (2.74%)

Table 4.   Comparison of MD width, CCH, and segmentation time among three segmentation groups. 
MD width and CCH showed statistically significant differences, depending on segmentation method. The 
segmentation time also showed statistically significant differences in the three groups, with the AS having the 
least manual intervention being the shortest. Data are given as the mean (95% confidence interval). a p values 
were derived from Friedman test; Shapiro–Wilk’s test was employed to test the normality assumption; *p < 0.05.

LS DS AS REF pa value Post hoc test

MD width (mm) 8.28 (8.15, 8.41) 8.63 (8.49, 8.76) 8.51 (8.37, 8.65) 8.52 (8.40, 8.63)  < 0.001* DS > REF, AS > LS

CCH (mm) 7.65 (7.52, 7.78) 7.52 (7.39, 7.65) 7.58 (7.45, 7.70) 7.62 (7.50, 7.74)  < 0.001* LS, REF > DS, AS

Time (sec) 424.17 (404.28, 
444.05)

150.73 (140.70, 
160.77) 57.73 (54.43, 61.04)  < 0.001* LS > DS > AS
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We observed significant effects of tooth group, software, MD width/CCH, and first-order interactions of Tooth 
Group * Software, Tooth Group * MD width/CCH, and Software * MD width/CCH on the tooth size errors in 
the generalised linear mixed model (GLMM) analysis (p < 0.05) (Table 6). Results showed that the tooth size 
errors were statistically different (p < 0.001) depending on the software used, and the post hoc test showed that 
DS (−0.019) > AS (−0.052) > LS (−0.121).

Discussion
In orthodontics, artificial intelligence, including deep learning, can be applied to diagnosis and treatment plan-
ning for orthodontic extractions or orthognathic surgery21–23, automated cephalometric landmarking24,25, diag-
nosis of impaction26, determination of skeletal maturity for growth stage evaluation27, and automatic segmenta-
tion and setup of digital models14,19,28. Reducing the time and effort required for simple tasks for diagnosis and 
appliance fabrication allows the users to focus more on making decisions.

In this study, we verified the MD width and CCH, presented as continuous variables, for intra-rater reli-
ability using ICC. The success and failure of segmentation, presented as nominal variables using Cohen’s kappa, 
indicated very high evaluation reproducibility: ICC and Cohen’s kappa were 0.987–0.997 and 0.885–1.000, 
respectively. In addition, this study showed statistically significant differences in segmentation success rate, 

Table 5.   Comparison of MD width and CCH among the three methods by tooth group. The means of the 
MD width error ranged from −0.31 to −0.08 mm, −0.09 to 0.68 mm, and −0.35 to 0.61) mm in the LS, DS, and 
AS groups, respectively. There were statistically significant differences in all tooth groups (p < 0.001, post hoc: 
DS > AS > LS in upper incisal, lower incisal, lower canine, and lower premolar; DS, AS > LS in upper canine, 
upper and lower molar, DS > LS, AS in upper premolar). The means of the CCH error ranged from −0.03 to 
0.00 mm, −0.21 to −0.09 mm, and −0.11 to −0.06 mm in the LS, DS, and AS groups, respectively. There were 
statistically significant differences in all tooth groups (p < 0.001, post hoc test: LS > DS, AS). Data are given 
as the mean (95% confidence interval). a p values were derived from Friedman test; Shapiro–Wilk’s test was 
employed to test the normality assumption; *p < 0.05.

Variable

MD width (mm) CCH (mm)

LS DS AS pa value Post-hoc test LS DS AS pa value Post-hoc test

Upper

Incisal −0.26 (−0.29, 
−0.23)

0.07 (0.03, 
0.11)

0.00 (−0.05, 
0.05)  < 0.001 DS > AS > LS −0.01 (−0.02, 

0.00)
−0.21 (−0.26, 
−0.16)

−0.11 (−0.15, 
−0.07)  < 0.001 LS > AS, DS

Canine −0.21 (−0.26, 
−0.17)

−0.06 (−0.10, 
−0.01)

−0.15 (−0.21, 
−0.09)  < 0.001 DS, AS > LS −0.02 (−0.04, 

−0.01)
−0.19 (−0.25, 
−0.13)

−0.10 (−0.12, 
−0.07)  < 0.001 LS > AS, DS

Premolar −0.31 (−0.35, 
−0.27)

−0.06 (−0.09, 
−0.02)

−0.35 (−0.39, 
−0.31)  < 0.001 DS > LS, AS −0.03 (−0.06, 

−0.01)
−0.14 (−0.19, 
−0.08)

−0.09 (−0.12, 
−0.06)  < 0.001 LS > AS, DS

Molar −0.08 (−0.14, 
−0.02)

0.68 (0.60, 
0.76)

0.61 (0.51, 
0.71)  < 0.001 DS, AS > LS −0.02 (−0.06, 

0.02)
−0.11 (−0.18, 
−0.04)

−0.08 (−0.12, 
−0.05)  < 0.001 LS > AS, DS

Lower

Incisal −0.26 (−0.30, 
−0.23)

−0.01 (−0.06, 
0.04)

−0.07 (−0.11, 
−0.04)  < 0.001 DS > AS > LS 0.00 (−0.01, 

0.01)
−0.18 (−0.23, 
−0.13)

−0.11 (−0.13, 
−0.08)  < 0.001 LS > AS, DS

Canine −0.26 (−0.32, 
−0.20)

0.06 (−0.02, 
0.14)

−0.14 (−0.18, 
−0.10)  < 0.001 DS > AS > LS 0.00 (−0.02, 

0.02)
−0.13 (−0.20, 
−0.07)

−0.09 (−0.13, 
−0.06)  < 0.001 LS > AS, DS

Premolar −0.31 (−0.35, 
−0.28)

−0.06 (−0.10, 
−0.03)

−0.15 (−0.19, 
−0.12)  < 0.001 DS > AS > LS −0.03 (−0.07, 

0.01)
−0.15 (−0.18, 
−0.11)

−0.10 (−0.12, 
−0.08)  < 0.001 LS > AS, DS

Molar −0.13 (−0.17, 
−0.09)

0.24 (0.19, 
0.29)

0.20 (0.16, 
0.24)  < 0.001 DS, AS > LS 0.00 (−0.01, 

0.01)
−0.09 (−0.14, 
−0.04)

−0.06 (−0.08, 
−0.04)  < 0.001 LS > AS, DS

Table 6.   Statistical analysis of main effects and first-order interactions affecting measurement error using 
GLMM. The tooth size errors were statistically different (p < 0.001) depending on the software used, and 
the post hoc test showed that DS (−0.019) > AS (−0.052) > LS (−0.121). DF degrees of freedom. F F value. a p 
values were derived from a generalised linear mixed model. b Category (estimated mean) was presented for 
Bonferroni’s corrected post hoc test. c Intercept represents the mean value of the response variable when all 
predictor variables in the model are zero.

Variable DF F pa value Post hoc testb

Interceptc 1:4723 319.03  < 0.001

Tooth group 3:4723 296.67  < 0.001 Molar (0.102) > incisal (−0.098), Canine (−0.110) > premolar (−0.149)

Software 2:4723 70.00  < 0.001 DS (−0.019) > AS (−0.052) > LS (−0.121)

MD width/CCH 1:4723 32.92  < 0.001 MD width (−0.043) > CCH (−0.084)

Tooth group * Software 6:4723 24.70  < 0.001

Tooth group * MD width/CCH 3:4723 201.37  < 0.001

Software * MD width/CCH 2:4723 428.81  < 0.001
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time, and size of segmented teeth using three different orthodontic CAD/CAM programs; thereby, rejecting 
the null hypothesis.

We designed the DGCNN-based segmentation model in two stages to prevent degradation of the segmenta-
tion performance due to differences in number of vertices between tooth and gingiva. In the first stage, the digital 
dental model was segmented into gingiva and dentition using the two-class DGCNN model. In the second stage, 
the digital dental model was segmented into individual tooth and gingiva using the seventeen-class DGCNN 
model after adjusting the number of gingiva vertices, which were segmented in the first stage, not to exceed twice 
the number of individual tooth vertices.

DGCNN using point clouds is advantageous for semantic segmentation and classification of a digital dental 
model, but it suffers from poor resolution for tooth margins. We attempted to obtain a clear tooth margin by 
supplementary use of curve-based mesh segmentation using skeleton/pruning algorithm. However, in some cases, 
the closed loop may not be formed due to the unclear curvature of the scanned data, or a closed loop may be 
formed in the wrong area, such as the tooth groove. Therefore, the segmentation and classification by DGCNN 
was optimized by supplementing the curvature-based mesh segmentation.

To compare and evaluate the accuracy and efficiency of the DGCNN-based segmentation model, we used 
two existing commercially available software. Both software packages used for comparison (i.e., OrthoAnalyzer 
and Autolign) were selected for the following reasons: the first reason is popularity; both are popular with ortho-
dontists. Second, we considered their functionality for the tooth segmentation; OrthoAnalyzer is characterized 
by the need to set precise MD points for tooth segmentation, and Autolign has the need to set approximate MD 
points. Third, we considered their versatility. Some orthodontic software packages create closed working environ-
ments that prevent exportation of segmented teeth. OrthoAnalyzer and Autolign can export segmented teeth 
as stereolithography files, which can be imported to Meshmixer and Geomagic Control X software for success/
failure determination and tooth-size measurement.

This study presented the digital dental model segmentation success and failure for its clinical applications. As 
the purpose of tooth segmentation is to diagnose and fabricate orthodontic appliances, such as custom brackets, 
clear aligners, and indirect bonds, accurate tooth surface models are essential to fabricate orthodontic appliances, 
and defects cannot be allowed. Considering the width and height of the bracket base and the undercut needed to 
obtain the retention of the removable application, the cervical ± 25% line was set as the success baseline. There-
fore, criteria for determining whether the segmentation was successful or not include the cervical margin of the 
segmented tooth not deviating beyond ± 25% of the cervical margin of the actual tooth and finding no defects 
in the occlusal or incisal edge of the segmented tooth.

A high segmentation success rate increases user convenience by reducing the time and effort required to 
modify segmentation splines. This study showed high segmentation success rate (Table 3) in all three groups. 
However, the success rates of LS and AS (97.14% and 97.26%) were significantly higher than the success rate 
of DS (87.86%). These findings imply that there are differences in the success rates of different segmentation 
methods. In contrast to segmentation of general objects, tooth segmentation has to work on the complex intersec-
tion of concave regions (e.g. tooth-gingival margin, tooth groove, and interproximal area), for which traditional 
geometry-based segmentation is typically used. Various tooth segmentation algorithms have been introduced 
to overcome these limitations. However, region-based and feature curve methods still involve some limita-
tions, such as difficulty obtaining high-quality segmentation results and reduced efficiency due to complex 
implementation procedures. The recent developments in deep learning require little manual intervention and 
have low algorithm complexity and high accuracy. In this study, the AS method based on DGCNNs exhibited 
satisfactory success rates.

The MD width of the experimental group used the results provided by each software program. Consequently, 
results varied depending on different measurement and calculation methods. OrthoAnalyzer, used in the LS, set 
the mesial and distal points of individual teeth before tooth segmentation and calculated the MD width using 
the virtual plane formed by the screen view at the MD point setting. In contrast, Autolign and LaonSetup used 
in the DS and the AS, respectively, were normalised after tooth segmentation to calculate the MD width. Even 
if the software user sets the MD points precisely on an unsegmented dental model, they are impossible to set 
in the occlusion area of the interproximal region. Owing to the location characteristics of the measurement 
points, the MD width measured before tooth segmentation is likely to be measured more conservatively than 
when measured on the segmented teeth. In this study, the MD width of LS also showed an error of −0.35 mm 
and −0.23 mm when compared with DS and AS, respectively.

The MD widths of upper molars were recorded as larger in DS and AS groups than in the LS group. This may 
be because of the characteristic shape of the upper molars and the method of MD width measurement. An upper 
molar often forms a parallelogram in occlusal view, in contrast to other teeth whose height of contour on the MD 
surface is clear. When an upper molar is in the shape of a parallelogram, the heights of contour in mesial and 
distal surfaces show many differences in the bucco-lingual position. Without considering these morphological 
features, the MD width of a normalised upper molar can cause errors in measurement, leading to inaccurately 
large sizes. Therefore, the MD width measurements of upper molars require corrections.

A limitation of digital models is that measuring accurate MD width is difficult because of the presence of 
occlusions in the interproximal area. When using a plaster model, the adjacent surface is reproduced naturally 
during the teeth section, but in the case of a digital model with only surface information, the occlusions in contact 
with the adjacent area during segmentation remain empty after segmentation. To solve this problem, Kim et al.14 
proposed an image reconstruction method for an adjacent occlusion using a generative adversarial network and 
obtained an average improvement of 0.004 mm compared with the conventional method.

CCH can affect vertical bracket positioning and thus requires evaluation of accuracy. Compared with the DS 
and AS, LS had fewer errors in the whole tooth group, and DS and AS produced shorter CCHs than reference 
group (REF). However, according to the CCH of each tooth group (Table 5), the maximum average error was 
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−0.21 mm, which is not likely to cause problems in diagnosis and appliance fabrication, and it is considered 
clinically acceptable.

This study performed repeated measurement of digital dental models conducted with three different segmen-
tation methods, and there were within-subject correlations that were not independent. In addition, segmentation 
failure resulted in a missing value because the MD width and CCH could not be measured. Therefore, we used 
GLMM as a statistical method to analyse the main effects and the first-order interactions of the MD width and 
CCH errors. The segmentation success rate of the DS was lower than that of the remainder of the group, but 
the mean error according to the segmentation method was the lowest in the DS. This was the result of evaluat-
ing successful teeth segmentation and excluding missing values due to failure of segmentation. In addition, the 
mean error value results between groups of post hoc tests were within 0.12 mm and thus clinically acceptable.

The mean segmentation time of the AS was 57.73 s, which was shorter than those of the DS and the LS, with 
means of 150.73 and 424.17 s, respectively, presenting significant differences in efficiency. This was attributed to 
the differences in the segmentation processes; in all three experimental groups, the digital model was orientated 
to the coordinate system, but the subsequent process differed for each group. In the case of LS, which required 
precise marking of the mesial and distal points of all teeth, the segmentation time was the longest due to the 
necessity of axes specification of each tooth. Similarly, the DS also required marking of mesial and distal points 
for all teeth but did not require precise marking, so the time required for point designation was short. In the case 
of AS, segmentation and classification were performed without manual intervention after orientation; thus, it 
took the shortest time for segmentation. As the convenience of using segmentation increases and the require-
ment of manual intervention decreases, it is important to automate segmentation and reduce the time and effort 
required for correction by decreasing the segmentation failure rate.

A limitation of this study is that we used digital models of permanent dentition in good condition without 
teeth and gingival defects. Therefore, it is not possible to determine the tooth segmentation ability in cases such 
as a missing tooth, severe wearing, dental caries, partial eruption, and third molar. In subsequent studies, it will 
be necessary to use digital dental models of various conditions.

Because the OrthoAnalyzer software used in LS was used to obtain the reference data, bias may have occurred. 
To reduce the potential bias, the splines of all segmented teeth in the REF method were corrected. Moreover, the 
MD width of REF was measured using Geomagic Control X software. There was no correction after segmenta-
tion across experimental groups (i.e., LS, DS, and AS), and raw MD width data provided by software were used. 
Therefore, depending on the segmentation accuracy and the method of calculating MD width, values may differ 
from REF.

This study used different automatic tooth segmentation software in different groups. Because the three soft-
ware programs were not developed and distributed simultaneously, their performances may vary depending on 
the software version. Moreover, the software continues to be updated to new versions; thus, improvements in 
accuracy, convenience, and speed of segmentation and classification can be expected. In addition, because the 
CAD/CAM software for orthodontics used in this study was distributed for commercial use, the detailed algo-
rithms were not disclosed, making a direct comparison of the segmentation methods impossible. Therefore, this 
study focused on comparing the software from the point of view of a user and compared the use of the software 
and results of tooth segmentations.

Materials and methods
Digital model selection.  This retrospective study was approved by Yonsei University Dental Hospital 
Institutional Review Board (IRB No. 2-2021-0033) and passed the exemption review of informed consent on the 
use of patients’ intraoral scan data. All clinical examinations were conducted in accordance with the Declaration 
of Helsinki.

Among the 1005 digital dental model sets of patients treated by the Department of Orthodontics at Yonsei 
University Dental Hospital between January 2010 and February 2019, we selected 546 digital dental models 
satisfying the following criteria.

The inclusion criteria of the digital models were as follows:

•	 Over 14-year-old orthodontic patients with second molars eruption.
•	 Digital dental models without any defects in the teeth and gingiva.
•	 Mild and moderate crowding.

The exclusion criteria of the digital models were as follows:

•	 Congenital tooth deformity.
•	 Severe dental caries and tooth wear.
•	 Congenital or acquired missing tooth.
•	 Supernumerary tooth.
•	 Severe crowding.

We used 516 dental models for deep learning-based tooth segmentation training, and the 30 dental models to 
evaluate the accuracy and efficiency of segmentation and classification of digital tooth models based on DGCNN 
model using two commercially available software programs.
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Deep learning process.  We performed segmentation and classification of digital dental models based on 
DGCNN20 as shown in Fig. 1. We extracted vertices from the digital dental model and converted into a point 
cloud model. When performing the two-class DGCNN model method that segments dentition and gingiva, we 
performed uniform sampling so that the number of points classified as gingiva was approximately twice that 
of the dentition. In addition, the seventeen-class DGCNN model was implemented to segment and classify 
individual teeth and gingiva. The hyperparameters of the DGCNN model used in this study can be found as 
Supplementary Fig. S1 online.

As a post-processing process to determine precise tooth proximal and cervical margin, we divided the inter-
dental area based on the mesh curvature29. We established the tooth margin, that showed a negative value as 
compared to the mean curvature of the tooth, as a feature vertex, and formed a closed loop by applying the 
skeleton pruning algorithm30. We obtained segmentation results with clear margins by merging the teeth and 
gingiva segmented by the DGCNN model and the teeth segmented by a mesh curvature closed loop.

Sample size and power calculation.  Thirty digital dental models were used in the experiment. As 28 
segmented teeth were evaluated per digital dental model, 840 teeth were evaluated in each of the four methods. 
With an observed sample size of n = 30 per group, power analysis of variance (two-tailed) conducted a posteriori 
using G*Power software version 3.1.9.2 (Franz Faul, Universität Kiel, Kiel, Germany) indicated > 99% power was 
needed to detect a medium effect size (Cohen’s d = 0.25) at a significance level of 0.05.

Tooth segmentation.  A schematic diagram for this study is shown in Fig. 2. Thirty identical digital models 
were segmented by three different methods (Fig. 3). (1) In the landmark-based tooth segmentation method (LS) 
using OrthoAnalyzer (ver.1.7.1.3, 3shape, Denmark), after orienting the digital model in the virtual coordinate 
system, the precise MD points of the teeth were set, and the segmentation proceeded. (2) In the tooth designa-
tion and segmentation method (DS) using Autolign (ver.1.6.2.1, Diorco, Korea), after orientation of the digital 
model, the approximate MD points were set, and the tooth segmentation proceeded. (3) In the automatic tooth 
segmentation method (AS) using LaonSetup (beta version (200722), Laon People, Korea), a deep learning tooth 
segmentation method based on DGCNN, teeth were segmented without setting the MD points after orientation 
of the digital model. A manually corrected reference group (REF), containing the spline (interdental and tooth-

Figure 1.   Schematic view of the deep learning process. After the original dental model was converted to a point 
cloud model, the dentition and the gingiva were segmented using the two-class DGCNN model. To increase 
the accuracy of semantic segmentation, we segmented individual teeth and gingiva using the seventeen-class 
DGCNN model with the vertices of the point cloud of the gingiva reduced to less than twice that of the tooth 
group. The gingival vertices were then restored. Since some of the segmentation results using DGCNN showed 
an unclear teeth margin, curvature-based mesh segmentation was used as post-processing to segment the teeth 
margin. The images of the digital dental model used in this figure were obtained using MeshLab (ver. 1.3.4 
BETA, ISTI-CNR, Italy) and Unity Editor (ver.2020.3.23f1, Unity Technologies, USA) software.
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gingival segmentation lines) corrected by the orthodontic specialist (J.I.) using OrthoAnalyzer, was used as a 
control group for comparison.

Measurements.  To evaluate the accuracy and efficiency of automatic segmentation using the three types 
of software, we measured the MD width and CCH of segmented teeth, segmentation time, and success rate. We 
used a total of 3, 360 teeth, 28 teeth from 30 identical digital models, each segmented in three experimental 
groups and one control group, for evaluation. Orthodontic specialist (J.I.) measured ten randomly selected digi-
tal models twice within a two-week interval to confirm the reliability of the measurements.

MD width and CCH of automatically segmented teeth.  We extracted the segmented teeth of the three experi-
mental groups (LS, DS, and AS) and the control group (REF) as individual teeth using Meshmixer (ver.11.5.474, 
Autodesk, USA) and imported into the Geomagic Control X software (3D Systems, USA), where we super-
imposed the corresponding teeth using the best fit method. Overlapped teeth were imported into Meshmixer 
and rearranged to measure the MD width and CCH. We established a virtual occlusal plane and positioned the 
incisal tip and buccal cusp of the overlapping teeth. Then, we adjusted the rotation, angulation, and inclination 
of the teeth to measure the MD width and CCH. The accuracy of the MD width of the three experimental groups 
was evaluated using the values output from each program. For comparison, the control group values were meas-
ured by Meshmixer. For measuring CCH, the segmented teeth of all groups re-orientated in Meshmixer were 
loaded into Geomagic Control X software, and the distance between the virtual occlusal plane and the lowest 
point of the gingival margin of the clinical crown was measured (Fig. 4).

Segmentation success rate.  The case where the segmented tooth margin did not deviate from ± 25% of the cervi-
cal margin of REF group, was set as the success criterion for segmentation. When a segmentation fault was found 
on one or more occlusal, labial, lingual, or distal surfaces of the most posterior molars, the segmentation of the 
tooth was considered a failure (Fig. 5). For each experimental group, we determined the segmentation success 
rate for 30 digital models (i.e. 840 segmented teeth).

Segmentation time.  We measured the time required for segmentation in seconds after loading the digital model 
into the software used in each experimental group from the orientation stage to the output of the value of the 
MD width. In the LS group using OrthoAnalyzer and the DS group using Autolign, it was necessary to mark 
the mesial and distal points of each tooth (28 teeth) of the digital model after orientation. In the AS group using 
LaonSetup, the software automatically classified and segmented the teeth.

Figure 2.   Schematic diagram indicating the study flow. Thirty digital dental models were segmented using 
three types of software (i.e., OrthoAnalyzer, Autolign, and LaonSetup). The manually corrected segmented 
tooth was used as the reference group. The size of the segmented teeth such as MD width and CCH, success and 
failure of tooth segmentation, and tooth segmentation time were evaluated.
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Statistical analysis.  Data of numerical variables were summarised by their mean (95% confidence inter-
val, 95% CI). The reliability of the measurement of tooth size error was calculated by determining the intraclass 
correlation coefficient (ICC, two-way random model). Cohen’s kappa determined the reliability of success and 
failure of tooth segmentation with nominal variables. Differences in variables across groups were compared with 
Friedman’s test or Cochran’s Q test as appropriate. We used the Shapiro–Wilk test to verify whether the data fol-

Figure 3.   Three different methods of tooth segmentation. The automatic tooth segmentation process has 
three steps in common: (1) orientation, (2) setting of the mesiodistal (MD) points, and (3) segmentation, 
but the details differ depending on the software’s algorithm. (a) Landmark-based segmentation (LS) using 
OrthoAnalyzer software: precise MD point setting is required prior to tooth segmentation, and the tooth 
number and axis are determined. (b) Tooth designation and segmentation (DS) using Autolign software: 
approximate MD point setting is required, and the tooth number is designated. (c) Automatic tooth 
segmentation (AS) using LaonSetup software: fully automatic segmentation based on deep learning does not 
require MD point setting, and manual intervention is not required.

Figure 4.   Measurement of the mesiodistal (MD) width and the clinical crown height (CCH) of segmented 
teeth. (a) Reorient the segmented teeth of the LS, DS, AS, and REF groups using Meshmixer software. (b) 
Measurement of the MD width of segmented teeth in REF group. (c) Measurement of the CCH of segmented 
teeth as the distance between the virtual occlusal plane and the lowest point of the gingival margin of the clinical 
crown.
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lowed a normal distribution. Independent variables affecting the response (tooth size error) were simultaneously 
evaluated by a GLMM. GLMM jointly considered the main and the first-order interaction effects. Bonferroni’s 
test was used for post hoc multiple comparisons. All statistical analyses were performed using SPSS version 26.0 
statistical software, and p values of less than 0.05 were considered as indicating statistical significance.

Data availability
The data underlying this article cannot be shared publicly to protect the privacy of individuals that participated 
in the study. The data will be shared at reasonable request to the corresponding author.
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