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1  |  INTRODUC TION

Nearly a century after the first cytomorphological characterization 
of von Economo neurons (VENs) in humans (von Economo  1926), 
many questions remain regarding their synaptic targets and func-
tional role(s). VENs have been linked, among other roles, with intui-
tive assessment and the generation of rapid responses in the midst of 
changing social contexts, based on their morphological characteris-
tics and their location in specific cortical regions (Allman et al. 2005).

Evidence of the vulnerability of VENs in pathologies such as amy-
otrophic lateral sclerosis (ALS), alcoholism, autism, psychosis and 

frontotemporal dementia, conditions where a deterioration in social 
function is a preponderant feature, gives support to this hypothesis 
(Allman et al. 2005; Braak & Del Tredici 2018; Brüne et al. 2010; Kim 
et al. 2012; Krause et al. 2017; Santillo et al. 2013; Santos et al. 2011; 
Senatorov et al. 2015; Simms et al. 2009; Uppal et al. 2014).

It has been reported that VENs are ubiquitous in the cerebral 
cortex of non-primate mammals (Butti et al.  2009, 2014; Butti & 
Hof 2010; Hakeem et al. 2009; Hof & Van Der Gucht 2007; Raghanti 
et al. 2015, 2019), leading some authors to postulate that rather than 
belonging to a particular cell type, these cells correspond to pyramidal 
neurons that have been modified in response to functional demands, 
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including the mechanical pressure created by cortical expansion and 
gyrification (Raghanti et al. 2015). Their location appears to be more 
restricted in primates (Allman et al. 2011; Evrard 2018). More spe-
cifically, they have been found in the anterior insular cortex, the an-
terior cingulate cortex, the temporal lobe and the medial portions 
of prefrontal areas BA9 and BA10 in humans (Allman et al.  2002; 
Evrard  2019; Fajardo et al.  2008; González-Acosta et al.  2018; 
Nimchinsky  1999; Nimchinsky et al.  1995; Raghanti et al.  2015). 
VENs have been found in the deep portion of cortical layer V or 
sublayer Vb in all studies on Homo sapiens. Other sectors, such as 
the dorsolateral prefrontal cortex and the occipital pole, have been 
explored; however, the presence of VENs has not been confirmed 
there (Fajardo et al.  2008; González-Acosta et al.  2018; Raghanti 
et al. 2015). The density and size of their soma differ from one cor-
tical region to another, as does their biochemical profile (Cobos & 
Seeley  2015; González-Acosta et al.  2018; Stimpson et al.  2011). 
Based on our literature review, we consider that the circumscribed 
location of VENs in human limbic cortical regions suggests that they 
could play a broad functional role, ranging from the generation of 
autonomic responses to emerging cortical functions of greater phy-
logenetic derivation such as social cognition and mind theory.

The following scientific literature databases were used to search 
for bibliographic material: PubMed, Scopus, Lilacs and Google 
Scholar. The search terms used were ‘von Economo Neurons’, ‘VENs’, 
‘spindle cells’, ‘fusiform cells’ and ‘corkscrew cell’. The search was not 
limited to a specific time period; we included all articles published 
on the subject, from the first article reporting on these cells in 1926 
(von Economo 1926) to the most recent article published in 2021. 
We found a total of 45 articles that fill inclusion criteria (see Table 1) 
and discarded 158 documents:15 reviews, 2 theses, 130 duplicates, 
4 perspectives or opinions and 7 articles that did not refer to mor-
phological findings on these neurons (see Figure 1).

2  |  DISCOVERY AND REDISCOVERY OF 
VON ECONOMO NEURONS

Although ‘fusiform cells’ were described in the second decade of the 
20th century by Constantin von Economo (von Economo 1926), an 
Austrian psychiatrist and neurologist, and currently bear this name in 
his honour (Allman et al. 2005), VENs had already been observed by 
other neuroanatomists. For example, Betz noticed their presence in 
the cingulate gyrus and emphasized their large size, compared with 
nerve cells in the same cortical layer (Betz 1881). In the first decade 
of the 20th century, Ramón y Cajal highlighted their prevalence in 
the infragranular layers of the cingulate gyrus and the insula (Ramón 
y Cajal, 1901). Recent reviews of the evolution of this neuronal type 
reported that Hammarberg observed them in 1895 in the ‘Gyrus 
Centralis Anterior’, a region that corresponds in contemporary neu-
roanatomic nomenclature to the precentral gyrus (Butti et al. 2013; 
Hammarberg  1895). Ngowyang reported the presence of VENs in 
the subiculum and entorhinal cortex in 1936 (Ngowyang  1936). 
However, there was a long silent period during which VENs seemed 

to fall outside the focus of interest of neuroscientific studies. It was 
not until the second half of the last decade of the 20th century that 
Nimchinsky et al. provided a detailed description of VENs with novel 
qualitative and quantitative data (Nimchinsky  1999; Nimchinsky 
et al. 1995). From this rediscovery of VENs (Nimchinsky et al. 1995) 
until the present, they have been found in two additional cortical lo-
cations in humans (Fajardo et al. 2008; González-Acosta et al. 2018), 
and other studies have described their biochemical profile (Cobos 
& Seeley  2015; Stimpson et al.  2011) and vulnerability to certain 
pathologies (Brüne et al.  2010; Kaufman et al.  2008; Santillo & 
Englund 2014; Santos et al. 2011).

3  |  CY TOMORPHOLOGIC AL AND 
HISTOLOGIC AL CHAR AC TERISTIC S THAT 
DEFINE VENs

There is currently a relative consensus on the cytomorphological 
characteristics of VENs, based on descriptions by various authors. 
VENs have a large fusiform cell body (always larger than that of 
the pyramidal neurons with which they share a laminar location). 
Single broad and low-branched dendritic processes extend from 
the apical and basal poles of the cell body (Allman et al.  2002; 
Nimchinsky 1999). The diameter of the initial segment of the VEN 
dendritic process is usually similar to that of its cell body, giving the 
neuron a cylindrical appearance in which it is difficult to distinguish 
the end of the soma from the beginning of the process. The api-
cal and basal VEN dendritic processes extend perpendicular to the 
pial surface and the subcortical white matter, respectively (Allman 
et al. 2002; Fajardo et al. 2008). Apparently, it is not the topology 
of the apical dendrite that morphologically distinguishes VENs from 
other neurons. In general, the basal part of the body axis is helical, 
and the perisomatic characteristics that distinguish them are the 
rather thick origin of the apical stem and the gradual narrowing of 
the stem (Banovac et al. 2019). These cytomorphological character-
istics, and their variations, have resulted in various appellations in-
cluding fusiform, spindle, corkscrew and rod cells (Figure 2) (Allman 
et al. 2002; Allman et al. 2011; Butti et al. 2013; von Economo 1926).

Watson et al. compared in detail the dendritic arborization of 
VENs with that of the pyramidal neurons located in the same cor-
tical layer of the human frontoinsular cortex and anterior cingulate 
cortex. They reported that the dendritic arborization of VENs was 
radial, long and narrow, with the apical and basal processes homo-
geneous in terms of branching, length and number of intersections. 
They found no significant differences in the number of dendritic 
spines between apical and basal processes, with a maximum spine 
density at 190–240  μm from the soma. The length of VEN den-
drites was 2.5 times shorter than that of pyramidal neurons (Watson 
et al. 2006).

However, Banovac et al. analysed sections of BA24 stained 
with rapid Golgi and Golgi-Cox in brain tissue of five adult human 
specimens and found a high dendritic spine density on all side 
branches and on the branches arising from the basal stem ending. 
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The described dendritic spines had a mushroom shape and were rel-
atively long, and no mushroom-shaped dendritic spines were found 
on the VEN soma (Banovac et al.  2019). It has been reported, for 
this same area, that spine density varies according to its proximal 
and distal location, the latter varying between 0.85 and 4.2 (Correa-
Júnior et al. 2020).

The large size of the VEN soma has always been a predominant 
feature of their morphology. However, this is not an invariant fea-
ture in the different cortical regions where they are present. A study 
of layer V of the human anterior cingulate cortex (BA24) showed 
that VENs have a soma average volume of 20,822 μm3, reaching a 
size 4.6 times larger than that of pyramidal soma in the same layer 
(Nimchinsky  1999). In contrast, a more recent study proposed la-
belling these cells as VEN 1, VEN 2 and VEN 3, according to their 
morphology in BA24, with axial lengths of 37.5  μm, 44.1  μm and 
43.8 μm, respectively (Correa-Júnior et al. 2020).

A comparison of the soma area of VENs in the dorsomedial 
portion of BA9 and BA24 indicated that VENs are smaller in BA9 
(536  μm2  ±  161.5) than in BA24 (627.5  μm2  ±  96.92) (González-
Acosta et al. 2018). We recently found that VENs are also located 
on the medial surface of the human frontopolar cortex. In our study, 
the VEN soma area was measured on an average of 369.29 μm2 in 
this region, as opposed to 257.11 μm2 for pyramidal cells in the same 
layer; that is, the VEN:pyramidal cell size ratio was approximately 1.5 
(González-Acosta et al. 2018). These data suggest that the size of the 
VEN cell body varies according to the cortical region where these 
cells are located and that they are smaller in the frontal pole. Despite 
presenting regional variations, VENs are always larger than the py-
ramidal neurons with which they share a laminar location (Figure 2).

In the human cerebral cortex, fusiform morphology is not exclu-
sive to a neuronal subtype. In fact, different subtypes of cortical in-
terneurons with a spindle-shaped soma, such as double bouquet cells 
and bipolar cells, have also been described (Markram et al. 2004). 
Fusiform cells have been observed in lamina VI that appeared to be 
simply smaller than VENs. Studies that have compared the size of 
VEN soma in layer V with fusiform cell soma in layer VI have con-
firmed that in the anterior cingulate cortex, VEN can reach up to 
12 times the size of fusiform cells (Nimchinsky 1999). In the frontal 
pole, the tendency of VENs to be larger than the fusiform cells of 
lamina VI remained constant; however, the size difference was only 
approximately 1.9 times (Figure 2) (González-Acosta et al. 2018).

Among the diverse studies undertaken in humans, there are 
significant variations in the reported data regarding the number of 
VENs, both within and between regions of the cerebral cortex (Butti 
et al. 2014; Fajardo et al. 2008; González-Acosta et al. 2018). For 
example, it has been reported that the proportion of VENs ranged 
between 0.56% and 1.38% of total neurons in the anterior cingu-
late cortex (Allman et al. 2011). We found that VENs corresponded 
to 3% of the total neuronal population of sublayer Vb in BA24 
(Fajardo et al. 2008). The maximum value reported for this cortical 
region was 13% (Raghanti et al. 2015). Allman et al. reported that 
VENs corresponded to 1.2% of neurons in the frontoinsular region, 
whereas Raghanti et al. found that VENs corresponded to 11% of 
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neurons in layer V, this being the maximum percentage of VENs re-
ported for this cortical region to date (Allman et al. 2011; Raghanti 
et al.  2015). The percentage of VENs reported in BA9 was 0.5% 
(Fajardo et al. 2008). In the medial region of BA10, we found that the 
percentage of VENs with respect to pyramidal neurons in sublayer 
Vb varied significantly between the cerebral hemispheres, ranging 
from 0.27% to 0.34% in the left hemisphere and from 0.62% to 
1.54% in the right hemisphere (González-Acosta et al. 2018). These 
are the lowest reported amounts of VENs to date. In conclusion, 

these data suggest that VEN density decreases on a gradient to-
wards the frontal pole, away from the cingulate gyrus. In addition, 
the distribution of VENs presents an interhemispheric asymmetry 
(see Table  1), with greater density towards the right hemisphere 
(González-Acosta et al. 2018), a trend that has also been observed 
in other species (Evrard et al.  2012). Another interesting recently 
described trend is that of a greater abundance of VENs in the crests 
of the gyri rather than in the walls of the sulci (González-Acosta 
et al. 2018; Raghanti et al. 2015).

F I G U R E  1  PRISMA flowchart displaying the literature research

F I G U R E  2  Laminar location and morphological characteristics of human VENs. The diagram on the left shows the location of VENs in 
the deep part of layer V. The images on the right show the morphology of a pyramidal neuron (a), a fusiform neuron in layer VI (b) and three 
morphological variants of VENs (c, d and e). The size of the soma of these illustrated neurons maintains the relative proportions found in 
cortical tissue
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4  |  HUMAN CORTIC AL REGIONS WITH 
VENs

There are descriptions of VENs from the temporal, frontal and insular 
lobes of humans. Other anatomists mentioned these cells prior to von 
Economo, referring to a neuronal type with characteristics similar to 
those of VENs (including morphology, cortical and laminar location) 
found in the anterior regions of the cingulate and the insula (Figure 3), 
predominantly in layer V (Betz  1881; Hammarberg  1895; Ramón y 
Cajal, S. 1901). After 1926, von Economo conducted an exhaustive 
analysis at the cortical level, confirming the presence of VENs exclu-
sively in the deep layers of the same cortical regions (von Economo & 
Koskinas 1925). Subsequently, other anatomists also made brief men-
tion of cells with the typical morphology of VENs, always in the afore-
mentioned cortical sectors (Ramón y Cajal, S.  1901). Recently, the 
presence of VENs was confirmed in cortical areas BA24 (Nimchinsky 
et al.  1995) and in the anterior region of the insula also known as 
agranular insula or frontoinsular cortex according to Brodman’s no-
menclature and other cytoarchitectonic maps. Some authors reported 
that VENs were located in a specific cytoarchitectonic area of the in-
sula called the ‘lateral agranular area’, whereas other authors stated 
that according to their findings, VENs could reach sectors character-
ized as disgranular (Allman et al. 2010; Evrard et al. 2012; Horn 2020; 

Morel et al. 2013). In all previous studies, the location of these neu-
rons was restricted to the deep portion of layer V or sublayer Vb 
(Nimchinsky 1999). In 2015, a search for VENs in broad sectors of the 
cortex of several animal species was undertaken; VENs were found 
in numerous locations, including the polar regions of the frontal and 
occipital lobes. Until that time VENs had not been observed in these 
sectors of the human cerebral cortex (Raghanti et al. 2015).

Although a large number of studies coincide with a circumscribed 
location of VENs in the anterior regions of the cingulate and insu-
lar cortex, a review published by Butti et al. revealed that in 1936, 
Ngowyang reported the existence of these cells in the subiculum 
and entorhinal cortex, which constitutes a great change in the pat-
tern of location previously described (Ngowyang 1936). According 
to that review, VENs are not neurons confined to the insula and an-
terior cingulate cortex but could also be located in the basal and me-
dial portions of the temporal lobe (Butti et al. 2013).

It is now known that these neurons are also located on the medial 
surface of the human frontal lobe (Figure 3). VENs were identified in 
2008 on the medial surface of the superior frontal gyrus (BA9), ex-
pressing neuronal nuclei (NeuN) and microtubule-associated protein 2 
(MAP2) (Fajardo et al. 2008). In the same study, the presence of VENs 
in other areas of the lateral surface of the prefrontal cortex, such as 
BA46, BA45 and BA10, as well as in the occipital pole (BA17) was 

F I G U R E  3  Cortical areas with confirmed presence of VENs. The image on the left shows the location of VENs on the medial surface 
of the cerebral hemispheres, including BA9, BA10 and BA24. We wondered about the possibility that other areas of the medial surface of 
the frontal lobe, for example BA32, also have VENs. The image on the right shows the insula along with a magnification of it to indicate the 
location of VENs in the frontoinsular region. Each illustrated cortical area shows variations in the quantity and size of the soma of VENs
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ruled out. Until 2014, several studies were carried out on the human 
frontal pole searching for these neurons with negative results (Fajardo 
et al. 2008; Raghanti et al. 2015); nevertheless, we carried out a new 
exploration focused on the medial surface of the frontal pole because 
we considered it a plausible location is given anatomical, evolutionary 
and connectivity criteria. In this new search, the presence of VENs in 
the polar region of medial BA10 was evidenced (Figure 3). VENs of the 
medial region of the human frontal pole have the same morphological 
features and laminar location described previously, with the exception 
that their size and density were considerably smaller than those of 
other cortical regions (González-Acosta et al. 2018).

According to our literature review on the morphological char-
acteristics of VENs, in 33 out of 45 articles, human brain tissue was 
analysed exclusively; in 10 of these articles, non-human animal brain 
tissue was studied, and in the two remainings, both brain tissue from 
human and non-human animals. Only 2 of the 45 articles consider 
VEN in layer III. Most of the original studies (34 of 45) of VENs have 
been carried out in the anterior cingulate gyrus (BA24); and in the 
insula (24 of 45), six have been carried out in the frontopolar cortex 
(including BA10), and seven have considered other regions of the 
cerebral cortex (BA9, BA25, dorsolateral prefrontal cortex, hippo-
campus, motor cortex, sensory cortex, visual cortex and auditory 
cortex). Nine original studies on VENs have evaluated possible struc-
tural asymmetries in their distribution (see Table 1).

5  |  BIOCHEMIC AL PROFILE OF VON 
ECONOMO NEURONS

The biochemical characteristics of VENs were first indicated by their 
intense immunostaining for non-phosphorylated neurofilament pro-
teins; this constituted indirect evidence of a robust axon that could 
participate in the transfer of information to distant sectors of the 
cortical grey matter (Nimchinsky et al. 1995; Stimpson et al. 2011). 
Subsequently, a study found projection neurons in layer V of the 
frontoinsular cortex labelled intensely by the bombesin peptides 
neuromedin B (NMB) and gastrin-releasing peptide (GRP) includ-
ing VENs and fork cells (Allman et al. 2011). The peptides NMB and 
GRP participate peripherally in the release of digestive enzymes, 
muscle contraction in peristalsis and the organization of immuno-
logical mechanisms in response to the intake of potentially harm-
ful substances (Jensen et al.  2008). It has been suggested that in 
the central nervous system, in structures such as the insula, these 
peptides could be involved in visceral interoceptive integration with 
higher mental functions such as motivation and decision-making 
(Allman et al.  2011). The same study found that the protein en-
coded by the gene DISC1 resulted in strong staining on the soma 
and dendritic processes of VENs. In some specimens, about 90% of 
VENs were DISC1-positive, while other types of neurons located in 
the different cortical layers only reached 36% (Allman et al. 2011). 
DISC1 is a gene that participates in the regulation of phenomena 
such as cell proliferation, differentiation and migration as well as in 
the definition of dendritic architecture. The dendritic organization of 

neurons is mediated by the suppression of the growth of secondary 
and tertiary branches, and therefore, DISC1 could be decisive for 
one of the morphotypic characteristics of VEN: a dendritic process 
derived from each pole of the soma with few ramifications (Allman 
et al. 2011; Cobos & Seeley 2015; Duan et al. 2007).

A study analysed the expression of the proteins cAMP-
dependent activating-transcription factor 3 (ATF3), interleukin 4 
receptor (IL4Rα) and NMB in the anterior cingulate cortex of 21 
hominids (including Homo sapiens) (Stimpson et al. 2011). As previ-
ously described, the layer V cells showed the highest immunoreac-
tivity (IL4Rα 83%, ATF3 81%, NMB 82%), with VENs showing the 
highest expression for each of these three markers compared with 
other neural types in the same layer. Labelling for ATF3 and IL4Rα 
was significantly higher in Homo sapiens than in the other hominids, 
reaching a percentage of 31% and 66% of the total VEN population, 
respectively (Stimpson et al. 2011). ATF3 is a member of the family 
of mammalian activation transcription factors (CREB), characterized 
by its response to cAMP. This factor has been involved in functions 
such as spinal cord pain modulation, and it is also known to partic-
ipate in the body’s reactions to stressful events (Chen et al. 1996; 
Latrémoliere et al. 2008). Since the activity of the anterior cingulate 
cortex has been related to the unpleasant perception of pain, the 
presence of ATF3 in this cortical region could be part of the ele-
ments necessary for such a function (Rainville et al. 1997; Stimpson 
et al. 2011). IL4Rα is known to be a type of cytokine I receptor to 
which interleukin-4 and -13 are linked to the regulation of immu-
noglobulin E, helping as a mediator of allergic responses in the im-
mune system, particularly asthma, responses to which the anterior 
cingulate cortex has also been linked (Rosenkranz & Davidson 2009; 
Wenzel et al. 2007). In the central nervous system, it has been linked 
to inflammatory reactions and some studies associate it with schizo-
phrenia (Nawa et al. 2000; Nawa & Takei 2006).

Cobos and Seeley, using in situ hybridization and immunohis-
tochemistry for NeuN in five human subjects of 3  months, 6 and 
65 years of age, examined the expression of seven transcription fac-
tors (SOX5, TBR1, FEZF2, CTIP2, LMO4, FOXP1 and SATB2) in the 
anterior cingulate cortex and the anterior insula to obtain evidence 
of the possible axonal projection targets of VENs, taking into ac-
count that the manifestation of these markers may be specifically 
associated with intrahemispheric (Cabeen et al.  2020) and com-
missural cortico-cortical, cortico-thalamic and other non-thalamic 
cortico-subcortical efferents (Cobos & Seeley 2015). According to 
the results of that study, although VENs responded predominantly 
to transcription factors expressed in neurons whose axons extend 
distally (in the direction of non-thalamic subcortical structures), they 
could also do so more proximally, including axons that pass through 
the corpus callosum (Cobos & Seeley 2015).

Recently, an analysis of the gene expression of layer V neurons 
in the frontoinsular cortex and anterior cingulate cortex through 
sequencing of nuclear RNA added to evidence that supports the 
hypothesis that the VEN axons mainly reach extra-telencephalic 
structures (Hodge et al. 2020; Yang et al. 2019). Despite these bio-
chemical, cytomorphological and anatomical profiles, to date, it 
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has not been possible to identify the target of the axons of VENs 
or the characteristics of their firing. Electrophysiological and bio-
chemical techniques to obtain this valuable information require 
experimentation with live specimens, and no animal species that 
possess VENs and are susceptible to experimentation have yet been 
found. Moreover, it has been suggested that VENs could possess 
a new and uncharacterized cortical monoaminergic function that 
sets them apart from most other neurons in mammalian layer V 
(Dijkstra et al. 2018). To date, only six original studies where they 
have attempted a biochemical characterization of VENs, through 
techniques such as transcriptomics, in situ hybridization, RNA se-
quencing and immunohistochemistry have been found (see Table 1).

6  |  VEN VULNER ABILIT Y IN 
NEUROPATHOLOGIC AL ENTITIES

A particular vulnerability of VENs has been observed in several types 
of neuropsychiatric disorders, such as the case of autism, for which 
experimental evidence indicates that there are changes in the quan-
tity, location and morphology of VENs. In some studies, subjects 
who had been diagnosed with autism had lower overall cell density 
and almost total absence of VENs (Uppal et al. 2014), whereas, in 
other studies, there was an increase in the proportion of VENs com-
pared with the number of pyramidal cells (Santos et al. 2011; Simms 
et al.  2009). In subjects with autism, there may be an atypical lo-
cation of VENs in addition to morphological changes such as wider 
soma (Santos et al. 2011; Simms et al. 2009; Uppal et al. 2014). On 
the other hand, atypical localization of VENs in the agenesis of the 
corpus callosum and an important reduction in the number of these 
cells in the frontoinsular region and the anterior cingulate cortex 
in these same subjects has also been found (Kaufman et al. 2008). 
Another study showed a reduction of VENs in the anterior cingu-
late cortex in cases of early onset schizophrenia (Brüne et al. 2010). 
This study found that patients who committed suicide had a pattern 
of greater grouping of VENs compared with psychotic patients who 
died from natural causes (Brüne et al. 2011).

For example, regarding mental disorders, significant macro-
scopic anatomical changes were found in the amygdala and ante-
rior insula of alcoholic individuals as well as a decrease in VENs of 
approximately 60% (Senatorov et al. 2015). A significant increase in 
lysosomal aggregations in VENs compared with controls was also 
described in patients diagnosed with schizophrenia and bipolar dis-
order (Krause et al. 2017).

Seeley et al. were the first to report a specific involvement of 
VENs in the anterior cingulum and frontoinsular cortex of patients 
with frontotemporal dementia (FTD), compared with patients with 
Alzheimer’s disease (AD) and control subjects (Seeley et al.  2006). 
Their findings indicated a selective loss of this neuronal type, with a 
decrease of up to 74%, and also changes in morphology. Other stud-
ies confirmed the selective vulnerability of VENs in FTD using a larger 
sample; they reported a neuronal degeneration of 53% and 41% 
compared with control subjects and patients with AD, respectively 

(Kim et al. 2012; Santillo et al. 2013). On the other hand, Gefen et al. 
showed an increase in VENs in SuperAgers compared with control 
subjects and/or a significant decrease in neuronal loss compared with 
the two pathologies (Gefen et al. 2018). It is worth noting that the 
study by Tan et al. did not report significant VENs loss in any of the 
AD cases with associated frontotemporal dementia (Tan et al. 2019).

The same study pointed to the specific and predominant cellular 
fragility of VENs, compared with neurons in layers II and III (Santillo 
& Englund 2014). A predominant alteration of VENs was also found 
recently in a behavioural variant of frontotemporal dementia with 
C9orf72 expansion (C9-bvFTD), in which there was a 57% reduc-
tion in VENs (Gami-Patel et al. 2019). Another study analysed spe-
cifically this same variant (C9-bvFTD) but did not find significant 
differences in VEN density compared with ALS cases and controls 
(Yang et al. 2017). A disproportionate aggregation of the tau protein 
was also recently reported in the V337 M, A152T and IVS10 + 16 
variants (Lin et al. 2019). There was an early and disproportionate 
aggregation of TDP-43 in the VENs and hairpin cells of this type 
of patient; this was correlated with the anatomical and clinical seri-
ousness of the case, including the loss of emotional empathy (Nana 
et al. 2019).

In a study of patients with familial dysautonomia, an altered dis-
tribution of VENs compared with controls was observed. VENs were 
found in the orbitofrontal and inferior frontal cortex; they were lo-
cated in layer Va and were organized in small clusters near the blood 
vessels (Jacot-Descombes et al. 2020).

7  |  DISCUSSION

Our literature review showed that VENs have been observed in lim-
bic sectors of the human temporal, frontal and insular lobes. There 
is a consensus regarding the presence of VENs predominantly in the 
anterior portions of the cingulum and the insula in humans. VENs 
found in the temporal lobe have been located in the entorhinal cor-
tex and the subiculum; however, we do not know details of their 
morphology, density, laminar location or biochemical profile. In the 
case of the frontal lobe, in addition to the anterior cingulate cortex, 
VENs have been characterized on the medial surface, specifically 
in the superior frontal gyrus (BA9) and the pole (BA10) (Figure  3) 
(Fajardo et al. 2008; González-Acosta et al. 2018).

The review by Butti et al. (Butti et al.  2013) stated that 
Hammarberg reported the presence of VENs on the lateral surface 
of the frontal lobe as early as 1895 (in the ‘Gyrus Centralis Anterior’). 
However, we interpret that report differently. We believe that what 
Hammarberg reported was the presence of giant neurons that 
extended to the layer of the fusiform cells. In this sense, the fusi-
form cell layer refers to layer VI, and the so-called ‘Gyrus Centralis 
Anterior’ corresponds to the precentral gyrus, that is the primary 
motor cortex or BA4. Therefore, it is likely that the giant cells that 
Hammarberg observed correspond to Betz motor neurons, which 
may eventually reach the superficial part of layer VI, and not to VENs 
(Hammarberg 1895).
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Human non-limbic areas of the frontal (BA4, BA44/45, BA46 and 
lateral BA10) and occipital lobes have been searched, but no VENs 
have yet been found in those areas (Fajardo et al. 2008; Raghanti 
et al. 2015). As for the density of these neurons, we find that the 
data described by different authors are heterogeneous, even for 
the same cortical sector (Fajardo et al.  2008; González-Acosta 
et al.  2018; Raghanti et al.  2015). Regarding the differences ob-
served in the number of VENs found in different studies that have 
focused on the same regions of the cerebral cortex, that is the an-
terior cingulate gyrus and the rostral insula, it is not possible to es-
timate whether such differences are due to anatomical variants of 
the cell population studied, or if they are due to the methodologies 
used to mark and quantify them. However, the data available to date 
suggest that the density of VENs increases in the vicinity of the 
‘limbic lobe’ (anterior cingulate and frontoinsular cortices) and de-
creases in the rostral and dorsal direction within the medial surface 
of the frontal lobe, with a lower density in BA9 and a minimum value 
at the frontal pole (Figure 3) (Fajardo et al. 2008; González-Acosta 
et al. 2018; Raghanti et al. 2015). Similarly, there are reports of VENs 
being distributed mainly on the crest of the gyri in the human cere-
bral cortex as well as a marked asymmetry in density in favour of the 
right hemisphere (González-Acosta et al. 2018; Raghanti et al. 2015).

There is greater consensus regarding the morphological features 
of VENs, specifically the fusiform aspect of the soma and the grad-
ual narrowing of the proximal dendritic tree, which extends almost 
imperceptibly from the cell body (Fajardo et al.  2008; González-
Acosta et al. 2018; Markram et al. 2004; Triarhou 2013). Regarding 
size, it has always been observed that VENs are larger than pyra-
midal neurons of layer V, and they seem to be larger in the cortical 
sectors where they are more abundant. There even seems to be a 
correspondence between the number of neurons and their size, with 
larger neurons at the locations where they are most abundant (the 
anterior regions of the cingulum and the insula), whereas those in 
BA9 are less frequent and smaller, and those in BA10 are the small-
est and most infrequent (Figure 3) (Fajardo et al. 2008; González-
Acosta et al. 2018; Raghanti et al. 2015).

Based on the data compiled in this review, we propose that 
VENs can be considered a particular cell type or a modification 
of pyramidal neurons that could fulfil a functional role associated 
with the limbic regions where they have been found in humans. 
Although it has been reported that VENs are ubiquitous in other 
species, in Homo sapiens, they have a restricted and specific lo-
cation. Initially, it was proposed that VENs could correspond to a 
neuronal archetype that supports functionally the mental abilities 
of superior primates (and mammals with highly complex social be-
haviour), such as interoception, theory of mind and the genera-
tion of rapid responses when faced with changing social contexts. 
Some findings in humans that supported this idea are the location 
in the anterior portions of the cingulum and the insula, the con-
nections and functions associated with these cortical regions, the 
asymmetry favouring the right hemisphere (preferably associated 
with sympathetic activity) and their selective vulnerability in pa-
thologies in which there is a deterioration of the faculties involved 

in social interaction. However, it was found that these neurons 
have a ubiquitous cortical distribution in a wide number of species, 
much less derived in evolutionary terms than primates and ceta-
ceans, and it has been suggested that VENs represent a special-
ization of pyramidal neurons in response to functional demands. 
It has also been suggested that the morphology of VENs arises in 
response to the mechanical pressure resulting from the extension 
and gyrification of the cerebral cortex. A finding that would sup-
port this last idea is the fact that VENs are mostly distributed on 
the crests of the gyri; however, it cannot explain why VENs are 
also found in some lissencephalic species (Raghanti et al. 2015).

As previously mentioned, whether VENs correspond to a mod-
ification of pyramidal cells or a specific neuronal type, we consider 
that VENs may fulfil a specific functional role associated with limbic 
cortical structures because they are restricted to those areas in hu-
mans. This is supported by evidence that has shown that VENs pre-
dominantly make connections with subcortical limbic and autonomic 
structures (Ibegbu et al. 2015).

Although they predominantly express transcription factors as-
sociated with cells whose axon projects to subcortical structures, 
VENs may also establish interhemispheric and even intrahemi-
spheric cortical–cortical connections mainly located on the medial 
surface of areas BA9 and BA10. An interesting fact that points in the 
same direction are that the soma of VENs is smaller in the frontal 
pole, so they would support an axon that would not extend over 
long distances. The cortical structure and the relative distribution of 
projection neurons in medial areas BA9 and BA10 (Barbas & Rempel-
Clower 1997) allow us to suggest that VENs establish connections 
with cortical areas of greater hierarchical order such as those of 
the dorsolateral prefrontal cortex. Functionally, this would lead us 
to think that VENs are important in triggering not only autonomic 
responses but also responses associated with emerging higher cog-
nitive functions such as the theory of mind and metacognition. In 
effect, this connectivity pattern would constitute a bridge between 
purely limbic contents and executive functions of the highest level of 
complexity. This idea is consistent with the selective vulnerability of 
VENs in the neuropsychiatric pathologies mentioned in this review. 
To corroborate this hypothesis, it would be necessary to perform 
new studies on VENs in other areas where they would be expected 
to exist (e.g. medial surface of the frontal lobe) (Figure 3) as well as in 
other clearly non-limbic structures to confirm their absence.
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