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Abstract
The brain has many connections with various organs. Recent advances have demonstrated the existence of a bidirectional 
central nervous system (CNS) and intestinal tract, that is, the brain-gut axis. Although studies have suggested that the brain 
and lung can communicate with each other through many pathways, whether there is a brain–lung axis remains still unknown. 
Based on previous findings, we put forward a hypothesis: there is a cross-talk between the central nervous system and the 
lung via neuroanatomical pathway, endocrine pathway, immune pathway, metabolites and microorganism pathway, gas 
pathway, that is, the brain–lung axis. Beyond the regulation of the physiological state in the body, bi-directional communica-
tion between the lung and the brain is associated with a variety of disease states, including lung diseases and CNS diseases. 
Exploring the brain–lung axis not only helps us to understand the development of the disease from different aspects, but also 
provides an important target for treatment strategies.
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Introduction

The central nervous system (CNS) broadly communicates 
with other systems, such as intestines, lungs, kidneys and 
other organs. The brain-gut axis is a typical example, which 
refers to the two-way pathway communicated between the 
CNS and the intestinal nervous system, involving nerve, 
endocrine and immunity system (Cryan and Dinan 2012). 
Intestinal microorganisms play an essential role in the brain-
gut axis. The products of various intestinal microorganisms 
can affect the development, maturation, disease and other 

aspects of CNS (Cryan and Dinan 2012; Needham et al. 
2020).

Lung is a vital organ for humans. The blood flow of lung 
is abundant, which is essential for gas exchange. Brain is the 
most oxygen-consuming organ in human body. Therefore, 
diseases in lung can easily influence brain. For example, 
pneumonia aggravated brain injury after stroke (Johnston 
et al. 1998). Besides, diseases of brain can affect lung. In 
the first 36 h after admission, 15.6% of stroke patients devel-
oped acute lung injury (ALI), 7.8% developed pneumonia or 
bronchitis during hospitalization (Bai et al. 2017). Compared 
with healthy controls, forced expiratory volume in one sec-
ond (FEV-1), forced vital capacity (FVC), peak expiratory 
flow (PEF) and chest offset were significantly decreased in 
stroke patients (Corlateanu et al. 2018).

Additionally, related clinical studies have demonstrated 
that chronic obstructive pulmonary disease (COPD) is asso-
ciated with cerebrovascular disease by increasing white 
matter lesions (Lahousse et al. 2015). A Rotterdam study 
also indicated that patients with COPD had a higher risk 
of ischemic stroke and hemorrhagic stroke (Portegies et al. 
2016). The above studies suggest a communication network 
between CNS and lung. Therefore, similarly to the brain-gut 
axis, we propose a conception of “brain–lung axis”. The fol-
lowings are the evidences illustrating the possible pathway 
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of brain–lung axis, which is helpful to deepen the under-
standing of pathophysiology between CNS and lung.

Main Text

The brain–lung axis consists of the following components: 
CNS, autonomic nervous system, hypothalamus–pitui-
tary–adrenal (HPA) axis, immune system, metabolites, 
bacterial microbiota and gas.

Neuroanatomical Pathway

The bi-directional communication neuroanatomical path-
way of the brain–lung axis is autonomic nervous system. It 
is mainly innervated by the parasympathetic nerve (vagus 
nerve) and the sympathetic nerve of the upper thoracic seg-
ment of the spinal cord, in which the vagus nerve plays a 
dominant role. The vagus nerve consists of 80% afferent 
fibers and 20% efferent fibers. It transmits information to the 
gastrointestinal tract, respiratory system and cardiovascular 
system (top–down) and receives feedback from the internal 
organs (bottom-up). When the vagus nerve is stimulated, it 
can release neurotransmitters acting on the receptors, result-
ing in bronchial smooth muscle contraction, glandular secre-
tion, vascular congestion, and mucosal swelling. On the con-
trary, the activation of sympathetic nerve can relax bronchial 
smooth muscle, inhibit glandular secretion, contract small 
blood vessels, and subside mucosal swelling. The innerva-
tion of autonomic nerves is essential for the physiological 
activities of the lung.

The sensory nerve fibers of the vagus nerve conduct the 
feedback of lung, which in turn regulates the activity of the 
respiratory system. For example, the cough reflex receptor 
sends impulses from the nerve endings to the cough center 
of the medulla oblongata along the afferent fibers of the 
vagus nerve, which in turn, removes the secretion or for-
eign matter such as bacteria through coughing to clean the 
respiratory tract (Nonomura et al. 2017). The respiratory 
system also has other receptors, such as stimulation recep-
tors that receive a variety of physical and chemical stimuli 
and tension receptors that sense alveolar dilation or edema. 
These receptors transmit stimuli to the CNS through the 
vagus nerve.

Owing to the different fibers of vagus nerve, it can trans-
mit the information from CNS to lung, and conduct the feed-
back signal of lung to CNS, which is an important neural 
pathway of the brain–lung axis. Under pathological condi-
tion, the vagus nerve also participates in the bi-directional 
communication pathway between brain and lung. Vagus 
nerve is related to allergic diseases such as asthma, rhinitis 
and COPD, leading to symptoms such as sneezing, cough-
ing, excessive mucus secretion, and bronchoconstriction 

(De Virgiliis and Di Giovanni 2020). Traumatic brain injury 
(TBI) or stroke can directly damage the vagus nerve. The 
vagus nerve participates in physiological functions such as 
swallowing and cough reflex, so damage to the vagus nerve 
will result in the weakening or loss of these functions. For 
instance, dysphagia increases the incidence of aspiration, 
and the weakness of cough reflex decreases respiratory 
secretion as well as excretion of bacteria, which promotes 
pulmonary infection (Liu et al. 2018). Similar to brain-gut 
axis, the destruction of brain tissue caused gastrointestinal 
motility disorders in mice, increased intestinal permeability, 
and promoted the migration of harmful intestinal microbes 
(Durgan et al. 2019).

In addition, the vagus nerve involves in cholinergic 
anti-inflammatory pathway (CAP), which plays a neuroim-
mune role (Pereira and Leite 2016). The nerve endings of 
the vagus nerve distribute in various organs and perceive 
physiological changes of the target organs through differ-
ent types of receptors. The inflammatory cytokines activate 
the vagus nerve afferent fibers, and then the signal is trans-
mitted through the vagus nerve to the solitary nucleus of 
medulla oblongata. The signal in solitary nucleus projects 
to the dorsal motor nucleus of vagus nerve and is transmit-
ted to the nerve endings through the efferent nerves (Tracey 
2009). Near the immune cells located in reticuloendothelial 
tissue, the efferent nerve endings release ACh which binds to 
macrophages and other special surface ACh receptors such 
as α7nAChR, then transmits signal into the cells to regu-
late the production of anti-inflammatory cytokines (Pereira 
and Leite 2016). The nerve endings of vagus nerve widely 
distribute in the lung. Hence, vagus nerve can act on lung 
diseases through CAP. Ida A J Giebelen et al. discovered 
that selective α7nAChR activation decreased the release 
of TNF-α in lipopolysaccharide (LPS) challenged lung tis-
sue of mice (Giebelen et al. 2007). Vagotomy or deficiency 
of α7nAChR aggravated pulmonary infection, inflamma-
tion and injury, and increased the level of proinflammatory 
cytokines in blood, suggesting that pulmonary parasympa-
thetic inflammatory reflex may locally limit the degree of 
pulmonary infection and inflammation (Huang et al. 2019). 
These phenomena can be observed in the brain-gut axis, in 
which targeting CAP can relieve intestinal diseases. Enzeni-
lin, a partial agonist of α7nAChR, has recently been reported 
to alleviate colitis induced by trinitrobenzene sulfonic acid 
(TNBS) and dextran sodium sulfate (DSS) (Salaga et al. 
2016). Vagus nerve stimulation therapy also effectively 
improves TNBS-induced colitis in mice, indicating that the 
intervention of CAP of vagus nerve might be a potential 
treatment for lung-related diseases (Bonaz 2007).

Interestingly, the dysfunction of CAP of vagus nerve 
contributes to the development of lung disease. The ACh 
secreted by the vagus nerve may bind to α7nAChR on fibro-
blasts and lead to the proliferation of fibroblasts and promote 



993Cellular and Molecular Neurobiology (2023) 43:991–1003 

1 3

the progression of pulmonary fibrosis (Pieper et al. 2007). In 
the bleomycin-induced pulmonary fibrosis mice model, uni-
lateral vagotomy alleviated collagen deposition and pulmo-
nary fibrosis by reducing fibrotic cells and cytokines (TGF-β 
and IL-4) (Song et al. 2015). In addition, the incidence of 
brain injury and stroke-associated pneumonia (SAP) dis-
play an α7nAChR-dependent manner, indicating that the 
activation of CAP may be beneficial by reducing systemic 
inflammation, yet it may also induce immunosuppression in 
lung, which increases the incidence of bacterial pneumonia. 
Cynthia S. Samary et al. found that focal ischemic stroke 
decreased the phagocytic ability of the alveolar macrophages 
in rats, which was closely related to SAP (Samary et al. 
2018). In short, the CAP of vagus nerve is a double-edged 
sword in the brain–lung axis. Proper activation promotes the 
regression of inflammation, but overreaction may aggravate 
infection and even promote the occurrence of lung disease. 
Therefore, it is necessary to clarify the specific molecu-
lar mechanisms of CAP of vagus nerve to make a precise 
regulation.

Neuropeptides are considered to be the critical mediators 
of communication between neurons and effector cells. Pre-
vious studies have suggested that neuropeptides are mainly 
secreted by neurons, but now it has been found that certain 
immune cells could secret neuropeptides, and these neuro-
peptides are thought to be powerful regulators of immune 
response (Snoek et al. 2010). Neuropeptides participate in 
brain-gut axis communication, from neuropeptides and neu-
rotransmitters secreted by the brain to intestinal peptides 
secreted by gastrointestinal endocrine cells. Neuropeptides 
and peptide hormones are vital in the bi-directional com-
munication in the brain-gut axis (Holzer and Farzi 2014). 
Nevertheless, the role of neuropeptides in the brain–lung 
axis needs to be further illustrated.

Pulmonary neuroendocrine cells (PNECs), the only 
innervated respiratory epithelial cells, as a portion of 
the airway epithelial system in lung, scatter in the air-
way epithelium (Boers et al. 1996). PNCs contain a sig-
nificant number of secretory granules loading a variety of 
hormone-like peptides. The typical neuropeptides in the 
lungs are bombesin/gastrin-releasing hormone, calcitonin/
calcitonin gene-related peptide, endothelin, substance P, 
cholecystokinin, etc., which may be significant mediators 
of the brain–lung axis. Studies have demonstrated that the 
number of PNECs increases in many lung diseases (e.g., 
COPD, bronchial asthma, small cell lung cancer [SCLC]), 
suggesting that it may be relevant to the pathophysiologi-
cal mechanism of lung diseases (Chen et al. 2019a, b; Gu 
et al. 2014; Sui et al. 2018). Gu et al. found that the dis-
tribution of serotonin and neuropeptide receptors changed 
in the lungs of COPD patients, suggesting that increased 
PNEC-dependent chemotactic response may be one of the 
reasons for the change in sensitivity to volatile stimuli in 

COPD patients (Gu et al. 2014). By quantifying the size 
of PNECs and PNECs clusters in total PNECs, proximal 
bronchioles or distal respiratory bronchioles, it was found 
that the number of PNECs in asthma samples was higher 
than that in healthy controls, suggesting that the increase 
of PNECs, especially the PNECs expressing calcitonin 
gene-related peptide, may cause allergic asthma (Sui et al. 
2018). In addition, PNECs act as accurate airway sen-
sors that elicit immune responses through neuropeptides. 
Under the action of lung injury factors, PNECs proliferate 
massively and secrete various neuropeptides, coordinat-
ing with other epithelial cells. This alteration influences 
the chemotaxis of inflammatory cells and the secretory 
function of inflammatory cells. Allergen or ozone acti-
vates the sensory neurons in lung to release neuropeptides 
(e.g., tachykinin), which dilate blood vessels, increase the 
permeability of post-capillary venules, induce the adhe-
sion of neutrophils, and promote neurogenic inflammation 
(O'Connor et al. 2004). Tachykinin directly or indirectly 
induces bronchus contraction by activating postgangli-
onic cholinergic nerves and mast cells, which may be rel-
evant to the hyperresponsiveness of the respiratory tract. 
(O'Connor et al. 2004) However, after nociceptive stimu-
lation (e.g., TBI), vagal afferent neurons may secret sub-
stance P that mediates pulmonary vasodilation, vascular 
permeability, neutrophil initiation and migration (Yang 
et al. 2014). Conversely, blocking substance P receptor, 
the NK-1 receptor, inhibits the increase of neutrophils, 
reduces the bacterial clearance and promotes the occur-
rence of bacterial pneumonia (Douglas and Leeman 2011). 
In the ischemia–reperfusion model, denervated capsaicin-
sensitive c fibers may aggravate pulmonary inflammation 
by depleting the calcitonin gene-related peptide (CGRP) 
of capsaicin-sensitive c fibers, suggesting that neuropep-
tides may protect the lungs from inflammation and injury 
(Ji et al. 2013). Those results indicated that neuropeptides 
perform different roles in different diseases, but the spe-
cific regulatory mechanism of neuropeptides remains to 
be further studied.

What’s more, neuropeptides such as neuropeptide Y 
(NPY) and peptide YY (PYY), are involved adjusting 
intestinal inflammation in the gut-brain axis. Trinitroben-
zenesulfonic acid-induced colitis increased the level of 
NPY in brain and plasma, while gastrointestinal inflam-
mation enhanced anxiety and depression-related behavior, 
yet these changes were reversed by deletion of NPY and/
or PYY (Holzer and Farzi 2014). It is suggested that lung 
diseases may act on CNS through neuropeptide feedback 
(Fig. 1).

The regulation of sympathetic nerve system (SNS) in lung 
mainly involved in the stress state, secreting catecholamines 
through the sympathetic adrenomedullary system (SAS), 
which will be discussed in the endocrine system below.
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Endocrine Pathway

HPA axis and SAS are the central neuroendocrine regula-
tory systems responding to stress. HPA axis is composed of 
hypothalamus, pituitary and adrenal glands, communicating 
through a feedback interaction pathway. As the main part 
of the neuroendocrine system, it participates in regulating 
physiological activities and stress response. Stimulation of 
HPA axis is precipitated by release of corticotropin-releasing 
hormone (CRH) from the hypothalamus onto the pituitary 
gland to allow adrenocorticotrophic hormone (ACTH) to 
enter systemic circulation. Circulation ACTH acts quickly 
and briefly to stimulate the adrenal cortex to rapidly syn-
thesize and secrete corticosteroids such as glucocorticoid 
(GC). During fetal development, GC released by the HPA 
axis is indispensable to the maturation of the fetal lung. 
The HPA axis is activated and releases GC under stressor. 
The acute response may inhibit immune response in air-
way by immunosuppression and anti-inflammation which 
involves in mobilizing circulating lymphocytes and granu-
locytes, inhibiting the activity of macrophages, the prolif-
eration of T cells, and the response of Th1 cells (Abelson 
et al. 2010). Mental illness also influences the function of 
the lung through the HPA axis. Cohen S et al. found that 
chronic, persistent stress, for example, prolonged restraint 
stress, could induce immunosuppression and lead to a tilt 
towards an anti-inflammatory immune cell phenotype that 
increases susceptibility to diseases (e.g., upper respiratory 
tract infection) (Cohen et al. 2012); while stress-relieving 
factors (e.g., social support) can reverse the suppression of 
immune function (Kang et al. 1998). In addition, GC can 

directly induce the apoptosis of epithelial cells and weaken 
epithelial cells layer in the airway (Dorscheid et al. 2001). 
For instance, psychological stress influences the function of 
mucociliary clearance in the lung (Trueba and Ritz 2013). 
Studies have shown that repeated stress could change mucus 
properties, thus reducing the clearance of mucociliary, and 
increase the incidence of asthma, respiratory tract infection 
and other diseases (Trueba and Ritz 2013). This is consist-
ent with the brain-gut axis, in which the activation of the 
HPA axis weakens the mucosal barrier in the intestinal tract 
and impacts the composition of intestinal microflora (Farzi 
et al. 2018).

Conversely, the respiratory system affects the HPA axis. 
Long-term hypercapnia (e.g., COPD) increases cortisol 
by stimulating the HPA axis, which may be mediated by 
the activation of paraventricular nucleus of hypothala-
mus through the projection from  CO2-sensitive brainstem 
nuclei such as ventrolateral medulla and locus coeruleus 
(Abelson et al. 2010). Previous studies have suggested that 
healthy lung is sterile, but NGS sequencing has confirmed 
that there are complex and diverse bacterial communities 
in the mucosa of the lower respiratory tract (Wypych et al. 
2019). In brain-gut axis, some studies showed that owing 
to the increased permeability of the intestinal barrier and 
microbial-driven proinflammatory state, intestinal microor-
ganisms could activate the HPA axis, indicating that micro-
organisms in the lung may be able to activate the HPA axis 
through a mechanism similar to the brain-gut axis (Carabotti 
et al. 2015). However, more reliable and direct evidence is 
needed to demonstrate this mechanism. Furthermore, neu-
roendocrine tumors, for instance, SCLC, can release ACTH, 

Fig. 1  Vagus nerve could regu-
late bronchial smooth muscle 
contraction, glandular secre-
tion, vascular congestion, and 
mucosal swelling in lung, while 
it could accept the stimulation 
from lung. Furthermore, vagus 
nerve releases acetylcholine 
(ACh), acting on ACh receptors, 
α7nAChR, of immune cells, 
which is the CAP. Pulmonary 
neuroendocrine cells, which 
are controlled by vagus nerve, 
secret neuroendocrine fac-
tors that regulate the physi-
ological function of lung. 5-HT 
5-hydroxytryptamine, NPY 
neuropeptide Y, PNECs pulmo-
nary neuroendocrine cells, PS 
substance P, PYY peptide YY
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increasing the level of GC, which results in clinical manifes-
tations such as full moon, acne, hypertension, and hypoka-
lemia (Gandhi and Johnson 2006). Beyond ACTH, these 
neuroendocrine tumors release other endocrine hormones 
such as antidiuretic hormone and growth hormone, which 
participate in the brain–lung axis. Interestingly, the HPA 
axis is not just a “bad guy”, it senses the homeostasis of 
lung, and then regulates the physiological balance of lung 
by accepting feedback on the HPA axis through multiple 
complex mechanisms. Pulmonary infection itself is a kind 
of stress. When the HPA axis responds to stress improperly, 
the loss function of inhibitory effect will contribute to the 
development and maintenance of respiratory diseases under 
airway inflammation state.

SAS is mainly relevant to excitement and vigilance dur-
ing stress. The intense excitement of this system is involved 
in acutely responding to stress in body, mediating a series 
of metabolic and cardiovascular compensatory mechanisms 
to overcome the threat under stressors or the disruption of 
internal environment. After activation, the level of catecho-
lamines in plasma elevates, including epinephrine, norepi-
nephrine (NE), and dopamine. NE increases the mobility 
and proliferation of bacteria, elevates the expression of 
bacterial toxins, and enhances the pathogenicity of bac-
teria under stress, resulting in the increased incidence of 
pulmonary infection, which is consistent with NE and gut 
(Trueba and Ritz 2013). NE increases the proliferation of 
Gram-negative bacteria in intestinal mucosa and promotes 
the translocation of bacteria (Diard et al. 2009). What’s 
more, NE changes protein and metabolism state of bacteria 
in the respiratory tract of pigs, in which bacteria become 
more proliferative and cause infection (Oneal et al. 2008). 
In addition, NE can enhance the toxicity of specific patho-
gens and opportunistic bacteria, which ultimately promotes 
the occurrence of infection and exacerbates asthma symp-
toms (Trueba and Ritz 2013). Besides, the immune system 
is regulated by NE, another mechanism in the brain–lung 
axis. NE inhibits the maturation and activation of Th1 cells, 
and suppresses immune response, which ultimately increases 
the risk of infection. When the SNS is activated after stroke, 
the release of catecholamines may reduce the level of tumor 
necrosis factor-α (TNF-α) and increase the level of interleu-
kin-10 (IL-10) through β-adrenergic receptors on immune 
cells. Blocking SNS with β-adrenergic receptor antagonist 
can reduce infectious complications (e.g., pneumonia) and 
mortality, indicating the importance of catecholamines in 
immunosuppression after stroke (Prass et al. 2003). Fur-
thermore, catecholamines are significant in tumor-related 
diseases. Yun Xia et al. found that catecholamines could 
reshape the phenotype of tumor-associated macrophages, 
which promoted the polarization of macrophages to tumor-
supported M2 phenotype, increased the level of proan-
giogenic factors and immunosuppressive cytokines, and 

inhibited the expression of proinflammatory cytokines (Xia 
et al. 2019). The above changes facilitate the immune escape 
of tumor cells which may promote the development of lung 
cancer. It hints that the inhibition of SAS may be the target 
of lung cancer by altering the function of macrophages, pre-
venting angiogenesis, and reshaping the immunosuppressive 
microenvironment that supports the growth of invasive lung 
cancer.

Overall, the intimate connection and functional integra-
tion between respiratory system and endocrine system may 
be necessary for lung development and maintaining steady-
state defense response, but excessive activity of endocrine 
system could accelerate lung injury (Fig. 2).

Immune Pathway

The immune system is composed of immune organs, immune 
cells, and immune molecules, which coordinate with various 
systems to maintain the stability of internal environment, 
suggesting that CNS and the lung can be indirectly con-
nected through the immune system. It is now convinced that 
various CNS diseases directly lead to lung lesions through 
the immune system. Shan Wu et al. found that inflammatory 
cytokines were released into blood through blood–brain bar-
rier (BBB) after intracerebral hemorrhage, which increased 
the infiltration of neutrophils from the peripheral circulation 
into lungs, destroying alveolar and secondary lung injury 
(Wu et al. 2006).

Due to the destruction of BBB after ischemic stroke, 
some necrotic substances (e.g., damage-associated molecu-
lar patterns [DAMPs]) are released into the blood (Kim et al. 
2006). These substances may inhibit the peripheral immune 
response, for example, immune failure triggered by high 
mobility group box 1 (HMGB1)—receptor for advanced 
glycation end (RAGE) signal pathway, which increases 
the risk of post-stroke-associated pneumonia (Kim et al. 
2018). Besides, the CNS indirectly communicates with 
lung through the autonomic nervous system and endocrine 
system, which regulate the immune system. As mentioned 
above, the CAP is related to controlling the immune function 
of macrophages through Ach released from nerve endings 
and nAChRα7 (Pereira and Leite 2016). For the endocrine 
system, activation of the HPA axis or SAS is bound to mul-
tiple endocrine substances, e.g., GC and catecholamines. GC 
can mobilize lymphocytes and granulocytes in circulation, 
inhibit the activity of macrophages, reduce the proliferation 
of T cells, restrain the immune response of Th1 cells immu-
nity, and decrease the expression of proinflammatory fac-
tors and mediators (e.g., IL-1, IL-2, IL-6, TNF- α) (Abelson 
et al. 2010). Catecholamines regulate immune cells through 
β-adrenergic receptors (Prass et al. 2003). Overall, those 
alterations of endocrine hormones may increase the risk of 
pulmonary infection.
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For lung diseases, such as lung infections, the body ini-
tiates an immune response to remove invasive pathogens. 
Nevertheless, over-activated immune systems could damage 
CNS. Ji Chen et al. demonstrated that circulating inflamma-
tory markers, e.g., matrix metalloproteinases (MMP-9) and 
TNF- α, could invade CNS through different mechanisms, 
activating glial cells and exacerbating nerve cells death 
in rats with chronic pulmonary infection induced by LPS 
(Chen et al. 2019a, b). Another research has shown that the 
level of systemic cytokines and neutrophils increased after 
ALI, leading to dysfunction of other organs, including the 
brain (Bickenbach et al. 2009). Furthermore, cytokine storm 
may be one of the primary inducements of CNS complica-
tions following the infection of novel coronavirus (De Vir-
giliis and Di Giovanni 2020). Paraneoplastic neurological 
syndrome refers to the abnormal production of antibodies 
against neuronal antigens expressed in tumors, which could 
damage neuronal tissue far from the tumor (Gandhi and 
Johnson 2006). The common primary tumor is SCLC, which 
promotes the production of multiple antibodies such as Anti-
CRMP/Anti-CV2 antibody, Anti-Hu antibody, Anti-amphi-
physin antibody, etc. These antibodies would attack the brain 
regions that express these antigens in CNS, thus leading 
to various pathological changes of CNS, e.g., encephalo-
myelitis, limbic encephalitis, subacute cerebellar degen-
eration, and other autoimmune encephalitis (Kazarian and 
Laird-Offringa 2011). Recently, the intestinal environment 

has attracted much attention as a potential site for initiat-
ing self-reactive T cells during spontaneous experimental 
autoimmune encephalomyelitis (Berer et al. 2011). However, 
Francesca Odoardi et al. confirmed that the lung is the site 
where autoreactive T cells reactivate (Odoardi et al. 2012). 
Following local stimulation of the lung, autoreactive T cells 
proliferate strongly and enter the CNS to induce autoim-
mune diseases after assuming the characteristics of migra-
tion, which may be the mechanism of recurrence of multiple 
sclerosis induced by respiratory tract inflammation. Further-
more, Hosang et al. found that intratracheal infusion of neo-
mycin disturbed the bacterial community of lung, resulting 
in the reduced reactivity of microglia, the reduced recruit-
ment of inflammatory cells, and blocked the development 
of EAE (Hosang et al. 2022). The article demonstrated that 
the imbalance of pulmonary microorganisms changes the 
susceptibility of CNS to autoimmune diseases by changing 
the immunoreactivity of microglia. In short, CNS and lung 
can communicate directly or indirectly through the immune 
system, indicating immune system as a significant part in the 
communication of brain–lung axis (Fig. 3).

Metabolites and Microorganism Pathway

Except for neuropeptides, the metabolites of CNS or lung in 
various diseases are essential regulators for the interconnec-
tion between brain and lung axis. After acute brain injury 

Fig. 2  The endocrine system in brain–lung axis. The CRH is release 
from the hypothalamus onto the pituitary gland to allow ACTH to 
enter systemic circulation. Circulation ACTH acts quickly and briefly 
to stimulate the adrenal cortex to synthesize and secrete corticoster-
oids such as GC. GC plays an immunosuppression role in immune 
cells, induces the apoptosis of epithelial cells and reduces the abil-
ity of mucociliary clearance. Interestingly, lung cancer, for instance, 

SCLC, could secret ACTH which negatively regulates the HPA axis. 
Besides, the increase of catecholamine is induced by the activation 
of SAS after stress. NE increases the mobility and proliferation of 
bacteria, elevates the expression of bacterial toxins, and enhances the 
pathogenicity of bacteria. Furthermore, NE inhibits the maturation 
and activation of Th1 cells, and suppresses immune response, which 
ultimately increases the risk of infection
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(e.g., ischemic stroke or traumatic brain injury), necrotic 
neurons can release a series of substances (e.g., HMGB1, 
HSP, ATP, S100B protein, etc.) that are secreted into the 
blood through the damaged BBB (Santos et al. 2016). These 
products may be important mediators of the brain–lung axis, 
promoting proinflammatory responses, and resulting in lung 
injury. HMGB1 was detected in peripheral blood after 3 h in 
MCAO mice (Kim et al. 2006). Ruiting Li et al. found that 
HMGB1 inhibited the activity and function of Treg cells, 
regulated the polarization of macrophages and promoted 
inflammation, and then reduced LPS-induced ALI, suggest-
ing that increasing HMGB1 in circulation after ischemic 
stroke may induce pulmonary edema by regulating pulmo-
nary immune cells. However, the direct evidence still needs 
further research (Li et al. 2020). HMGB1 not only regulates 
lung function in ischemic stroke, and vice versa. Injection of 
LPS after 24 h in MCAO mice to simulate post-stroke infec-
tion, Il-Doo Kim et al. found that the expression of HMGB1 
in peripheral blood increased significantly (Kim et al. 2015). 
HMGB1 aggravated the cerebral infarction volume and neu-
rological function by coordination with LPS. Although little 
evidence demonstrated that the up-regulated HMBG1 origi-
nates from the peripheral or CNS, it suggests that pulmonary 
infection after stroke could deteriorate neurological function 
through HMGB1-LPS interaction. The mechanism remains 
to be further studied. Absolutely, the interaction of these 
metabolites is not specific to the brain–lung axis, but also 

exists in the brain-gut axis. For example, Diego F Niño et al. 
found that in mice with necrotizing enterocolitis, the acti-
vation of TLR4 signal pathway in intestinal epithelial cells 
increased HMGB1, which in turn promoted the activation 
of microglia and neurological dysfunction in the brain (Niño 
et al. 2018).

The metabolites of CNS may communicate between CNS 
and lung through carrier, the exosome. Exosome is a kind 
of extracellular vesicle with lipid bilayer membrane, rich in 
protein, lipid, and nucleic acid. It can mediate cell–cell sig-
nal transmission. It has been found that exosomes can trans-
mit signals between CNS and peripheral nerve cells through 
cerebrospinal fluid, and connect peripheral circulation with 
CNS through BBB, suggesting that exosome and their 
contents may also transmit messages between brain–lung 
axis (Bátiz et al. 2015). EVs increase in circulation after 
TBI, related to ALI. These vesicles carrying proinflamma-
tory cytokines can be absorbed by pulmonary endothelial 
cells, which promote the release of IL-1 β and IL-18 by 
mediating the activation of inflammasome, and eventually 
lead to apoptosis of pulmonary endothelial cells (Kerr et al. 
2020). It was also reported that the circulating exosomes in 
patients with ischemic stroke could reflect the proinflamma-
tory status and could activate macrophages, demonstrating 
that exosomes may also involve in ALI (Couch et al. 2017). 
Conversely, exosomes in lungs could pass through the BBB 
to transmit information into CNS. Exosome participates 

Fig. 3  The Immune pathway in brain–lung axis. The releasing of 
DAMPs after brain injury could regulate immune system, which 
relates to the increased risk of pneumonia and ALI. Besides, the 
brain regulates lung by immune system through the CAP, HPA axis 
and SAS. Conversely, the over-activated immune systems after pneu-
monia could damage CNS. Furthermore, SCLC, which promotes the 
production of multiple autoantibodies, would attack the brain regions 

that express these antigens in CNS, thus leading to a variety of patho-
logical changes in CNS, e.g., encephalomyelitis, limbic encephalitis, 
subacute cerebellar degeneration, and other autoimmune encepha-
litis. BBB blood–brain barrier, HMGB1 high mobility group box  1, 
MMP-9 matrix metalloproteinases, RAGE receptor for advanced gly-
cation end
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in the metastasis of lung cancer into CNS. Dong-Xue Gan 
et al. confirmed that exosomes derived from lung cancer 
cells were absorbed by brain vascular endothelial cells 
which transmit inhibitory signals to microglia, resulting in 
the decrease of M1 phenotypic microglia and the increase 
of M2 phenotypic microglia (Gan et al. 2020). And the shift 
of microglia phenotypes contributes to the brain metastasis 
of lung cancer cells. However, most of the research about 
exosomes are vitro, and the direct evidence that they com-
municate with each other in the brain–lung axis is insuffi-
cient. Furthermore, since exosomes in biological fluids are 
derived from various types of cells in the body, it is neces-
sary to seek organ and/or cell type-specific exosome markers 
to distinguish their sources.

Bacteria and their products could act as direct mediators 
in brain–lung axis. Cryptococcus neoformans is a fungal 
pathogen, which enters the body mainly through inhala-
tion. It can cause pneumonia and spread to CNS inducing 
meningoencephalitis (Miyazato 2016). Cryptococcus can 
infect CNS not only directly through transcellular path-
way, but also through infected macrophages that enter CNS 
(Miyazato 2016). Other indirect evidences showed that lung 
microbiota could lead to CNS disease. COPD changes res-
piratory microflora and increases the risk of Parkinson’s dis-
ease (PD) and Alzheimer’s disease (AD) (Bell et al. 2019). 
Bordetella pertussis infection in mice is associated with 
inflammation and β deposition, while respiratory pathogen 
Klebsiella pneumoniae is significantly associated with AD 
(Bell et al. 2019). Interestingly, in multiple sclerosis, pertus-
sis may alleviate EAE through an IL-10-dependent mecha-
nism (Edwards et al. 2015). The outcome of CNS injury 
caused by different pulmonary pathogenic microorganisms 
may involve complex immune mechanisms. In addition, the 
virus is a small molecular pathogenic microorganism that 
can directly infect neurons by reverse axonal transport, and 
finally influence neurological function. For instance, virus 
that infects lung can enter CNS directly through the vagus 
nerve and reach the breath center in the brain, which in turn 
aggravates respiratory symptoms (e.g., respiratory distress) 
(De Virgiliis and Di Giovanni 2020).

LPS is a product of gram-negative bacteria. Study showed 
that after alveolar perfusion of LPS, it could be detected in 
blood, suggesting that the product of bacteria after pulmo-
nary infection may directly enter the circulation (Sze et al. 
2014). Other studies confirmed that in ALI caused by inhala-
tion of LPS, similar microflora was detected in the lungs in 
bronchoalveolar lavage (BAL) and the blood, indicating that 
LPS could facilitate the migration of bacteria from the lungs 
into the blood system. After ischemic stroke, LPS damages 
the mitochondrial function of endothelial cells, aggravates 
the damage of BBB, and promotes the recruitment of neu-
trophils to infarct site (Doll et al. 2015). What is more, LPS 
is a recognized pathogenic factor of AD, which is used to 

construct the animal model of AD. Peripheral injection of 
LPS can activate astrocytes and microglia, and promote the 
expression of cyclooxygenase-2, inducible nitric oxide syn-
thase, and proinflammatory cytokines in the brain (Catorce 
and Gevorkian 2016). The accumulation of amyloid precur-
sor protein, amyloid β-peptide and hyperphosphorylated τ 
protein and the aggravation of memory impairment were 
observed in LPS-treated APP transgenic mice (Kitazawa 
et al. 2005; Sheng et al. 2003). Yuhai Zhao et al. reported 
that E. coli-rich LPS, extracted from the neocortex and 
hippocampus of AD brain might induce AD through the 
mechanism of neuroinflammation, indicating that respira-
tory tract-derived LPS may be involved in AD (Zhao et al. 
2017). Interestingly, using LPS to simulate pulmonary infec-
tion delays the occurrence of EAE by stalling Th17 cells 
in lung, which may involve different immunomodulatory 
mechanisms (Kanayama et al. 2016).

Bacterial products can also enter the peripheral blood in 
the form of vesicles. Outer-membrane vesicles (OMVs) are a 
kind of vesicles derived from the outer membrane of Gram-
negative bacteria (Schwechheimer and Kuehn 2015). They 
are similar to EVs in size, structure, and biological function, 
which are produced by mammalian cells (Yu et al. 2018). 
OMVs carry LPS which is the most abundant immunostim-
ulatory component. PAMP, consisting of outer membrane 
porin, flagellin, and peptidoglycan, is another carrier that 
can stimulate immunity (Bauman and Kuehn 2006; Renelli 
et al. 2004). Microbial-derived OMVs transfer a wide range 
of materials, including bioactive proteins, lipids, nucleic 
acids, and virulence factors, to neighboring bacteria or 
host cells (epithelial cells, endothelial cells, immune cells) 
(Zhao et al. 2021). This biological information transmission 
plays a vital role in both intracellular (bacterial-bacterial) 
interactions and inter-kingdom (bacterial-host) communica-
tion. The peripheral bacterial OMVs directly or indirectly 
induce central neuropathy. Before OMVs reach the brain, 
they must cross the barrier between lung and brain. Some 
studies suggested that bacterial OMVs could pass through 
BBB directly. Intracardiac administration of actinomycetes 
OMVs could go through BBB and increase the expression of 
TNF-α through TLR8 and NF-κB signaling pathways (Han 
et al. 2019). The increase of TNF-α in CNS may induce 
inflammatory CNS diseases e.g., AD. The Aggregatibacter 
actinomycetemcomitans OMVs could successfully trans-
fer extracellular RNA to monocytes/microglia in CNS and 
induce neuroinflammation related to the up-regulation of 
IL-6 through NF-κB signal pathway (Ha et al. 2020). In 
addition, OMVs from the circulatory system could come 
across the meninges and activate microglia (Han et  al. 
2019). These studies hint that OMVs enter CNS, followed 
by activating immune cells (e.g., astrocytes and microglia) 
through immune receptors, TLRs, triggering proinflamma-
tory cytokines and causing neuronal damage. Interestingly, 
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it was reported that oral fluorescein OMVs could be detected 
in the hippocampus of mice, while vagotomy blocked the 
transport of fluorescence-bound OMVs, suggesting that 
bacterial EVs could cross the BBB through the vagus nerve 
(Lee et al. 2020). These OMVs in CNS will lead to diseases 
in brain. It is generally believed that Gram-positive bacteria 
cannot produce OMVs, but recent studies have isolated lipid 
bilayer vesicles from Gram-positive bacteria (Cuesta et al. 
2021). These vesicles are similar in shape to Gram-negative 
bacteria. Differently, the vesicles do not contain LPS, but 
contain cytoplasmic components (e.g., peptidoglycans and 
proteins), suggesting that these vesicles and contents may be 
mediators in the brain–lung axis90. However, there is still a 
lack of evidence that OMVs directly enter CNS from lung. 
Hence, further research is needed (Fig. 4).

Gas Pathway

The lung is the main organ for gas exchange, in which the 
external gas could influence other organs through the res-
piratory tract. Multiple evidences showed that CNS diseases 
were closely related to air pollution. If living in conditions 
with a high level of urban air pollution, the cognitive func-
tion of the elderly decreases, the risk of autism, AD and PD, 
and the incidence of stroke increases (Mumaw et al. 2016). 
The common air pollutant is ozone, which changes brain-
stem neurons, leading to memory impairment, sleep pattern 

interruption, cognitive decline, social behavior changes, and 
motor activity deficits (Gackière et al. 2011). Ozone changes 
CNS function via various mechanisms, which may even-
tually activate microglia and induce the proinflammatory 
environment in the brain. Acute ozone inhalation increases 
circulating stress hormones by activating the SAS and HPA 
axis. Adrenalectomy reduces the lung response induced by 
ozone (Henriquez et al. 2019). Overall, air pollution may not 
directly reach the brain to adjust its function, but through the 
immune system, endocrine system and other mechanisms.

In addition, a variety of lung diseases cause hypoxemia 
and hypercapnia, e.g., COPD, ARDS, interstitial pneumonia, 
and severe pulmonary infection, which are closely related to 
CNS disease. In the physiological state, when the blood oxy-
gen content decreases, the cerebral blood flow will increase 
to maintain the brain oxygen demand. However, the perive-
ntricular white matter is located at the watershed of the cer-
ebral artery, and patients with COPD are in a state of chronic 
hypoxemia, which causes low perfusion of white matter 
(Qin et al. 2020). This may be the potential mechanism that 
COPD is more likely to induce white matter hyperintensity 
(WMH). Chronic hypoxia is considered to be related to mul-
tiple pathological changes of AD. Hypoxia increases the pro-
duction of Aβ, enhances the phosphorylation of τ, induces 
neuroinflammation, increases the production of reactive oxy-
gen species, and promotes abnormal mitochondrial function 
(Zhang et al. 2019). What is more, hypercapnia aggravates 

Fig. 4  Metabolites and microorganism pathway in brain–lung axis. 
The metabolites of CNS or lung in various diseases are essential reg-
ulators for the interconnection between brain and lung axis. Necrotic 
substances which are released after brain or lung injury could dam-
age each other through immune system. What is more, exosomes 
may be communicating messages between brain and lung. Bacteria 

and their products [e.g., outer membrane vesicles (OMVs) and LPS] 
may be another communicating message. The bacteria or LPS after 
lung infection could directly invade brain, resulting in CNS infection. 
Besides, OMVs carrying bacteria toxins could damage BBB, activate 
glial cells and promote neuroinflammation. AD Alzheimer’s disease
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cognitive impairment caused by hypoxemia (Liu et al. 2020). 
Interestingly, mild hypercapnia alleviates brain injury, and 
this protective effect is involved in regulating apoptosis regu-
latory proteins. Moderate hypercapnia also improves neuro-
logical dysfunction, yet severe hypercapnia aggravates brain 
edema and injury (Deng et al. 2020). The above discoveries 
show that hypoxemia or hypercapnia play different roles in 
different diseases of CNS, which may involve different regu-
latory pathways. The detailed regulatory mechanism needs 
to be further studied.

Conclusion

In this article, we review the intercommunication 
between the brain and lung, and propose the concept of 
“brain–lung axis”. We discuss the possible mechanisms 
involving nerves, endocrine, immunity, neuropeptides, 
microorganism and metabolites, gases and other pathways 
that participate in the brain–lung axis. Besides, these 
communication channels are not isolated, but closely 
related. For instance, the vagus nerve is not only the neu-
ral communication pathway between the brain–lung axis, 
but is also indirectly involved in regulating the immune 
system and neuropeptides. Nevertheless, the functions 
of the above pathways are similar in other organs. But 

the lungs have their own characteristics. Exploring the 
brain–lung axis not only helps us to understand the devel-
opment of the disease from different aspects, but also pro-
vides an important target for treatment strategies (Fig. 5).
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