Table 3. Comparison of the O2, N2, and CO2 Adsorption Capacities of GAC-10-500 (Functionalized GAC) versus Other AC and CMS Works.
| adsorbent | manufacturer | T (K) | P (kPa) | qm (mmol/g) | Qst (kJ/mol) | isotherm model | kinetic model | ref |
|---|---|---|---|---|---|---|---|---|
| O2 | ||||||||
| CMS 3A | Takeda | 273–323 | 1300 | 1.37–2.32 | 18 | Langmuir | isothermal diffusion | (78) |
| 1.74–2.66 | – | VSMa | ||||||
| CMS 5A | Takeda | 273–323 | 1300 | 1.64–2.78 | 15.5 | Langmuir | ||
| 2.23–2.85 | – | VSM | ||||||
| CMS | Bergbau-Forschung | 303 | 1300 | 1.62 | – | Langmuir | ||
| 1.74 | – | VSM | ||||||
| CMS 3A | Takeda | 293 | 75.73 | 0.266 | 17.5 | Langmuir | dual-resistance | (66) |
| 303 | 76.66 | 0.233 | 17.5 | Sips | ||||
| 313 | 67.19 | 0.174 | 17.5 | Toth | ||||
| CMS | Takeda | 293–313 | 1500 | 3.48–3.63 | 15.5 | Langmuir | volumetric | (79) |
| 4.55–4.83 | – | Langmuir–Freundlich | ||||||
| AC | Norit | 303 | 3150 | 5.82 | – | Langmuir | dual-resistance | (80) |
| AC | Kuraray | 293–323 | 1000 | 5.70 | 16.1 | DSLb | isothermal dual resistance | (40) |
| 5.17 | ||||||||
| CMS | 293–323 | 3.27 | 18.2 | Sips | ||||
| 2.89 | ||||||||
| GAC-10-500 | Jacobi | 298–328 | 1000 | 3.1–5.77 | 25 | Sips | fractional-order | this work |
| N2 | ||||||||
| CMS | Changxing Shanli Chemical Materials | 303–343 | 700 | 7.25 | 17.5 | MSLc | dual-resistance | (81) |
| 2.61 | 17.6 | Toth | ||||||
| CMS 3k | Takeda | 308 | 2000 | 10.6 | 15.93 | MSL | dual-resistance | (82) |
| CMS 3A | Takeda | 273–323 | 1300 | 1.68–1.97 | 13.5 | Langmuir | dual-resistance | (78) |
| 1.81–2.12 | ||||||||
| CMS 5A | Takeda | 303 | 1300 | 1.58–2.14 | – | VSM | ||
| 1.9–2.46 | ||||||||
| CMS | Bergbau-Forschung | 293–313 | 1300 | 1.48 | – | Langmuir | ||
| 1.59 | VSM | |||||||
| CMS 3A | Takeda | 293 | 70.53 | 0.263 | 23 | Langmuir | dual-resistance | (66) |
| 303 | 66.93 | 0.204 | 22 | Sips | ||||
| 313 | 75.33 | 0.195 | 22 | Toth | ||||
| CSM | Takeda | 293–323 | 1500 | 2.55–3.11 | 25.1 | Langmuir | – | (79) |
| 3.4–4.63 | – | Langmuir–Freundlich | ||||||
| AC | Kuraray | 398–318 | 1000 | 3.18–3.45 | 18.2 | Langmuir | dual-resistance | (83) |
| 3.71–4.29 | – | Sips | ||||||
| 4.61–5.6 | – | Toth | ||||||
| AC | Kuraray | 293–323 | 1000 | 3.93 | 16.5 | DSL | isothermal dual resistance | (40) |
| 2.89 | – | |||||||
| CMS | 2.44 | 16.5 | Sips | |||||
| 2.21 | – | |||||||
| CMS | Kuraray | 293–323 | 1000 | 1.72–1.99 | – | Langmuir | isothermal diffusion | (73) |
| 1.71–2.2 | 16 | Sips | ||||||
| CMS A | Air Products and Chemicals Inc., US | 303 | 101.3 | 0.325 | – | Langmuir | non-isothermal | |
| CMS 3A | Takeda | 303 | 623 | 0.217 | – | Langmuir | ||
| CMS 3A | Takeda | 303 | 825 | 1.194 | – | Langmuir | ||
| CMS 3A | Takeda | 293 | 601 | 0.284 | – | Sips | non- isothermal | |
| CMS 3K | Takeda | 298 | 101.3 | 1.37 | – | |||
| CMS-131510 | Shanli Chemical | 303 | 701.7 | 1.115 | – | |||
| GAC-10-500 | Jacobi | 298–328 | 1000 | 2.5–3.6 | 12.9 | Sips | fractional-order | this work |
| CO2 | ||||||||
| CMS A | Air Products and Chemicals Inc., US | 303 | 101.3 | 1.63 | 28 | Sips | – | (73) |
| CMS 3A | Takeda | 303 | 895 | 3.12 | – | Langmuir | linear driving force | (84) |
| CMS 3A | Takeda | 293 | 382 | 1.47 | 33 | Langmuir–Sips | non-isothermal | (85) |
| CMS 3A | Takeda | 343 | 996 | 1.08 | – | Langmuir | – | (86) |
| CMS 3A | Takeda | 293 | 191 | 2.45 | – | D–R | – | (87) |
| AC | Sud Chemie | 293 | 2068 | 8.5 | 11 | Langmuir | – | (88) |
| CMS 13X | Sud Chemie | 293 | 2068 | 5.2 | 10 | Langmuir | – | |
| CMS 4A | Sud Chemie | 293 | 2068 | 4.8 | – | Langmuir | – | |
| AC | Mahab zist | 293–358 | 1000 | 5.1–5.9 | – | Freundlich | Elovich and second-order | (21) |
| GAC-10-500 | Jacobi | 298–328 | 1000 | 4–6.3 | 14 | Sips | fractional-order | this work |
Vacancy solution model.
Dual-site Langmuir model.
Multisite Langmuir model.