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Abstract

Precision medicine relies on the idea that, for a particular targeted agent, only a subpopulation

of patients is sensitive to it and thus may benefit from it therapeutically. In practice, it is

often assumed based on preclinical data that a treatment-sensitive subpopulation is known, and
moreover that the agent is substantively efficacious in that subpopulation. Due to important
differences between preclinical settings and human biology, however, data from patients treated
with a new targeted agent often show that one or both of these assumptions are false. This

paper provides a Bayesian randomized group sequential enrichment design that compares an
experimental treatment to a control based on survival time and uses early response as an ancillary
outcome to assist with adaptive variable selection and enrichment. Initially, the design enrolls
patients under broad eligibility criteria. At each interim decision, submodels for regression

of response and survival time on a baseline covariate vector and treatment are fit; variable
selection is used to identify a covariate subvector that characterizes treatment-sensitive patients
and determines a personalized benefit index, and comparative superiority and futility decisions are
made. Enrollment of each cohort is restricted to the most recent adaptively identified treatment-
sensitive patients. Group sequential decision cutoffs are calibrated to control overall type | error
and account for the adaptive enrollment restriction. The design provides a basis for precision
medicine by identifying a treatment-sensitive subpopulation, if it exists, and determining whether
the experimental treatment is superior to the control in that subpopulation. A simulation study
shows that the proposed design reliably identifies a sensitive subpopulation, yields much higher
generalized power compared to several existing enrichment designs and a conventional all-comers
group sequential design, and is robust.
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INTRODUCTION

Physicians routinely make treatment decisions by accounting for the fact that any
treatment’s effects are modulated by known prognostic covariates such as age or disease
severity. Precision medicine is motivated by the idea that heterogeneity of patient response
to an experimental treatment, £, may be due to biological covariates that modify the effects
of Eat the cellular or molecular level. If differences in drug effects are due to genes or
proteins that affect drug-metabolizing enzymes, drug-specific transporters, or cell surface
markers targeted by £, then only a subset of “£-sensitive” patients defined by biological
covariates, such as gene or protein expression, may respond favorably to £. Precision
medicine uses biological cariates to restrict administration of drug to an identified subset of
E-sensitive patients, avoiding futile use of £in nonsensitive patients unlikely to benefit from
E.

As examples, 70-90% of hypertension patients respond to ACE inhibitors, and beta 2-
agonists for asthma work for 30-60% of patients (Abrahams and Silver, 2009). In such
settings, traditional clinical trial designs with broad eligibility criteria may be dysfunctional.
A trial design assuming homogeneity may show a small estimated £ effect because the
estimate is an average of positive outcomes of an £-sensitive subpopulation and negative
outcomes of non-£-sensitive patients. Assuming homogeneity thus may lead to the incorrect
inference that a new drug is ineffective for all patients, when in fact it is effective in a
subgroup of £-sensitive patients.

An efficient approach to evaluating a new targeted agent is a clinical trial that uses

an enrichment design that focuses on £-sensitive patients (FDA, 2012). Most existing
enrichment designs assume that an £-sensitive subgroup is known, based on preclinical
studies or limited phase 1l trial data, and enroll patients according to predetermined
eligibility criteria (Brannath et al., 2009; Jenkins et al., 2011; Mehta et a/., 2014; Kimani et
al., 2015; Rosenblum et a/., 2016; Uozumi and Hamada, 2017). Because this assumption is
often incorrect, key problems are how to use biological covariates to (1) determine whether
an £-sensitive subgroup exists, and if so identify it, and (2) determine whether £ provides
an improvement over a standard control therapy, C, in the subgroup. Simon and Simon
(2013) proposed the adaptive enrichment design, which restricts entry to an £-sensitive
patient subgroup that is modified adaptively based on interim data. They considered group
sequential (GS) trials, defined an £-sensitive subgroup using a cutoff for a numerical
biomarker, and focused on cutpoint optimization and power comparisons of adaptive versus
nonadaptive enrichment designs. Freidlin and Simon (2005) and Freidlin et a/. (2010)
proposed an adaptive signature design for a binary endpoint and used machine learning to
select £-sensitive patients.
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In this paper, we propose a GS adaptive enrichment design, AED, based on a time-to-

event variable, Y; and an early response indicator, Z, with adaptive variable selection and
enrichment. We are motivated by the facts that long-term events are rarely observed early

in the trial, but Zis observed much sooner and may be related to treatment, covariates

X, and Y. AED exploits these relationships to start adaptive enrichment early in the trial.
We assume a Bayesian model with the distribution of Y"a mixture over responders and
nonresponders, including regression models for the probability of Zand Y on x. We define
a personalized benefit index (PBI) to be a predictive probability that a patient with a given
x will benefit more from £than from C. Both regression models are updated at each interim
analysis by performing covariate selection, refitting the models using the newly selected
subvector of x to define £-sensitive patients, and using this to update the PBI and eligibility
criteria. Weights between the response and survival time components of the PBI are changed
adaptively, with more weight given to survival time as the trial progresses.

Our proposed AED makes three major contributions. First, we develop a covariate selection
method to characterize £-sensitive patients based on both Zand Y. Second, we define a

PBI based on both endpoints to quantify the comparative £-versus-C benefit of a patient
with given x, and we use this to define an adaptive enrichment rule. Third, we propose a
Bayesian GS design based on this structure, including a new test statistic that accounts for
the sequentially adaptive variable selection and resulting modification of the enrichment rule
during the trial.

Our proposed AED is motivated by a clinical trial to investigate the effect of a novel

PI3K pathway inhibitor (£) combined with olaparib for treating high-grade serous or
BRCA-mutant ovarian cancer patients. Olaparib is a potent inhibitor of poly(ADP-ribose)
polymerase (PARP), an enzyme involved in base-excision repair of single-strand DNA
breaks. Treatment with olaparib can lead to tumor regression by a process known as
synthetic lethality, which is a result of the accumulation of unrepaired DNA double-strand
breaks and an unsupportable increase of genomic instability in the cancer cells. The PI3K
pathway is involved in cellular proliferation and is often upregulated in high-grade serous
ovarian cancer. The aim of combining PARP and PI3K pathway inhibition is to generate a
synergistic treatment effect. The statistical challenge for this trial is that clinicians expect
that only a subgroup of patients will benefit from £. The study has two closely related
objectives. The first objective is to identify a genomic signature that predicts clinical
response to £ + olaparib. Mutational analysis is performed using the sequencing platform
Sequenom MassARRAY. Ten mutations related to PARP and PI3K pathway will be used as
biomarkers, x, for identifying a genomic signature characterizing an £-sensitive subgroup.
The second objective is to evaluate whether £+ olaparib is more effective than the standard
treatment, cisplatin combined with paclitaxel (C) in the identified sensitive subgroup.
Treatment efficacy is characterized by objective response (2) and progression free survival
time (). Thus, our proposed AED addresses the data structure and goals of this trial.

The remainder of the paper is organized as follows. In Section 2, we describe the
mixture model for the short-term and long-term endpoints and present the GS procedure
for performing adaptive variable selection, modifying the enrichment criterion, and doing
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treatment comparison. The proposed AED’s performance is evaluated and compared to
existing methods by simulation in Section 3. We close with a discussion in Section 4.

DESIGN STRUCTURE

We consider a comparative clinical trial with patients randomized to £(G=1)or C(G=

0) in a fixed ratio. For each patient, we assume that a covariate vector x € R” is available at
enrollment and a short-term response indicator Zand time-to-event endpoint Y are observed.
In cancer trials, Zmay be the indicator of >50% shrinkage of a solid tumor at 12 weeks
compared to baseline, and Y'typically is overall survival or progression-free survival time.
For right censoring of Yat follow-up time U when the data are evaluated for interim
decision-making, we define the observed event time Y? = min(Y,) and event indicator & =

AY<U).

In treatment arm G =0 or 1, denote (X, G, 85 =Pr(Z=1|G, X, 685), and let (/X Z,

Oy) denote the hazard function of Yat time yfor a patient with covariates x and response
indicator Z, where 8-and 8y are the model parameter vectors. At each decision in the

GS design, our proposed design adaptively selects two subvectors of x to identify patients
expected to benefit more from £than Cin terms of Zor Y. The first subvector, X, is
identified by doing variable selection in the regression model for (Z| G, x), based on the
difference in response probabilities, AAX, 8, = n(x, 1, 8, — n(X, 0, 85). The parametric
function AAx, 8,) generalizes the indicator function AX) = [r(X, 1) > (X, 0)] used by Simon
and Simon (2013) to define an enrichment subset. The second subvector, X y, is identified by
doing variable selection in the regression model for (Y| Z G, x), based on the hazard ratio
Ay(x, By) = MU, Z 8yY(/x, Z By), for y> 0. While x,and x,, may not be identical,
they may share common terms, since a covariate predictive of a higher tumor response
probability often is predictive of longer survival. To account for association, selection of

X zand Xy is not done independently, but rather are based on correlated vectors of latent
variable selection indicators. This is described in Section 2.2.

Our design enrolls a maximum of A/ patients sequentially in cohorts of sizes (..., Cx, with
Zsz 1ck = N. The schema of the design is shown in Figure 1. The design uses a Bayesian

GS test procedure including both superiority and futility stopping rules for comparing £to
Cin the most recently identified £-sensitive subset. The trial begins by enrolling patients
under broad eligibility criteria for the first cohort of ¢; patients. When the first cohort has
been enrolled and its patients’ outcomes have been evaluated, the subvectors x »and x y of

x are chosen and used to compute a PBI, given formally in Section 2.3. The PBI is used to
define the subgroup of E£-sensitive patients, and the comparative tests are defined in terms of
the E-sensitive patients. These tests possibly may terminate the trial due to either superiority
or futility, but if the trial is not stopped early then only £-sensitive patients are enrolled in
the second cohort. This process of identifying (x» X y), computing the PBI, defining the set
of E-sensitive patients, and performing the tests is repeated group sequentially until the end
of the trial. If the maximum sample size Nis reached, a final analysis is done when the last
patient has been enrolled and his/her follow-up completed.
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Below, we provide details of the probability model for (X, G, Z, Y), how sequentially
adaptive variable selection and enrichment are done, and the Bayesian GS decision-making
procedure.

Probability model

We construct a joint probability model for (Y; Z| G, x) as a mixture of the conditional
distribution of (Y| Z G, x) weighted by the marginal distribution of (Z] G, x) We will
assume that Zalways is observed before Y. However, if Y'may be observed before Zcan be
evaluated, which can arise when dealing with rapidly fatal diseases, then a model elaboration
is needed. We provide this, similarly to the mixture model of Inoue et a/. (2002), in Web
Appendix A.

For the marginal distribution of (Z1 x, G) we assume a probit model
x(x;, Gi, 07) = d)(iiTﬁZ + G,»f,»TyZ), where /=1, ..., n, indexes patients, ®(-) denotes the

. .. . . T.
standard normal cumulative distribution function, X = (l,xT)T and 07 = (ﬁ} y}) is the

regression coefficient parameter vector. Thus, Bz is the vector of covariate main effects
and yz=(yzo, ¥z1 - yzp)T is the vector of additional £-versus-C treatment-covariate
interactions, with the main experimental versus control effect yz o Denoting Z,= (4, ...,
Zn), Gp=(6Gy, ..., Gy and X,, = (xq, ..., x,,)T, the marginal likelihood of Zfor the first n

patients is

n Z
T T i
LT G X 02) = [ CD(Xi Bz + Gix; Yz)
i=1
1-2;
T T i
X{l—CD(xi ﬂZ+Gixi YZ)} .

For the conditional distribution of (Y| Z G, x) we assume a proportional piecewise
exponential (PE) hazard model (Sinha et a/,, 1999; McKeague and Tighiouart, 2000; Ibrahim
et al., 2005; Kim et al., 2007). We first specify a partition of the time axis into Mintervals s

| ;= (-1, Thd for m=1, ..., M, with a fixed time grid {zg, 71, ..., TagtSuch that O=7p < 71
<---< 00 The assumed proportional PE hazard function is

T
h(yl Z, G, x, 0y) = ¢meXp(xTﬂy+Gx ry + aYZ)
xI(yely,), m=1,..M,

with 0y = (¢1. .. by BV 17 ay)T the parameter vector, where ¢,,> 0 is the hazard on the

mth subinterval and a y is the main effect of response (Z= 1) on the hazard of Y. For each m
=1, ..., M wedefine y,= 11 IfY < -1, Y= Vi Tp1 <Y< tpand Y= 7y if y> 7,
Given this definition of y,;, the resulting PE cdf is
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M
F(y|Z, G, x, 0y) =1 —expl— Y $um—7m—1)
m=1

X exp(xTﬁY + G)?Tyy + aqu)}

for y>0.

Denote Yy, = (Y1,....Yp), 8,= (61, ..., 6y), and 6,, = (Z,,, Y. 8,), the observed data from the

first n patients in the trial. The joint likelihood function of the short-term endpoint Zand
long-term endpoint Y'is

gn(@m Gm Xn’ OZ» eY)

n 0 5[
=Z(Zy, Gy, Xy, 92)H {f(Y?| Zi, Gi, x;,6y)} o

i=1

1-6;
% {1 - F(Y!| Z, Gi’xi’OY)} I’

where {Y|Z, G, X, By) is the conditional density function of Y. The marginal likelihood
function of Y'is obtained by averaging the joint likelihood function of (Y, 2) over Z

We do Bayesian posterior computation. For 8, as in Albert and Chib (1993), using data
augmentation, based on the iid latent real-valued variables Z, ..., Z,, with Z;= 1 if and

only if Z; > 0 and Z;= 0 otherwise. We assume Z; | G;, x;. OZ~/V(£,~TﬂZ +GE vz, 1) with

prior 07 = (B2, y})T~/V(MZ, ), where p~and X ~are prespecified hyperparameters, and

the normal variance is set equal to 1 to ensure identifiability. In our simulations, we
assume vague normal priors with zero mean vector and diagonal covariance matrix with
large diagonal elements 106. An alternative approach is to use a logistic model, rather
than the probit model. In this case, Bayesian posterior computation can be carried out
efficiently using data augmentation based on the Polya—Gamma latent variable (Polson et

al., 2013). For By, we assume a normal prior on both (ﬂ;Tf y,T;)T and a yand independent

gamma distributions on ¢ = (¢1, ..., #ny), as follows: (ﬂ; y})T~/V(;4y, y), ay~AH(a. o3)
and ¢,,~Gamma(co, ¢), m=1, ..., M, where Ly, Zy, 4 o4 cand ¢, m=1, ..., Mare

prespecified hyperparameters and Gamma(gy, g») denotes a gamma random variable with
shape parameter g; and rate parameter g.

Sequentially adaptive variable selection

A key goal is to identify subvectors of x that identify patients more likely to benefit from

E. We do this by performing joint variable selection on x in each of the submodels for

(Y] Z G, x)and (Z| G, x), exploiting treatment—covariate interactions. The joint variable
selections are based on correlated latent covariate inclusion variables that account for the
possibility that a covariate predictive of one outcome may also be predictive of the other. In
the joint likelihood function of Zand Y given in (1), for each ¢= Zor Y, let ydenote the
regression coefficient vector, excluding the intercept, so ¥.>= (821, ..., Bz, Y20, Y21 - »
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yzp) and vy =By, - Byp ¥v0 ¥v1 - ¥y,p)- If needed, we will use w7 to denote
the regression intercept parameter for 2.

For each submodel, = Zor Y, we perform Bayesian variable selection assuming spike-and-
slab prior on y(Mitchell and Beauchamp, 1988; George and McCulloch, 1993; Ishwaran
et al., 2005). This uses sparse posterior coefficient estimates to determine which variables

to include in the submodel’s linear component. For each £ let A;= (A1, ..., Anzpﬂ)T be a
vector of latent variable selection indicators corresponding to (x, G, Gx) in the linear term.
The jth variable in (x, G, Gx) is included in the submodel for outcome ¢if A;;= 1 and
excluded if A,;= 0.We restrict the variable selection algorithm in each submodel so that, if
the interaction term Gx;is included, then the main effect term x; corresponding to Gxjand

G also must be included. This is known as the strong hierarchy interaction constraint (Liu et
al., 2015).

Because some covariates may be predictive of treatment effects on both Zand Y; it is not
appropriate to select subvectors x »and x y independently using the regression submodels for
(Z] G, x)and (Y| Z G, x). We thus endow A ~»and A ywith a joint distribution, to borrow
information about covariate effects on Zand Y; and refer to variable selection using (A~

A y) as “joint variable selection.” To account for correlation, we assume a bivariate Bernoulli
distribution for (A 7, A y), for j=1,...,2p+ 1. Denote pz;=Pr(Az;= 1) and Py,;= Pr(A y,;
= 1), the marginal probabilities that the jth variable is included in the submodel for (Z|G, x)
and (Y'/Z G, x), respectively, and let

Pr(dy, j=1, Az, j=1)/Pr(dy, j=0, iz j=1)
Pr(iy j=1, Az j=0)/Pr(dy, j=0, iz j=0)

pj=

denote the odds ratio for the jth pair of latent variables. Thus, pjis the ratio of the odds
of 1z;=1given A1y;=1and the odds of 1 7;= 1 given 1y;= 0. We denote by
B(pz, j» py, j» pj) the joint Bernoulli distribution of (17, Ay,). A detailed description is

given in Web Appendix B.

Our spike-and-slab prior model used for the joint variable selection is

wz,j| Az (1= 4z )W (0, 2 j) + Az j¥ (0, uZ 77 ),
j=1,..2p+1

@

wy.j | Ay (1= dy ¥ (0, 73 ;) + 4y j¥ (0, up 77, ),
j=1,...2p+1,

©)

where Uz % j, Uyj 15 ; j=1, ..., 2P+ 1 are prespecified hyperparameters. We choose

large uzjand small z7;in (2) so that A 7;= 1 implies that a nonzero estimate of y~is
included, whereas A~ ;= 0 implies that the covariate corresponding to y~;has negligible
effect on Z Similar choices are applied to (3) to obtain sparse vectors of coefficient
estimates for Y. The latent indicator variables are assumed to follow the prior distributions
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(z,j» 4v,j)| Pz, j» Py, ) P~B(PZ, j» Py, ). pj) FOr j=1,...p+ Land Az;~ Bernoulli(vz, and
Avy,;~ Bernoulli(py)), for j= p+2,...,2p+ 1. To ensure the strong hierarchical property, we
impose the constraints

PZ,j=PZ,j—p—1PZ p+1min{pz j— p—1.pZ p+1}:
j=p+2,..2p+1

pY,j=pY,j—p—le,p+1min{PY,j—p—I’PY,p+1}7
j=p+2,...2p+ 1.

®)

Thus, the main effects are correlated through the bivariate Bernoulli distribution and the
interactions follow the strong hierarchy property through (4) and (5). We specify prior
distributions for the remaining parameters as follows:

vZ, o~ (u(), T%), ay~AN (ua, T%),

Gp~Gamma(édy, ¢), m=1,.., M,

pz, Bew(iz1 . 172, j). py, j~Beta(ly1, j Iy2, j)
logpj~./l/(r1j, rzj), j=1,.,.p+1,

where uy, 1, U Tg ¢, by M=1, ..., M, Inji 2 Ivij I ijand rj j=1,...,p+ 1, are
prespecified hyperparameters. Details of the Monte Carlo Markov chain computations for
the joint variable selection are given in Web Appendix C.

We have considered correlated indicator variables for inclusion of covariates in models for
Zand Y, for each variable in {x, G, Gx}, but our construction assumes that the predictors
are independent. If desired, the joint variable selection algorithm can be extended to the
case where the predictors may be correlated. As in George and McCulloch (1993), we may
generalize the distributions to be the multivariate normal priors

vz | iz~N2p+1(0.D)RD)) andyy | Ay
~#2p +1(0.D;RD,).

where D, is a diagonal matrix with gz~ j = 1,...2p+ 1 with a;=1if 17;=0and a;= vz,
if 1>,=1, and D, is a diagonal matrix with ajey, jy /= 1,.., 2p+ 1witha;=1if 1y;=0and
aj=uy, ;jif 1y;=1Thus, Rand R are the prior correlation matrices for A4 -and yy|Ay.

If the predictors in {X, G, Gx} are correlated, the prior correlation matrix may be specified
to be proportional to (XTX)™1, where X denotes the design matrix, implying that the prior
correlation is the same as the design correlation.

During the trial, joint variable selection is performed at each interim stage to obtain the
subvectors xz and xy. While this procedure may miss informative covariates in x y early in
the trial, due to an insufficient number of observed events for Y; as the trial progresses the
probabilities of identifying truly important covariates with interactive effects increase. Thus,
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it is important to repeatedly reselect x, and X, as new data become available for each GS
decision.

Adaptive enrichment

Recall that the latent indicator variables A ~and Ay identify covariates included in the
regression submodels for (Z| G, x,) and (Y | Z G, x), which are used to make adaptive
GS decisions. For each cohort A= 1,...,K; let dj be the accumulated number of events (i.e.,

Y; = v?) at the time when the Ath adaptive enrichment is performed, and let n; = Zf: 1¢; be
the total number of patients enrolled in the first A cohorts. Let 2, = {(Y,O, 5, Zi, G, x,-) be

the accumulated data and x5 and x{*” the selected subvectors at the Ath interim decision.

We define the PBI for a patient with covariate vector x as

.Q(x | gk) = (1 - a)k)Pr{Az(x%C), 92) > € | @k} ©
+a)kPr{Ay(x§,k), GY) <e| 9]{},

where the weight is wy = dyfi,. Thus, the PBI is a weighted average of the posterior
probabilities that a patient with covariates x will benefit from £ more than C, defined

in terms of the comparative treatment effect parameters A Z(x%‘), 92) and Ay(xg‘), ey)
The PBI depends on x only through the selected subvectors x'x’ and x{¥ that s,
Qx| D) = Q(x%) | 9k). The cutoffs e; and &, are design parameters specified to

quantify minimal clinically significant improvements in response probability and survival,
respectively. Early in the trial, when there are few observed event times, the PBI will depend
on Zmore than on Y for identification of patients who potentially may benefit from £. As
more events occur, the weight wy for the survival hazard ratio component in (6) becomes
larger and the weight (1 — wy) for the response probability difference becomes smaller, so
the PBI depends more on the survival time data. To use the PBI for decision-making, we
consider a patient with biomarker profile x to be eligible for enrollment into the &+ 1st
cohort of the trial if their PBI is sufficiently large, formalized by the rule

Qx| Dy) = Q(x%c), x| QZk) > v(n—Nk)g @
for =1, ..., K- 1, where v>0 and g> 0 are prespecified design parameters. A practical
method for determining vand g is provided in Web Appendix D. This type of adaptive
probability threshold was used previously by Zhou et a/. (2017). Thus, at this stage of
the trial, the set of £-sensitive patients is defined adaptively as those having covariate
vectors satisfying the eligibility condition (7), which depends on the most recently selected

subvectors x5’ and x{¥). If the trial is not stopped early, when the Ath cohort’s outcomes

have been evaluated at the end of the final follow up period, the PBI = Q(X| Dy) is updated
and used as a basis for the final tests. |

Biometrics. Author manuscript; available in PMC 2022 June 09.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Park et al.

2.4

Page 10

Bayesian sequential monitoring rules

To specify Bayesian decision criteria, we use the treatment effect averaged over the enriched
trial population, which still may contain a wide spectrum of patients. The Ath interim
decisions are based on Dy, which consists of the accumulated data from A successive
cohorts. Patients within each cohort are homogeneous since they satisfy the same eligibility
criteria, but patients may be heterogeneous between cohorts since different cohorts may
have different eligibility criteria because the variable selection is repeated and the PBI is
refined during the trial. To make GS decisions for superiority or futility based on treatment
effects on Y, the rules used by the design follow the same logical structure as those of a
conventional GS test, with one important difference. Prior to each test, the set of £-sensitive

patients first must be determined in order to use the most recently selected x5’ and x{¥’ to

define the test statistics and to determine the enrollment criteria for the next cohort if the
trial is continued. Let

Lk = {x:Q(x%(), xg,k) | QZk) > U(nk/N)g}

denote the set of the covariates satisfying the eligibility criteria used for the A+ 1st cohort.
At this point in the trial, we define the covariate-averaged long-term outcome treatment
effect to be

Ty k(6 = [%kAy(ng)’ gy),;k(ng))dxgjc)’

where ﬁk(xg,k)) denotes the empirical distribution of x§,k> on the set 2. Since these
expectations are computed over the selected enrichment set 27, that is, the patients who
are expected to benefit more from E£than Cin the Ath cohort, Ty «(6) is a treatment effect

in the sense of precision medicine. Note that £is more effective than C for patients with
x € X it Ty (6) is sufficiently small.

To define GS test statistics, we must account for the fact that, due to adaptive enrichment,
there are k heterogeneous cohorts at the th analysis, and the empirical distribution ﬁk(ng‘))

changes with kas new data are obtained. Thus, denoting the number of events in the jth
cohort by ¢;, we define the test statistic at the Ath analysis as the weighted average of the
treatment effects, Ty x(0) = Zfz 1wy, /Ty, j(0) where the th weight is wy ;= e j/zf; el
(Lehmacher and Wassmer, 1999). Note that 7y 4(8) is calculated based on the data observed
at the interim time. As Y'is a time-to-event endpoint, 7y, ,(6) must be updated at each later
interim decision time. Let &, denote the hazard ratio (e.g., < 1) under which £is deemed
superior to Cin the long-term endpoint Y; and let &, denote the hazard ratio (e.g., = 1)
under which £is deemed inferior to C. The values of (b1, &) typically are prespecified

by the clinicians. Let (B;, B,) be prespecified probability cutoffs obtained by preliminary
simulation-based calibration. A practical procedure to calibrate the values of (B; 5,) is
provided in Web Appendix E. For the interim analysis at each &= 1, ..., K- 1, the decision
rules are as follows:
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1. Superiority: Stop the trial for superiority of £over Cin 2 if
Pr{Ty k(6) < by | Dk} > By.

2. Futility: Stop the trial for futility of £over Cin 2 if
Pr{Ty 1(0) > by | Dy} > By.

3. Final Decision: If the trial is not stopped early, at the last analysis (k=
K), conclude that £ is superior to Cin the final £-sensitive subset 2 if

Pr{Ty k(0) < by | 2k} > By, and otherwise conclude that £is not superior to
Cin Lk

An important practical issue during the process of constructing a design is deciding when

to begin the adaptive enrichment. This depends on several factors, including the number of
covariates, their information-to-noise ratio, the percentage of sensitive patients, the treatment
difference between sensitive and insensitive patients, and the variances of the outcomes 2
and Y. In practice, logistical limitations will often limit the number of interim decisions to

1, 2, or 3. Based on these considerations, as a rule of thumb, a reasonable time to initiate

the adaptive enrichment is after 1/3 to 1/2 of the maximum number of patients has been
enrolled.

If desired, at each interim analysis, the following additional futility stopping rule may

be included to account for the possibility that only a very small percentage of patients

may benefit from £. For a prespecified lower threshold 0 < g < 1 based on practical
considerations, the futility rule stops the trial if the estimated proportion of £-sensitive
patients in the trial is < g. We use ¢ = 0.10 in the simulation study and recommend to use a
value in the range 0.01 — 0.10 in practice.

At the end of the trial, identification of the final £-sensitive subset & g based on PBI

involves all covariates, because the Bayesian variable selection method based on the spike-
and-slab prior does not necessarily drop covariates with little or no contribution to identify
Z k. To facilitate practical use, one can simplify the £-sensitive subset identification rule by

dropping covariates that have low posterior probability (i.e., < 0.10) of being selected in the
prediction model of (Y, 2).

SIMULATION STUDY

This section summarizes results of a simulation study to evaluate the operating
characteristics (OCs) of AED and compare it to several published enrichment designs. We
assumed maximum sample size 400, with patients accrued according to a Poisson process
with rate 100 per year, and each patient randomized fairly to receive £or C. Up to two
interim analyses were performed at 200 and 300 patients, with a final analysis 1 year after
the last patient was enrolled. We considered 10 biomarkers, x = (x, ... , X10) €ach either with
or without an interaction effect, to define the £-sensitive subpopulation. While AED handles
both continuous and categorical biomarkers, to facilitate presentation and interpretation of
the simulation results, we considered only binary biomarkers with values 1 (marker positive)
or 0 (marker negative).
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We considered seven scenarios, described in Table 1. Scenario 1 is a null case where £'is not
effective for any patients, and there are no E-sensitive patients. For £-sensitive patients, we
set the hazard ratio of £to Cat several values Ay < 1 and set several differences of Ay >0
between the response rates of £and C. For E-insensitive patients, we set Ay>1 and A< 0.
Numerical values of A ~and Ay are nonlinear functions of the regression parameters, X, and
G. Technical details given in Web Appendix F.

We generated Zfrom a Bernoulli distribution with response probability given by

10
Bz,0+ Z Bz, jx;

7(x,G,07) = ®
j=1
10 ®)
+Glrz0+ Z J/Z,jxj) ,
j=1
and generated Y'based on the hazard function
10
h(y| Z=z G, x, 6y) = ho(y)eXp[ Z By, jX;
j=1
10 )
+Glyy, 0+ z Yy, jXj|+ayZy,
j=1

where /() is the baseline hazard, assumed to follow a Weibull distribution with scale
parameter 1 and shape parameter 0.6 to obtain a decreasing hazard. We chose values of
the regression parameters in Equations (8) and (9) so that patients with different x respond
differently to £ Web Appendix F provides numerical values of the parameters for each
simulation scenario. In scenarios 2—7, we considered three £-sensitive patient prevalences:
65%, 50%, and 35%.

We set the overall type | error rate to 0.05, with 4, = &, = 1 for GS monitoring. We

used €1 = 0 and & = 1 to define the PBI, set the design parameters v = 0.766 and g

= 0.352 for the eligibility criteria, after calibrating these numerical values by preliminary
simulations, and set ¢ = 0.10, so that the trial is stopped if less than 10% of patients are
E-sensitive. We compared AED with four designs: (1) a GS enrichment design, called GSED
(Magnusson and Turnbull, 2013), that selects a “sensitive” subgroup at the first interim

test based on one prespecified dichotomized biomarker; (2) a GS design, called InterAdapt
(Rosenblum et al., 2016), that allows interim early stopping by a test (i) for superiority or
futility in the “sensitive” subgroup or (ii) for superiority of the entire group; (3) the adaptive
enrichment design proposed by Simon and Simon (2017), which we call “Simon,” and (4)
an “all-comers GS design,” called CGS. To focus on the contribution of adaptive enrichment
in AED, CGS is identical to AED with the one exception that CGS does not perform
adaptive enrichment. Because both the GSED and InterAdapt designs require prespecified
“sensitive” and “insensitive” subgroups based on a prechosen biomarker, in our simulations
we used x; to dichotomize the patient population into these two subgroups.
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To compare the designs, we calculated the generalized power (GP), defined as the
probability that the design correctly (1) identifies the sensitive subpopulation and (2) rejects
Hp : Ay(X, 6) = 1 when Hj actually is not true with A (X, 8) < 1, that is when E£is superior
to Cin the £-sensitive subgroup. GP is very different from conventional power, which
ignores the adaptive signature identification process and is computed under the assumption
that the sensitive subgroup is known. The GP is more relevant because it reflects the actual
statistical decisions, and numerical values of GP and power often are very different. If a
subgroup assumed to be sensitive by a design is incorrect, then the GP = 0. GP is useful

for precision medicine because it quantifies how well a complex sequentially adaptive
decision-making process performs to optimize a targeted therapy.

Table 2 summarizes the simulation results for each design based on 1000 simulated trials in
each scenario considered. In scenario 1, where £ is ineffective for all patients, all designs
preserve the nominal type | error rate 0.05, with the small exception that InterAdapt has
type | error rate 0.06. Scenarios 2—7 are cases where £'is effective for a particular subgroup
of patients. Each of these scenarios has three subcases, with 65%, 50%, or 35% sensitive
patients in cohort 1. In contrast, the tabled numerical percentages for cohorts 2 and 3 are
consequences of the adaptive enrichment decisions of AED, so they are design OCs and not
assumed simulation study parameters.

Table 2 shows that AED has much higher GP than all other designs in most scenarios.

The many GP values of 0 for GSED and InterAdapt are due to the fact that both designs
prespecify a sensitive subgroup, and if this subgroup is incorrect, then the GP = 0, which
occurs in scenarios 3-7. Simon performs better than GSED and InterAdapt because Simon
adaptively enriches and identifies sensitive patients. CGS yields similar GP as Simon

in most scenarios (except scenarios 6 and 7) because CGS as defined here is a refined
group sequential design, which uses the same model and decision rules as AED to select
covariates, identify a sensitive subgroup, and test the treatment effect in the identified
subgroup. As noted earlier, to evaluate the adaptive enrichment effect of AED, the only
difference between CGS and AED is that CGS does not perform adaptive enrichment. AED
outperforms both Simon and CGS with 20-40 percentage points higher GP. The much
larger GP of AED stems from its adaptive enrichment of £-sensitive patients based on

both short-term Zand long-term Y, and the fact that AED refines the sensitive subgroup
repeatedly throughout the GS process. Because the first cohort of AED enrolls all comers,
in any case the percentage of sensitive patients enrolled in the first cohort is approximately
the population prevalence of sensitive patients. Since AED enriches the identified sensitive
patient subgroup in all subsequent cohorts, this results in increasingly higher percentages
of sensitive patients in cohorts 2 and 3. For example, in Scenario 2, the percentage of truly
sensitive patients is the population value 65%, but thereafter the percentages of enrolled
sensitive patients increase greatly, to 88% and 89% in cohorts 2 and 3. These high adaptive
enrichment rates also make AED stop earlier for superiority compared with the other
designs. As seen in Web Table 2 of Web Appendix G, AED is more likely than CGS to
correctly conclude that £is more effective than Cin the identified sensitive subgroup, and
stop the trial early for superiority, and AED also is less likely to incorrectly stop the trial for
futility when £ actually is effective for the sensitive subgroup (scenarios 2-7).
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To evaluate clinical benefit for future patients provided by each of the designs, in Table 3
we report ratios of the 90th, 50th, and 10th percentiles of the survival time distributions for
future patients who are considered sensitive based on the rule specified by the design at

the end of the trial. We simulated 1000 future patients and treated them with either £or C
based on the trial’s final conclusion, so they received £ if Hp was rejected at the end of the
trial, or Cif Hy was not rejected. In Table 3, each ratio for each percentile for each design
is computed as the simulation average of the future survival time distribution percentile for
the design, divided by the corresponding simulation average percentile resulting from the
all-comers GS design. The average (range) of median survival time, MST = 50th percentile,
ratios for future patients with AED were 2.14 (1.34-4.22); with GSED were 1.13 (0.75-
2.11); with InterAdapt were 1.20 (0.97-1.85); and with Simon were 1.20 (0.85-2.72). Thus,
in terms of survival compared to CGS, the AED provides the greatest benefit for future
patients among the four enrichment designs considered. However, the clinical benefit for all
enrolled patients during an adaptive enrichment trial is the average effect from the mixture
of treatment-sensitive patients and treatment-insensitive patients after the randomization.
The MST of patients enrolled during the trial thus does not show a substantial gain in
survival benefit from using enrichment designs, and thus it is not useful to demonstrate
clinical benefit.

To examine robustness, Web Appendix H shows results for the AED when Y'is generated
from a Weibull distribution with scale parameter 1 and shape parameter 2 to obtain an
increasing hazard and also when Yfollows a log-logistic distribution with a N-shaped
hazard. The results are similar to those in Table 2, where Y follows a Weibull distribution
with decreasing hazard.

We further investigated the performance of AED when (1) the maximum sample size is
800; (2) there are 50 covariates, that is, xi,..., X509, G, GXq,..., Gxgp are included in each
regression model; (3) an additional main effect of a covariate is added, for example, in
scenario 2 where x; has a main and an interaction effect, the main effect of x; is added

but an associated interaction effect of x> with treatment is not included; (4) a covariate
effect associated with Y'but not with Zwas considered; (5) there are no treatment—covariate
interactions; (6) different design parameters were used to enrich the patient population; and
(7) different sparsity parameters were used. The results are summarized in Web Appendix
I, suggesting that in general AED is robust. For example, when there are no treatment—
covariate interactions, and thus no £-sensitive subgroup, GP is the same as conventional
power. AED performs well and has OCs similar to those of CGS.

DISCUSSION

We have proposed a Bayesian GS adaptive enrichment design, AED, for a comparative
clinical trial that does covariate selection, adaptive enrichment, and treatment comparison.
By repeating covariate selection at each GS decision point to take advantage of the
accumulating data, the design is able to update the eligibility criteria by restricting
enrollment to the most recently determined £-sensitive subgroup that is likely to benefit,
based on a personal benefit index computed using both early response and survival time.
Compared to the three enrichment designs of Magnusson and Turnbull (2013), Rosenblum
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et al. (2016), and Simon and Simon (2017), and an all-comers GS design that is identical

to AED in all ways except that it does not do enrichment, the proposed AED has much
higher GP across a range of scenarios. The AED also provides much greater benefit to future
patients in terms of survival time. These substantial improvements over existing adaptive
enrichment designs may be attributed to the AED’s adaptive biomarker selection and the
effectiveness of its adaptive enrichment rule based on each patient’s covariate-based PBI.

By exploiting this structure, the AED greatly magnifies the signal in the patient covariate
vector and boosts the GP for correctly identifying a sensitive subgroup and detecting a true
treatment advance over standard therapy, if it exists. AED is also more ethical in that it
reduces the probability of enrolling £-insensitive patients who are unlikely to benefit.

A practical limitation of AED is that it is not scalable to handle high-dimensional x in a
scientifically valid and clinically ethical way. Our simulations show that, with sample sizes
of several hundred patents, AED can accommodate settings where x has dimension up to
50. In such settings, AED obtains good GP figures for realistic alternative hazard ratios.

To implement AED, the investigators must do a preliminary biomarker screening, based

on preclinical or early clinical data, to obtain x of dimension small enough to be handled
practically by AED. Another practical issue is deciding when the adaptive enrichment
should begin. This depends on the number of covariates, their information-to-noise ratio, the
percentage of sensitive patients, the treatment difference between sensitive and insensitive
patients, and the variances of the outcomes Zand Y. Since several of these factors can be
estimated during the trial, a useful future research problem may be to construct a rule for
use during the trial, which is defined as a function of these known and estimated quantities
and the planned maximum number of GS decisions, that decides when to begin the adaptive
enrichment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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| Collect both response and survival time outcomes

| Enroll >( Follow-up
| | | | |
I T T I —
1st 2nd (K-1)th Kth (final)
interim interim interim interim
e Identify * Update * Update * Update
signatures signatures signatures signatures
* Estimate * Update * Update * Update
enrichment rule enrichment rule enrichment rule enrichment rule
* Make a * Make a * Make a e Final analysis
Go/no-go Go/no-go Go/no-go
decision decision decision

FIGURE 1.
Schema of the proposed design
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