Skip to main content
. 2022 Jun 8;23:221. doi: 10.1186/s12859-022-04756-1

Table 3.

Evaluation results of the DCB model based on One-hot encoding, RNA word embedding, Word2vec, and RGloVe

Modification type Classifiers AUROC Acc (%) Sn (%) Sp (%) MCC (%) Pre (%) F1 (%) AUPRC
m1A DCBOne-hot 0.9410 95.37 64.04 98.51 69.66 81.11 71.57 0.7812
DCBEmbedding 0.9409 95.37 65.79 98.33 70.0 79.79 72.12 0.7715
DCBword2vec 0.9316 95.29 61.4 98.68 68.72 82.35 70.35 0.7349
DCBRGloVe 0.9468 95.45 64.04 98.6 70.12 82.02 71.92 0.7866
m6A DCBOne-hot 0.8300 74.51 72.25 76.76 49.06 75.57 73.87 0.8080
DCBEmbedding 0.8477 76.52 83.30 69.79 53.56 73.28 77.97 0.8272
DCBword2vec 0.8317 75.10 79.60 70.62 50.43 72.95 76.13 0.8126
DCBRGloVe 0.8486 76.36 84.2 68.57 53.41 72.72 78.04 0.8310

The bolded values represent the best results