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Background
Modern drug development has been drastically restricted by the costly and time-con-
suming process of discovering biologically active compounds. Computer-aided drug 
design (CADD) provides an effective and relatively inexpensive method of identifying 
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lead compounds [1]. Structure-based molecular docking, with conformational sampling 
and assessment of binding affinity, is a key element of CADD [2]. Improving the docking 
accuracy is paramount for enhancing success rates during virtual screening when under-
taking computational drug development. Due to recent advances in computing power 
and numerical algorithms, docking success is no longer restricted by the inadequacies 
of conformational sampling [2, 3]. Most well-known docking software programs such 
as GOLD [4], AutoDockVina [5], and Glide [6], demonstrate excellent conformational 
sampling performance. However, there is presently a lack of accurate and reliable scor-
ing functions available to evaluate the binding free energy between proteins and ligands, 
limiting the success rates of virtual screening within the drug discovery pipeline [2].

The scoring function is a mathematical model used to estimate the free energy of pro-
tein–ligand complexes, and helps to predict their binding affinities. It can be used to 
determine the binding mode of a ligand, predict the binding affinity between proteins 
and ligands, and identify the potential lead compounds for a given drug target. A precise 
and reliable scoring function is therefore critical for the success of any docking method 
or docking software [7]. Despite its importance, developing a precise and reliable scoring 
function is very challenging because the binding free energy between a protein and its 
ligand is very complex. Features such as van der Waals interactions, electrostatic inter-
actions, hydrogen bonds, hydrophobic interactions, solvent effects, and the difficulty 
in capturing entropic contributions add to the complexity of this task [2]. Hence, the 
research into developing a more accurate and reliable scoring function is always a hot 
topic as it plays such an important role in computational drug development.

Conventional methods for scoring functions are usually classified into physics-based, 
empirical, and knowledge-based methods. In recent years, another category of scoring 
function based on machine learning (ML) has emerged as a fast yet accurate binding 
affinity prediction method [8–13]. Scoring power refers to the ability of a scoring func-
tion to produce binding scores in a linear correlation with experimental binding data 
[14]. The ML-based predictors usually perform better in the ‘scoring power’ of scoring 
functions than conventional methods. Early examples such as RFscores [8] and NNScore 
[9], which were based on random forest and neural network respectively, both applied 
ML methods to produce binding affinity predictions. These two scoring function mod-
els also relied on experts to perform very complex feature extractions. Later, deep con-
volutional neural network (CNN) models were adopted to undertake binding affinity 
predictions and virtual screening [13, 15–18]. AtomNet [18] is the first CNN model to 
predict the bioactivity of small molecules. KDEEP [10] and Pafnucy [12] were also based 
on the CNN model, and both took the vectorized grids within a cubic box centered at 
the ligand as the features for the protein−ligand complex. Both KDEEP and Pafnucy per-
formed much better in terms of scoring power than the scoring functions based on con-
ventional methods. Gnina is a deep learning framework for molecular docking [17, 19]. 
Gnina was trained by integrating non-binding data, and performed well on pose selec-
tion and affinity prediction. In addition, other features such as the protein–ligand topo-
logical fingerprints were also adopted for ML and CNN models [13, 20].

In this study, a much more concise method of featurization for the protein–ligand 
complex was adopted, generating a new scoring function model to predict bind-
ing affinities between proteins and their ligands after receiving training from a deep 
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three-dimensional (3D) convolutional neural network. The features for the protein−
ligand complex in our model were represented using a 3D grid or 4D tensor. In con-
trast to KDEEP and Pafnucy models, the featurization of atoms or voxels in our model 
was simplified, and only the most basic atomic type information was extracted. The 
high dimensional information from protein–ligand complexes, including van der Waals 
interactions, electrostatic interactions, hydrogen bonds, and other complicating factors, 
were automatically learned by the subsequent convolutional neural network. Our scor-
ing function model achieved a root mean squared error (RMSE) of 1.3263 and 1.4518 
on CASF-2016 [14] and CASF-2013 datasets [21], respectively. Consistently, corre-
sponding Pearson correlation coefficient R values of 0.7928 and 0.7946 were achieved 
by our model on these two datasets. Additionally, some independent extra sets were also 
selected to further evaluate the new model. As a result, compared to some other scoring 
functions, our model performed well, and was more stable in terms of scoring power. 
The model was implemented with TensorFlow [22] and Keras. The source code, trained 
model, and preprocessing scripts are available in the git repository at https://​github.​
com/​bioin​focqu​pt/​Sfcnn.

Methods
Datasets

The scoring function model was trained with protein–ligand complexes from the refined 
set of the PDBbind database version 2019 [23]. This dataset contains 4852 high-quality 
protein−ligand complexes and their corresponding binding affinities expressed with 
pKa (-lgKd or -lgKi) values. Firstly, the CASF-2016 ‘scoring power’ benchmark [14] was 
selected as the test set. There were 285 protein–ligand complexes within the test set. All 
of the overlaps between the test set and the refined set were excluded from the refined 
set (266 overlaps). Then, for the remaining 4586 complexes in the v2016 refined set, 486 
complexes (~ 10%) were randomly selected and used as the validation set. Finally, the 
remaining 4100 complexes (~ 90%) were adopted for the training set.

The CASF-2013 ‘scoring power’ benchmark [21], a subset of the PDBbind database 
version 2013, was selected as an extra test set in order to further compare the perfor-
mance of our model with other scoring functions. The overlapping complexes which 
existed in the training and validation sets were removed from the CASF-2013 dataset. 
The remaining 107 complexes (referred to as the CASF-2013 dataset hereafter) were 
found to be a subset of the CASF-2016 dataset (the first test set).

Other independent test sets including CSAR_HiQ_NRC_set [24] (343 protein–ligand 
complexes), and Astex_diverse_set [25] (74 protein–ligand complexes), were also 
selected as extra test sets with the purpose of comparing the performance of our model 
with other scoring functions more fairly.

Featurization of protein–ligand complexes

In our model, the protein–ligand complexes were transformed into a 3D grid for subse-
quent CNN training (Fig. 1). Firstly, the geometric center of the binding site was calcu-
lated by the coordinates of the atoms in the ligand. Then, a cube of 20 × 20 × 20 Å3 was 
cropped around the center of the binding site. All of the atoms (including protein atoms 
and ligand atoms, together with water, metal, and hydrogen atoms in the protein–ligand 

https://github.com/bioinfocqupt/Sfcnn
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complex) within this cube area were retained for training. In the default case, the input 
3D grid had a resolution of 20 × 20 × 20, and each voxel represented the atoms inside 
that 1 × 1 × 1 Å3 area. Finally, the 3D grid was further transformed into a 4D tensor. The 
first 3 dimensions of the 4D tensor represented the index of a voxel in the 3D grid, and 
the last dimension of the 4D tensor was a vector of features encoded by the atoms inside 
that voxel. For example, when given a 3D grid space between (− 10 Å, − 10 Å, − 10 Å) 
and (10 Å, 10 Å, 10 Å) with the origin at the geometric center of the binding site, and a 
carbon atom with coordinates of (− 0.5 Å, − 3.2 Å, 0.3 Å), it was assumed that the 4D 
tensor was represented by T, and the vector of features encoded by this carton atom 
was represented by V. Subsequently, the index of this atom was calculated in the 3D grid 
(which was (6, 9, 10)) and the corresponding 4D tensor of the voxel containing this atom 
could be represented as T (6, 9, 10) = V. Each atom in the cube would be calculated in 
this manner and finally the protein–ligand complex would be transformed into a 4D ten-
sor for subsequent CNN training. When multiple atoms were present in a single voxel, 
features from all of the atoms would be added.

As highlighted above, the last dimension of the 4D tensor is a vector of features 
encoded by the atoms in the small cube (1 × 1 × 1 Å3) area, and the vector needs to dis-
tinguish and differentiate all kinds of atomic types. Unlike the methods by which fea-
tures were extracted in KDEEP and Pafnucy, we simplified the featurization and only used 
one-hot encoding of atomic types as the input vectors of features. To better distinguish 
various atomic types, and to get better results of featurization, the atoms within pro-
tein–ligand complexes were classified into 28 categories, with 14 categories for proteins 
and 14 categories for ligands as the default setting (Additional file 1: Table S1).

The method used for protein–ligand complex featurization used in the default case, as 
described above, was named Feature1. A higher resolution of 24 × 24 × 24 was also con-
sidered when generating a 3D grid to test whether the resolution of 20 × 20 × 20 used in 
the default case could retain enough information to precisely predict the binding free 
energy of proteins and ligands. The method of featurization when using a resolution of 
24 × 24 × 24, and retaining all atoms including hydrogen atoms and metal atoms for one-
hot encoding (28 categories of atomic types just like used in the default case), was named 
Feature2. Taking into account that in many scoring functions, the water molecules and 

Fig. 1  Featurization of the protein–ligand complexes. PDB ID 1a30 is shown as an example. In the default 
case, the resolution of 20 × 20 × 20 and 28 categories of atomic types were used
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ions were removed and the hydrogen atoms and metal atoms were ignored prior to pro-
tein–ligand complex featurization, the third method of featurization was also adopted 
and named Feature3. This method used a resolution of 20 × 20 × 20 and ignored all of 
the hydrogen atoms and metal atoms when one-hot encoding of atomic types for com-
parison (24 categories of atomic types). The atomic features were calculated using Open 
Babel [26], and the script used for transforming the protein–ligand complex into a 4D 
tensor is also available at https://​github.​com/​bioin​focqu​pt/​Sfcnn.

Network

During this work, the deep 3D convolutional neural network was used with a single out-
put neuron to predict the binding affinity. To improve the performance of the scoring 
function, data enhancement was performed on the training set by randomly rotating 
each protein–ligand complex 9 times. The final training set consisted of 41,000 samples. 
All labels (the pKa values of corresponding protein–ligand complexes) in the training 
and validation sets were normalized to range between zero and one by dividing each 
value by 15, thereby facilitating subsequent training. The Keras package with Tensor-
Flow was used to construct the deep neural network architectures.

A total of 4 architectures were adopted for comparison during this work. The first 
architecture (called CNN1 hereafter) is a commonly used CNN architecture (Fig.  2a). 
This architecture takes the 4D tensor of a protein–ligand complex as the input. The first 
several convolutional layers extract features among nearby atoms. The following fully 
connected layers reorganize the features and predict the binding affinities between the 
proteins and ligands. ReLU activation and batch normalization were applied on each 
convolutional layer and fully connected layer. A dropout layer was applied after the 
fully connected layer and L2 regularization was applied on the output layer to reduce 
the probability of overfitting and improve generalization. The second architecture (called 
CNN2 hereafter) starts with a convolutional layer with a 1 × 1 × 1 filter (Fig. 2b). Because 
the input features in the present work were very sparse, using the convolutional layer 
with a 1 × 1 × 1 filter as the first layer enables mapping of the sparse feature vectors of 
the atoms to dense vectors and works like word embedding. This method may improve 
the performance. The other details of the CNN2 architecture are similar to the CNN1 as 
shown in Fig. 2b. The third architecture (called Res3 hereafter) is based on Resnet [27]. 
Resnet is a classical deep CNN architecture and gets outstanding performance in image 
recognition by training a deeper neural network with shortcut connection. In the pre-
sent work, the Resnet architecture was transplanted to our 3D CNN training task. The 
detailed architecture of Res3 is shown in Fig. 2c. The fourth architecture (called Dense4 
hereafter) is based on Densenet [28]. Densenet is another classical deep CNN architec-
ture with fewer parameters and also has outstanding performance in image recognition. 
In the present work, the Dense architecture was transplanted to our 3D CNN training 
task and the detailed architecture is shown in Fig. 2d. Both Res3 and Dense4 used much 
deeper neural networks, requiring larger computational resources and longer computa-
tional time during training. The hyper-parameters of these four architectures including 
learning rate, batch size, dropout ratio, and L2 weight value were optimized by using the 
grid search method. Only the model with the lowest loss on the validation set for each 
architecture was saved for comparison.

https://github.com/bioinfocqupt/Sfcnn
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Evaluation

Several evaluation metrics were used to assess the model accuracy including root mean 
squared error (RMSE, which quantifies the relative deviations of the predicted values from 
the true values), mean absolute error (MAE, the average of the summed absolute differ-
ences of the predicted values to the true values), standard deviation (SD) and Pearson 
correlation coefficient (R) between the predicted pKa (represented by ypredict) and the exper-
imentally determined true pKa (represented by ytrue) in this study. The last two evaluation 
metrics were also adopted in the CASF-2016 benchmark dataset, therefore the accuracies 
of these scoring functions in the CASF-2016 benchmark were recalculated for comparison. 
The formulae for calculating the metrics of RMSE, MAE, SD, and R were as follows.

(1)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

ypredict − ytrue
)

Fig. 2  Architectures specifics. a Details of the CNN1 architecture. b Details of the CNN2 architecture. c 
Details of the Res3 architecture based on ResNet. d Details of the Dense4 architecture based on DenseNet. 
Abbreviations are defined as: Conv3D (number of channels, kernel size, stride): 3D convolutional neural 
network layer, BN: Batch Normalization layer, ReLU: Rectified Linear Unit activation layer
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where a and b represent the slope and interception of the linear regression line of the 
predicted and measured pKa values.

The DUD-E benchmark [29] was used to assess virtual screening abilities of Sfcnn. 
DUD-E benchmark consists of 102 targets, a set of active compounds known to bind 
these targets, and a lot of decoys for each active one. The DUD-E is a huge dataset con-
sisting of over one million compounds and every target has a different number of active 
compounds to bind it. In this study we only selected a subset of DUD-E benchmark by 
random sampling to reduce computational time for docking and to ensure that every tar-
get corresponds to the same number of active compounds as possible. The fgfr1 (miss-
ing decoy data) and ace (containing silicon atoms) targets were excluded first. Then, we 
randomly selected 20 active compounds and 1000 decoys for each target to ensure the 
ratio of the number of active compounds to the number of decoys was 1:50. Finally, we 
performed molecular docking using Smina [5, 30] with default setting and re-scored the 
top 3 poses with Sfcnn. The 5% and 0.5% enrichment factors (EF) were used to assess 
the virtual screening ability of Sfcnn on each target. Also, we further tested the virtual 
screening ability of Sfcnn using a similar virtual screening approach on the CASF-2016 
benchmark.

Results and discussion
Performance comparisons on four architectures with three methods of featurization

Table 1 demonstrates the best performance on the validation set after parameter tuning 
on the four different architectures using three methods of featurization as input. From 
Table 1, the CNN2 architecture, which begins with a convolution layer with a 1 × 1 × 1 
filter, had significantly better performance than the other architectures when using Fea-
ture1 (resolution of 20 × 20 × 20, with all atoms retained) as input.

(2)MAE =
1

N

∑

∣

∣ypredict − ytrue
∣

∣

(3)SD =

√

√

√

√

1

N − 1

N
∑
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a ∗ ypredict + b
)

− ytrue
)2

(4)R =
E
(

ypredict ∗ ytrue
)

− E
(

ypredict
)

∗ E
(

ytrue
)

σypredictσytrue

Table 1  The best performance model by training four architectures with three featurization 
methods as input. Feature1 used a resolution of 20 × 20 × 20 and retained all atoms. Feature2 used a 
resolution of 24 × 24 × 24 and also retained all atoms. Feature3 used a resolution of 20 × 20 × 20 but 
ignored hydrogen and metal atoms

The best performance model on the validation set selected as the new scoring function model and named Sfcnn

Architecture Feature1 Feature2 Feature3

CNN1 0.0099 0.0104 0.0100

CNN2 0.0083 0.0089 0.0095

Res3 0.0092 0.0102 0.0103

Dense4 0.0101 0.0104 0.0101
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Comparing with the architectures using Feature2, which adopted a higher resolution of 
24 × 24 × 24 as input, the architectures using Feature1 with a resolution of 20 × 20 × 20 
as input showed better performance in every architecture, thus indicating that a higher 
resolution or larger grid cannot significantly improve abilities relating to predicting the 
affinities between proteins and ligands. A higher resolution usually denotes that the 
input grid keeps more information from the protein–ligand complex but also represents 
that it needs increased computing resources to optimize the model. It is well known 
that the binding free energy between a protein and a ligand is contributed to by van 
der Waals interactions, electrostatic interactions, hydrogen bonds, hydrophobic inter-
actions, solvent effects, and entropic contributions. Among the interactions between 
a protein and a ligand, the van der Waals interactions, hydrogen bonds, hydrophobic 
interactions, solvent effects, and entropic contributions are mainly localized around the 
ligand, and the 20 × 20 × 20 grid is good enough to collect these interactions. The elec-
trostatic interactions, which are also very important in protein–ligand interactions, are 
long-range interactions and may not be fully accounted for within the 20 × 20 × 20 grid 
[13, 31]. However, as shown by the results in Table 1, generating the input tensors with 
resolution of the 20 × 20 × 20 is high enough for our prediction model. We presume that 
a larger grid may retain more noise by using our featurization methods of complexes. 
Smaller grids were also not considered because they do not collect most interactions 
between proteins and ligands sufficiently.

Comparisons of the architectures using Feature3, which ignores the hydrogen atoms 
and metal atoms in the protein–ligand complexes as input, against the architectures 
using Feature1 in which all of the atoms were retained, showed that the latter gener-
ally performed better. It is widely known that some hydrogen and metal atoms play very 
important roles in the interactions between proteins and their ligands, therefore retain-
ing the hydrogen and metal atoms within the featurization of complexes is necessary to 
improve prediction abilities. This is also confirmed by the results in Table 1.

Comparisons between the CNN1, Res3, and Dense4 architectures showed that the 
CNN2 architecture generally demonstrated better performance levels. In our work, 
the deeper architecture based on classical Resnet and Densenet did not improve upon 
this performance. This may be related to the featurization method conducted in this 
study. Meanwhile, the Res3 and Dense4 architectures need increased levels of comput-
ing resources to handle the training, suggesting that they are not good architectures for 
our scoring function study. Because the input features in our work were very sparse, 
using the convolution layer with a 1 × 1 × 1 filter as the first layer enables mapping of the 
sparse feature vectors of the atoms to dense vectors and works in a similar manner to 
word embedding. We suspect this may be the reason that the CNN2 architecture exhib-
ited the best performance.

The best performance model generated by the CNN2 architecture with Feature1 as 
input was chosen as the new scoring function model, named Sfcnn, for subsequent 
analysis. The total number of parameters for this model was 1,354,588. When training 
was undertaken for this model, the RMSprop optimizer was used with a 0.004 learning 
rate and 64 batch sizes. Other optimizers, learning rates, and batch sizes were tested but 
resulted in worse performance. To reduce overfitting, the dropout approach was used in 
the full connect layer with a 0.5 drop rate and L2 weight decay in the last layer with 0.01. 



Page 9 of 18Wang et al. BMC Bioinformatics          (2022) 23:222 	

Other values were also tested and resulted in higher losses. The best model was obtained 
with a minimal loss for the validating set at epoch = 112 (Additional file 1: Fig. S1).

Sfcnn performance on the training, validation, and test sets

The prediction accuracy of the Sfcnn model was determined based on the following 
evaluation metrics: RMSE, SD, MAE, and R. The Sfcnn model’s performance on the 
training, validation, and test sets are shown in Table 2. R = 0.9894 was achieved on the 
training set whereas R = 0.7336 on the validation set. By evaluating the performance on 
the CASF-2016 test set, the Sfcnn model achieved R (0.7928) close to 0.8 and a relatively 
small RMSE (1.3263). The performance on the CASF-2016 test set was slightly less than 
that of OnionNet [13] (R = 0.816) and AGL [32] (R = 0.833) which are also based on deep 
learning as previously reported by Zheng et al. [13]. However, when they were evaluated 
on the CASF-2013 test set, the performance of our Sfcnn model was slightly better than 
that of OnionNet (R = 0.78) and AGL (R = 0.792) [13], and also achieved an R (0.7946) 
close to 0.8 with a relatively small RMSE (1.4518). Overall, the performance of Sfcnn was 
similar to that of Onion and AGL, and all of them achieved a pretty good performance 
level for scoring power with an R around 0.8 and a relatively small RMSE. Meanwhile, 
the predicted pKa and the true pKa were highly linear correlated for the two test sets and 
the validating set as shown in Fig. 3.

Comparison with other scoring functions evaluated on the CASF‑2016 benchmark

Sfcnn and other scoring functions were also compared in terms of their abilities relat-
ing to scoring powers for predicting protein–ligand binding affinities using the CASF-
2016 dataset. Table 3 shows the R and SD values given by Sfcnn and the top 10 scoring 
functions tested on the CASF-2016 benchmark by Su et al. [14]. As shown in Table 3, 
the Sfcnn model ranked 2nd among the 11 scoring functions. Among the top 10 scor-
ing functions of CASF-2016, only ΔvinaRF20 [33] is based on machine learning, while 
the others could all be classified into conventional scoring functions based on physics, 
empirical, or knowledge. The best performing X-score in conventional scoring func-
tions achieves R = 0.631 and SD = 1.69, while our Sfcnn model achieved R = 0.792 and 
SD = 1.32, indicating that Sfcnn performed significantly better than all conventional 
scoring functions for scoring power. However, the Sfcnn model was still a little worse 
than ΔvinaRF20 which achieved R = 0.816 and SD = 1.26 for scoring power. The perfor-
mances of Sfcnn and ΔvinaRF20 were further compared on the CASF-2013 benchmark 
[21]. ΔvinaRF20 only achieved R = 0.646 on the CASF-2013 dataset as reported by Wang 
et al. [33]. This performance was significantly worse than that of Sfcnn, which achieved 
R = 0.7946 on CASF-2013 (Table 3).

Table 2  Performance of Sfcnn on training, validation, CASF-2016, and CASF-2013 datasets

Dataset R RMSE MAE SD

Training set 0.9894 0.4402 0.3474 0.2854

Validation set 0.7336 1.2981 0.9391 1.2159

CASF-2016 0.7928 1.3263 1.0277 1.3253

CASF-2013 0.7946 1.4518 1.1139 1.4165
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Why were the performances of Sfcnn and ΔvinaRF20 different when using the 
CASF-2016 and CASF-2013 datasets? We suspect that there may be some overlaps 
between the CASF-2016 test set and the training set used for ΔvinaRF20. As reported 
by Wang et al. [33], the main training set of ΔvinaRF20 was the v2014 refined set [34] 

Fig. 3  Performance of the Sfcnn model on two test sets (CASF-2016 and CASF-2013 datasets), training set, 
and validation set

Table 3  Comparison between Sfcnn and the top 10 scoring functions tested on the CASF-2016 
benchmark

Results (excluding Sfcnn) cited from Su et al. [14]. The performance of these scoring functions was recalculated by us for 
comparison

Scoring function R SD Size Description

ΔVinaRF20 0.816 1.26 285 Machine learning

Sfcnn 0.792 1.32 283 Machine learning

X-Score 0.631 1.69 285 Empirical

X-ScoreHS 0.629 1.69 285 Empirical

ΔSAS 0.625 1.7 285 Single descriptor

X-ScoreHP 0.621 1.7 285 Empirical

ASP@GOLD 0.617 1.71 282 Knowledge-based

ChemPLP@GOLD 0.614 1.72 281 Empirical

X-ScoreHM 0.609 1.73 285 Empirical

AutoDockVina 0.604 1.73 285 Empirical

DrugScore2018 0.602 1.74 285 Knowledge-based
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from the PDBbind database, after removal of the overlaps with the CASF-2007 [35] 
and CASF-2013 [21] datasets, which were the test sets used in the study of ΔvinaRF20. 
We collected the v2014 refined set, CASF-2007 dataset, and CASF-2013 dataset from 
the PDBbind database. Then any structure in the CASF-2007 and CASF-2013 datasets 
was excluded from the v2014 refined set to get the main training set of ΔvinaRF20 
named refined-2014*. There were 140 complexes present in both the refined-2014* 
and the CASF-2016 dataset (Additional file  1: Fig. S2), suggesting that the perfor-
mance of ΔvinaRF20 on the CASF-2016 dataset was falsely high. According to the per-
formances observed for Sfcnn and ΔvinaRF20 on the CASF-2013 dataset, the scoring 
power of Sfcnn was still better than that of ΔvinaRF20, and the Sfcnn model demon-
strated a highly excellent performance when predicting the binding ability of proteins 
and ligands.

Evaluating the performance on CASF‑2013, CSAR_HiQ_NRC_set and Astex_diverse_set

To further, and fairly, evaluate the performance of Sfcnn, some additional scoring func-
tions were applied including DeepBindRG, AutoDockVina, and Pafnucy for compari-
son. Both DeepBindRG and Pafnucy were based on deep learning and showed excellent 
performance with regards to scoring power. AutoDockVina is a very popular docking 
software, and its scoring function is based on empirical. Additionally, some extra inde-
pendent test datasets were tested including the CASF-2013 dataset, the Astex_diverse_
set, and the CASR_HiQ_NRC_set to evaluate the scoring power of Sfcnn, DeepBindRG, 
AutoDockVina, and Pafnucy. The performance of these scoring functions on the three 
extra test datasets is presented in Table 4, using R, RMSE, and MAE values as perfor-
mance indicators.

For the performance of Pafnucy on CASF-2013, Stepniewska-Dziubinska et  al. [12] 
reported that the R value of Pafnucy achieved R = 0.70, while Zhang et al. [36] reported 
it only achieved R = 0.5885. We have recalculated the performance of Pafnucy on the 
CASF-2013 dataset and found it was closer to the latter (R = 0.544 by our calculations), 
therefore we chose the Pafnucy performance tested by Zhang et al. [36] for comparison. 
As shown in Table 4, the performance of Sfcnn on CASF-2013 achieved R = 0.7946 and 
RMSE = 1.4518, and this performance was significantly better than that of the others.

On the full CSAR_HiQ_NRC_set, the R value of Sfcnn achieved 0.824. However, 
there were 194 complexes present in both the CSAR_HiQ_NRC_set and the train-
ing set for Sfcnn. Therefore, the Sfcnn performances were recalculated on the CSAR_
HiQ_NRC_set after removal of the overlaps (represented by CSAR_HiQ_NRC_set* 
in Table 4), and the R value of Sfcnn decreased to 0.6758, which was still better than 
that of DeepBindRG and AutoDockVina. To assess the performance of Pafnucy on the 
CSAR_HiQ_NRC_set, the results calculated by us were adopted because there were 
also many overlaps between the CSAR_HiQ_NRC_set and the Pafnucy training set, 
and the study by Zhang et  al. [36] did not give the real performance levels of Paf-
nucy following removal of the overlaps from the CSAR_HiQ_NRC_set. As shown in 
Table 4, the R value of Pafnucy was 0.6693 but achieved 0.7040 after the overlaps were 
removed. This performance was a little better than that of the Sfcnn model. How-
ever, both the RMSE and MAE values of Pafnucy were higher than that of Sfcnn, sug-
gesting that Sfcnn’s ability to predict the binding affinity was more stable. In general, 
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DeepBindRG, Pafnucy, and Sfcnn displayed similar performances on the CSAR_HiQ_
NRC_set, and they all showed better scoring powers than AutoDockVina. For the 
Astex_diverse_set, the performance of Sfcnn was significantly better than the others 
for the R, RMSE, and MAE values. Overall, the Sfcnn model performed well for two 
of three datasets and showed an excellent performance regarding predicting the bind-
ing affinity between a protein and ligand.

Taking into account that high structural and chemical similarity of the protein and 
ligand between training set complexes and test ones may overestimate the perfor-
mance of scoring functions [37, 38], we further performed similarity test between 
training and test sets. Protein structural similarity was computed by TM-Score and 
ligand similarity was computed by RDkit’s [17, 39, 40]. Complexes with TM-Score 
of over 0.5 or 0.17 and ligand similarity of over 0.8 to the ones in training set were 
excluded from the test sets. As shown in Table 5, after excluding complexes with high 
structural and chemical similarity, the performance of Sfcnn still perform well on 
all test sets. Sfcnn still achieves an R value of over 0.77 on CASF-2016 and CASF-
2013 datasets, maintaining a good performance. On CSAR_HiQ_NRC_set and 
Astex_diverse_set, the R value of Sfcnn still achieves an R value of over 0.6. Over-
all, after excluding complexes with high structural and chemical similarity, Sfcnn still 
maintains a good performance on all test sets, which may be related to the featuri-
zation method we have adopted. As in our featurization method, the input 4D ten-
sor features will not be the same as long as the coordinates of the complexes are not 
identical.

Table 4  Performance of Sfcnn, DeepBindRG, AutoDockVina, and Pafnucy on CASF-2013, CSAR_
HiQ_NRC_set, and Astex_diverse_set datasets

Results (excluding all the Sfcnn performance and the Pafnucy performance on CSAR_HiQ_NRC_set* dataset) cited from 
Zhang et al. [36]

*indicates the dataset after removal of the overlaps

Dataset R RMSE MAE Size

Sfcnn performance

 CASF-2013 0.7946 1.4518 1.1139 107

 CSAR_HiQ_NRC_set 0.824 1.277 0.8375 343

 CSAR_HiQ_NRC_set* 0.6758 1.8079 1.3680 149

 Astex_diverse_set 0.6474 1.3627 1.0518 74

DeepBindRG performance

 CASF-2103 0.6394 1.817 1.4829 195

 CSAR_HiQ_NRC_set 0.6585 1.7239 1.3607 343

 Astex_diverse_set 0.4657 1.6209 1.3355 74

AutoDockVina performance

 CASF-2103 0.5725 2.401 1.9462 195

 CSAR_HiQ_NRC_set 0.5707 2.2884 1.7268 343

 Astex_diverse_set 0.422 2.2027 1.7068 74

Pafnucy performance

 CASF-2103 0.5855 1.8491 1.5131 195

 CSAR_HiQ_NRC_set 0.6693 1.6805 1.3336 343

 CSAR_HiQ_NRC_set* 0.7040 1.8868 1.5230 136

 Astex_diverse_set 0.5146 1.4654 1.1732 74
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Virtual screening performance on the CASF and DUD‑E benchmarks

Docking power refers to the ability of a scoring function to identify the native ligand 
binding pose among computer generated decoys. We further tested the docking power 
of Sfcnn on CASF-2016 benchmark and assessed the ability of Sfcnn to identify those 
poses with a RMSD within 2 Å from the native one. The top one, top two and top three 
predictions of Sfcnn are 34%, 50.2% and 58.9% on the CASF-2016 benchmarks, respec-
tively. This performance is far lower than the docking power of AutoDockVina, which 
is the best one tested by Su et al. [14], with a score of 90.2%, 95.8% and 97.2%. To the 
best of our knowledge, many ML-based scoring functions such as KDEEP, Pafnucy and 
AK-score [41] do not perform very well in terms of docking power, due to the lack of 
integration of non-binding data for training. But these scoring functions can be used 
in combination with AutoDockVina to re-score the pose identified by AutoDockVina to 
improve the success rate of virtual screening. In the virtual screening test of this study, 
we used Smina which is a fork of AutoDockVina to dock ligands to targets and then used 
Sfcnn to re-score these complexes. We first tested the virtual screening ability on the 
DUD-E benchmark. The DUD-E benchmark is a very popular and huge dataset with 
more than one million compounds, widely used for assessing virtual screening abilities 
of scoring functions and docking protocols. Due to computational resource limitations, 
we built a subset to evaluate the virtual screening ability of Sfcnn by randomly sampling 
the DUD-E dataset. In this subset, there were 20 active compounds and 1000 decoys 
for each target. We expected to identify the active ones from a total of 1020 small mol-
ecules by Sfcnn scoring function. As shown in Additional file 1: Table S2 and Fig. 4, the 
EF 5% and EF 0.5% for Sfcnn are significantly higher than that for Smina on this subset 
of DUD-E benchmark (Student’s test, p-value = 1.15e-06 and p-value = 9.74e-08, respec-
tively), showing that Sfcnn has better virtual screening ability than Smina and Auto-
DockVina on this subset. However, there may be some decoys designed not against the 
actives on the subset, resulting in different distributions of actives and decoys on this 
subset and the whole DUD-E dataset. Therefore, the virtual screening result of Sfcnn 
in this study only illustrated its performance on a subset of DUD-E benchmark and this 
result may differ from the test result on the whole DUD-E benchmark. To remedy this 
deficiency, we further tested the virtual screening performance of Sfcnn on another 

Table 5  Performance of Sfcnn on CASF-2016, CASF-2013, CSAR_HiQ_NRC_set, and Astex_diverse_
set datasets after excluding complexes with high structural and chemical similarity to the training 
set ones

Datasets R RMSE MAE Size

TM < 0.5, ligand similarity < 0.8

 CASF-2016 0.7772 1.4006 1.0931 200

 CASF-2013 0.7898 1.5592 1.1882 78

 CSAR_HiQ_NRC_set 0.6372 1.8839 1.4630 124

 Astex_diverse_set 0.6404 1.3372 1.0505 70

TM < 0.17, ligand similarity < 0.8

 CASF-2016 0.8008 1.3731 1.087 170

 CASF-2013 0.7863 1.6088 1.2282 65

 CSAR_HiQ_NRC_set 0.6353 1.9321 1.5149 75

 Astex_diverse_set 0.6356 1.3109 1.0425 53
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smaller dataset. As shown in Additional file 1: Table S3 and Fig. 4, Sfcnn shows a virtual 
screening performance comparable to Smina On the CASF-2016 benchmark (Student’s 
test, p-value = 0.54 and p-value = 0.12, respectively). Overall, Sfcnn shows a good virtual 
screening performance.

Explainable 3D CNN model using grad‑CAM

Gradient-weighted class activation mapping (Grad-CAM) [42] is a widely used tech-
nique for making any CNN-based models more transparent. It produces visual expla-
nations and helps determine more about the model when performing detection or 
prediction work. We utilized this method to identify the hot spot areas of the input fea-
ture that play important roles in determining the output predicted score. In this work, 
the last convolutional layer and the output predicted score of the full model were used 
when applying Grad-CAM. Then the heatmap of the last convolutional layer was resized 
to the same size with the input feature, and subsequently visualized using Mayavi [43].

The example cases of Grad-CAM analysis on the protein–ligand complexes are illus-
trated in Fig. 5. Figure 5a and b show the structure of the hormone-bound human pro-
gesterone receptor complexed with progesterone from the training set (PDB ID: 1a28) 
[44]. As shown in Fig.  5a, the hot spot areas were mainly around the ligand, and the 
high activation area colored in purple was around the five-carbon ring of progester-
one. This was consistent with the finding in Fig. 5b that there were strong hydrophobic 
interactions between the receptor and progesterone, suggesting that the hydrophobic 
interactions may play a dominant role in the binding of this protein to the ligand. Fig-
ure 5c and Fig. 5d depict the structure of HIV-1 protease complexed with a tripeptide 
inhibitor from the CASF-2016 test set (PDB ID: 1a30) [45]. As shown in Fig. 5c, the high 
activation areas colored in purple were around the Glu and Leu residues in the ligand. 

Fig. 4  Virtual screening performance of Sfcnn and Smina on CASF-2016 benchmark and a subset of DUD-E 
benchmark
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Meanwhile, the hydrogen bond had formed between ligand-Glu and protein-Asp29 and 
there were strong hydrophobic interactions between the protease and the Leu residue 
of the inhibitor, playing an important role in determining the binding affinity. Heatmaps 
of Grad-CAM analyses for the other convolutional layers are shown in Fig. S3 and Fig. 
S4. These examples showed that the features learned by convolutional layers are explain-
able, and they may represent the high dimensional information between the protein and 
ligand such as hydrophobic interactions and hydrogen bonds. Meanwhile, combining 
the CNN model with the Grad-CAM analysis may help identify the critical functional 
groups in determining the binding free energy between proteins and ligands.

Conclusions
In the present work, we designed a convenient and reversible feature engineering 
method and developed a scoring function “Sfcnn” based on a deep 3D convolutional 
neural network, to improve ligand binding affinity prediction. Sfcnn enables a very 
easy, fast, and accurate calculation of the binding free energies between proteins 

Fig. 5  Heatmaps of Grad-CAM analyses and presentations of input features. a Example of a protein–ligand 
complex whose PDB ID was 1a28 from the training set. b 2D protein–ligand interactions of 1a28. c Example 
of a protein–ligand complex whose PDB ID was 1a30 from the CASF-2016 test set. d 2D protein–ligand 
interactions of 1a30. In a and c, the red spheres represent oxygen atoms of the ligand, the orange spheres 
represent nitrogen atoms of the ligand, the yellow spheres represent carbon atoms of the ligand and the 
small blue spheres represent the atoms of the protein. Hydrogen atoms are not shown on the graph for 
viewing purposes. The heatmap is colored from cyan to purple. In b and d, the green dashed line indicates 
hydrogen bonds and the red arc areas indicate hydrophobic interactions. a and c were drawn by Mayavi. b 
and d were generated with LigPlot + [46]
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and ligands. It is also capable of handling almost any docking result, and any ligand, 
regardless of the type of atoms in the ligand. Meanwhile, the feature engineer-
ing method used in this study enables a good reversible conversion between spatial 
structure and numerical features. The reversibility facilitates the intelligent design of 
novel drugs but has rarely considered on other scoring functions. Although the fea-
ture engineering in the Sfcnn model has been greatly simplified, Sfcnn still performs 
comparably to scoring functions such as OnionNet and AGL on the CASF-2016 
and CASF-2013 datasets. The accuracy of Sfcnn was also comparable with all scor-
ing functions provided by the CASF-2016 dataset, and Sfcnn showed the best per-
formance for scoring power. Meanwhile, the Sfcnn model was also comparable with 
DeepBindRG and Pafnucy, which are both based on deep learning in several extra 
independent datasets. Sfcnn performed well on two of the three datasets tested. For 
the remaining dataset, Sfcnn also showed a performance comparable with Deep-
BindRG and Pafnucy. Overall, Sfcnn has shown a fairly stable and accurate prediction 
performance by evaluating Sfcnn and other scoring functions on different datasets. 
In addition, the visual high-level features automatically learned by convolutional lay-
ers provided interpretability for the superior performance of Sfcnn and this method 
can also be used to optimize the lead compound and find optimal pose during dock-
ing. These results indicate the Sfcnn model is an excellent scoring function, and per-
forms well in scoring power for accurately and stably predicting the binding affinities 
between proteins and ligands. The Sfcnn model will contribute towards improving 
the success rate of virtual screening, thus will accelerate the development of potential 
drugs or novel biologically active lead compounds.
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