Skip to main content
. 2022 Jun 8;23:222. doi: 10.1186/s12859-022-04762-3

Table 3.

Comparison between Sfcnn and the top 10 scoring functions tested on the CASF-2016 benchmark

Scoring function R SD Size Description
ΔVinaRF20 0.816 1.26 285 Machine learning
Sfcnn 0.792 1.32 283 Machine learning
X-Score 0.631 1.69 285 Empirical
X-ScoreHS 0.629 1.69 285 Empirical
ΔSAS 0.625 1.7 285 Single descriptor
X-ScoreHP 0.621 1.7 285 Empirical
ASP@GOLD 0.617 1.71 282 Knowledge-based
ChemPLP@GOLD 0.614 1.72 281 Empirical
X-ScoreHM 0.609 1.73 285 Empirical
AutoDockVina 0.604 1.73 285 Empirical
DrugScore2018 0.602 1.74 285 Knowledge-based

Results (excluding Sfcnn) cited from Su et al. [14]. The performance of these scoring functions was recalculated by us for comparison