
Autoreactive CD8+ T cells are restrained by an exhaustion-like 
program that is maintained by LAG3

Stephanie Grebinoski1,2,3,&, Qianxia Zhang1,2,3,12,&, Anthony R Cillo1,3, Sasikanth Manne4,5, 
Hanxi Xiao6,7, Erin A. Brunazzi1,3, Tracy Tabib8, Carly Cardello1,3, Christine G. Lian9, 
George F. Murphy9, Robert Lafyatis8, E. John Wherry4,5,10, Jishnu Das6, Creg J. 
Workman1,3, Dario A. A. Vignali1,3,11,*

1Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

2Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, 
Pittsburgh, PA, USA.

3Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.

4Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 
PA, USA.

5Department of Systems Pharmacology and Translational Therapeutics, University of 
Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

6Center for Systems Immunology, Departments of Immunology and Computational & Systems 
Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

7CMU-Pitt Joint Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, 
PA, USA.

8Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, 
Pittsburgh, PA, USA.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
*Corresponding Author: dvignali@pitt.edu.
&contributed equally
Author Contributions
D.A.A.V conceived, directed and obtained funding for the project; S.G, Q.Z., C.J.W. and D.A.A.V. conceptualized, designed, analyzed 
the experiments. S.G. and D.A.A.V wrote the manuscript with input from J.D., H.X., S.M., C.J.W., and A.R.C.; S.G. and Q.Z. 
performed all experiments. A.R.C. and T.T. helped conceptualize single cell RNAseq experiments and A.R.C. and S.M. analyzed the 
single cell RNAseq and TCRseq data. S.M. analyzed the bulk RNASeq data. J.D. and H. X. synthesized protein interaction networks 
and PLS-DA. E.B. aided in diabetic mouse colony maintenance, breeding, and diabetes incidence. T.T. and C.C. generated single 
cell libraries. C.G.L. and G.F.M. oversaw H&E staining. R.L. contributed advice for RNAseq library generation and data acquisition. 
E.J.W. contributed advice in experimental design and analysis; J.D. and H.X. contributed to RNAseq analysis, network analysis, and 
interpretation; C.J.W. contributed to experimental design, analysis, and developing mouse strains. All authors provided feedback and 
approved the manuscript.

Competing interests
D.A.A.V and C.J.W. declare competing financial interests and have submitted patents covering LAG3 that are licensed or pending and 
are entitled to a share in net income generated from licensing of these patent rights for commercial development. DAAV: cofounder 
and stock holder – Novasenta, Potenza, Tizona, Trishula; stock holder – Oncorus, Werewolf, Apeximmune; patents licensed and 
royalties – Astellas, BMS, Novasenta; scientific advisory board member – Tizona, Werewolf, F-Star, Bicara, Apeximmune, T7/Imreg 
Bio; consultant – Astellas, BMS, Almirall, Incyte, G1 Therapeutics, Inzen Therapeutics; research funding – BMS, Astellas and 
Novasenta. E.J.W. has consulting agreements with and/or is on the scientific advisory board for Merck, Roche, Pieris, Elstar, and 
Surface Oncology. E.J.W. has a patent licensing agreement on the PD-1 pathway with Roche/Genentech. E.J.W. is a founder of 
Arsenal Biosciences. The other authors declare no competing interests

HHS Public Access
Author manuscript
Nat Immunol. Author manuscript; available in PMC 2022 November 26.

Published in final edited form as:
Nat Immunol. 2022 June ; 23(6): 868–877. doi:10.1038/s41590-022-01210-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, 
MA, USA.

10Parker Institute for Cancer Immunotherapy at University of Pennsylvania Perelman School of 
Medicine, Philadelphia, PA, USA.

11Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh 
PA, USA.

12Present address: Program in Cellular and Molecular Medicine, Boston Children’s Hospital and 
Harvard Medical School, Boston, MA, USA.

Abstract

Impaired chronic viral and tumor clearance has been attributed to CD8+ T cell exhaustion, a 

differentiation state in which T cells have reduced and altered effector function that can be 

partially reversed upon blockade of inhibitory receptors. The role of the exhaustion program 

and transcriptional networks that control CD8+ T cell function and fate in autoimmunity is not 

clear. Here we show that intra-islet CD8+ T cells phenotypically, transcriptionally, epigenetically 

and metabolically possess features of canonically exhausted T cells, yet maintain important 

differences. This ‘restrained’ phenotype can be perturbed and disease accelerated by CD8+ 

T cell-restricted deletion of the inhibitory receptor lymphocyte activating gene 3 (LAG3). 

Mechanistically, LAG3-deficient CD8+ T cells have enhanced effector-like functions, trafficking 

to the islets, and have a diminished exhausted phenotype, highlighting a physiological function 

for an exhaustion program in limiting autoimmunity and implicating LAG3 as a target for 

autoimmune therapy.

Introduction

CD8+ T cell dysfunction or exhaustion is a differentiation state distinct to that of effector 

or memory and has been extensively studied in cancer and chronic viral infections1. T 

cell exhaustion is driven by persistent antigen exposure and chronic T cell receptor (TCR) 

stimulation, and is characterized by altered effector functions, reduced proliferative capacity, 

an altered transcriptional and epigenetic landscape, and persistent, high level expression of 

multiple inhibitory receptors such as programed cell death protein 1 (PD1), lymphocyte 

activating gene 3 (LAG3), T cell immunoglobulin and mucin domain-containing protein 3 

(TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT)1. The transcription 

factors (TFs) Transcription Factor 1 (TCF1) and Thymocyte Selection Associated High 

Mobility Group Box (TOX) are critical modulators of the exhaustion program and are 

required to maintain progenitor populations and to transition cells to terminal exhaustion2–6.

Autoimmunity, chronic viral infections, and cancer share two common features associated 

with T cell exhaustion: persistent antigen exposure and chronic TCR stimulation. However, 

it remains unclear whether there are differences in exhaustion programs in the context 

of autoimmunity versus chronic infection (lymphocytic choriomeningitis virus clone 13, 

LCMV Cl. 13) and cancer. There is currently much interest in defining the state of 

autoreactive T cells due to the therapeutic potential of targeting inhibitory receptors on 
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such cells. In the MRL-lpr mouse model of systemic lupus erythematosus (SLE), kidney 

infiltrating T cells have been shown to be functionally, metabolically, and transcriptionally 

exhausted, yet this does not prevent autoimmunity7,8. In human autoimmunity, high 

inhibitory receptor expression on T cells correlates with reduced autoimmune symptoms 

and, in the case of Type 1 Diabetes (T1D), responsiveness to anti-CD3 immunotherapy9–12. 

Similarly, autoimmune-related adverse events following inhibitory receptor blockade therapy 

in cancer patients supports the importance of inhibitory receptor function in maintaining 

immune homeostasis13,14. However, these observations remain controversial15 and it is 

unclear if they are solely linked to increased inhibitory receptor expression or if an 

underlying transcriptional and mechanistic program related to T cell exhaustion is present, 

thereby inferring a physiological role for the exhaustion program in limiting autoimmunity.

T1D is a chronic autoimmune disorder characterized by immune infiltration and subsequent 

destruction of insulin producing β cells and is spontaneously modeled in the non-obese 

diabetic (NOD) mouse, providing an ideal system to study autoreactive CD8+ T cells16. 

Although CD4+ effector T cells are largely considered the primary drivers of T1D, there 

is an increasing appreciation for the role of CD8+ T cells in disease progression and for a 

stem-like population in the pancreatic lymph nodes (pLN) that appears to renew the effector 

pool15,17,18. However, intra-islet CD8+ T cells (the population that is actively destroying 

pancreatic β cells) exist in unique functional state to which the islet microenvironment 

clearly contributes19–22. Whereas inhibitory receptors, such as LAG3 and PD1, restrain the 

autoimmune response, a specific role for an exhaustion program impacting CD8+ T cell 

pathogenicity has yet to be fully established; indeed, the existence of an ‘exhausted-like’ 

phenotype is still debated by some and even refuted by others10,15,23.

Here we find a subset of ‘restrained’ intra-islet CD8+ T cells that have features 

reminiscent of the canonically exhausted phenotype of LCMV Cl.13 and tumors, yet 

this population maintains some important differences. When this phenotype is perturbed 

through the deletion of LAG3, autoimmune diabetes incidence is accelerated, highlighting a 

physiological role for CD8+ T cell restraint in delaying disease onset and implicating LAG3 

as a potential immunotherapeutic target for the treatment or prevention of autoimmune 

diabetes.

Results

Autoreactive CD8+ T cells express hallmarks of exhaustion

To investigate our hypothesis that the diabetic islet microenvironment may induce or 

promote T cell exhaustion due to chronic high antigen exposure and altered nutrient 

availability, we first preformed high dimensional flow cytometric analysis using Cytobank24 

(11 markers) of islet-infiltrating CD8+ T cells from 12-week-old female wild type (WT) 

NOD mice. This analysis revealed a clear distinction between intra-islet CD8+ T cells 

and remarkable heterogeneity within the islets, compared to the non-draining lymph 

node (ndLN) and pancreatic lymph node (pLN, Fig. 1a). All exhausted T cells and 

progenitors express TOX, while only the early progenitor sub-populations express TCF1 and 

terminally exhausted CD8+ T cells lose TCF1 expression and further upregulate TOX2. High 

dimensional FlowSOM clustering analysis allowed us to identify clusters #1 and #3 within 
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the islets that expressed high levels of TOX but lacked TCF1, emblematic of a terminally 

exhausted phenotype (Fig. 1a, Extended data Fig. 1a–b). Interestingly, LAG3 was the 

only inhibitory receptor that was unique and highly co-expressed with these clusters. This 

analysis also revealed a similar cluster (#2) that maintained TCF1 expression, suggesting 

it may be an earlier progenitor population (Fig. 1a). An autoimmune progenitor population 

has recently been described in the pLN of NOD mice15. Here we show a similar population 

within the islets, with the addition of high inhibitory receptor expression. It is worth noting 

that cluster #2 lacked LAG3 expression, suggesting LAG3 is unique to more terminally 

differentiated sub-populations.

Given the preponderance of LAG3 expression on ‘exhausted’ T cells, we used this feature 

to interrogate the transcriptome of intra-islet CD8+ T cells from Lag3L/L-YFP.NOD mice 

(in which Lag3 expression is marked by concordant YFP expression25) to determine if 

LAG3+ intra-islet CD8+ T cells are enriched for signatures of exhaustion (Extended Data 

Fig. 2a–b). To address this, bulk RNA sequencing (RNAseq) was performed on YFP+ vs 

YFP− intra-islet CD8+ T cells (Extended Data Fig. 2a–b). Interestingly, YFP+ intra-islet 

CD8+ T cells express high levels of co-signaling receptors (Extended Data Fig. 2c) and are 

enriched for markers of exhaustion rather than markers of activation (Fig. 1b, Extended Data 

Fig. 2d). Studies have shown that exhausted T cells from LCMV Cl. 13 exhibit a unique 

epigenome26. Using ATACseq, we found that in comparison to ndLNs, total intra-islet CD8+ 

T cells are enriched for an exhausted epigenome, but also appear to possess features of an 

effector epigenome (Fig. 1c, Extended Data Fig. 2e). Taken together, these data along with 

other studies22, suggest that a subset of intra-islet CD8+ LAG3+ T cells exhibit features of 

canonically exhausted CD8+ T cells.

We then used spectral flow cytometry to further assess intra-islet CD8+ T cell subsets over 

time to correlate with disease progression. Intra-islet CD8+ T cells are very heterogeneous22: 

a subset of total intra-islet CD8+ T cells upregulate inhibitory receptors and TFs related to 

exhaustion, which increase over time, while other subsets upregulate effector and memory 

markers (specifically, PD1− CD8+ T cells), compared to ndLN and pLN controls (Extended 

Data Fig. 1, 3). Interestingly, the inhibitory receptors TIM3 and CTLA4 are minimally 

expressed on intra-islet CD8+ T cells at all timepoints, highlighting a key difference between 

intra-islet and canonically exhausted CD8+ T cells (Extended Data Fig. 1b–d). Analysis of 

intra-islet CD8+ T cells reveals that the majority are TCF1+TOX− (Extended Data Fig. 1e). 

Indeed, when we subset by PD1 expression, we find that almost all PD1−CD8+ T cells are 

TCF1+TOX−, lack co-inhibitory receptor expression, and are CD127+KLRG1− (Extended 

Data Fig. 3b, 4a–d), which suggests this subset is Memory Precursor Effector Cells 

(MPECs) and likely propagates disease. This population has been extensively documented 

in the literature, while exhausted cells have not in autoimmune diabetes22,27,28. The percent 

TOX+ total intra-islet CD8+ T cells correlates with the inhibitory receptors PD1, TIGIT 

and LAG3 (Extended Data Fig. 1f), and the percent TCF1−TOX+ CD8+ T cells increases 

with disease progression (Extended Data Fig. 1e), indicating that a sub-population of intra-

islet CD8+ T cells, which increases over time, may be differentiating toward exhaustion 

rather than a memory or effector lineages (Extended Data Fig. 3a–e). Previous studies 

suggest that antigen specificity is a pre-requisite for islet trafficking and bystander T cells 

cannot accumulate within the islets29. Using Insulin and glucose-6-phosphatase catalytic 
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subunit-related tetramers (InsB and Nrpv7, respectively) to investigate known β cell antigen 

autoreactive CD8+ cells, we find a similarly heterogeneous population of tetramer+ CD8+ T 

cells (Extended Data Fig. 3f–g).

Exhausted subsets of CD8+ T cells are derived from a PD1+ population2. We therefore 

compared intra-islet CD8+ T cells based on PD1 expression (ndLN and pLN are not 

included in this analysis as there are few PD1+ cells in the LNs, Extended Data Fig. 1) 

and found that a high percentage of PD1+CD8+ T cells co-express LAG3 and TIGIT, a 

population that increases over time (Fig. 1d–e, Extended Data Fig. 4a–b). Further analysis of 

TCF1 and TOX based on PD1 expression demonstrated that the majority of PD1+ intra-islet 

CD8+ T cells are either TCF1+TOX+ or TCF1−TOX+ (Fig. 1f, gating based on total or PD1− 

CD8+ T cells, Extended Data Fig. 1e, 4c–d), implying that intra-islet PD1+ CD8+ T cells 

may possess features of exhausted progenitor states, moving toward a terminally exhausted 

population. The percentage of TCF1−TOX+ cells increases with time, while TCF1+TOX− 

cells decreases (Fig. 1f), suggesting that with disease progression, terminally exhausted 

(PD1+TCF1−TOX+) intra-islet CD8+ T cells accumulate in the islets. Interestingly, the 

TCF1+TOX+ sub-population that was largely maintained over time (Extended Data Fig.1e, 

4c–d). Taken together, our data suggest that intra-islet CD8+ T cells exhibit multiple features 

of exhaustion.

We next profiled known CD8+ T cell markers that distinguish effector (Tbet, CD73) and 

exhausted (EOMES, CD39) cells in LCMV Cl. 13 and tumors30–34. We find that very 

few intra-islet CD8+ T cells from 12-week-old NOD mice upregulate effector marker Tbet, 

and only a subset (~40%) upregulate CD73 (Extended Data Fig. 4e–f). In contrast, the 

exhaustion markers CD39 and EOMES are enriched in intra-islet CD8+ T cells compared 

to the LNs (Extended Data Fig. 4e–f), where islets also contain a CD39+EOMES+ sub-

population (Fig. 2a). Intra-islet CD8+ T cells, like those from tumors and LCMV Cl. 13, 

do not have a significant proportion of cells expressing CD39 and CD73 (Extended Data 

Fig. 4e). Interestingly, we find very few Tbet+ CD8+ T cells, either single positive or 

co-expressing EOMES (Extended Data Fig. 4f).

We next sought to understand how intra-islet CD8+ T cells might be functionally 

impacted. Nutrient availability, metabolism, and the ability to take up glucose are important 

determinants of CD8+ T cell function in tumors and LCMV Cl. 1335–37. Furthermore, 

mitochondrial stress (reactive oxygen species, ROS) has recently been implicated as a 

driver of exhaustion, while impaired glucose uptake and lower mitochondrial mass are 

characteristic of tumor-derived exhausted CD8+ T cells36,37. Similarly, we observed a 

striking impairment in the uptake of fluorescently-labeled glucose (Glucose-Cy5) and 

mitochondrial mass (MitoTracker) coupled with a decrease in mitochondrial potential 

(Tetramethylrhodamine, TMRM) (Fig. 2b, Extended Data Fig. 4g) in intra-islet CD8+ T 

cells compared to LN controls36. Interestingly, in contrast to tumor infiltrating CD8+ T cells, 

intra-islet CD8+ T cells do not show an accumulation of ROS (MitoSOX and CellROX, 

Extended Data Fig. 4h). Despite these severe metabolic deficiencies, intra-islet CD8+ T cells 

maintain production of some cytokines at a level similar to LN controls and intra-islet CD4+ 

T cells (Extended Data Fig. 4i).
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Finally, we investigated possible drivers of the impaired metabolic phenotype. Given 

that hypoxia drives metabolic dysfunction in tumors36, we used hypoxyprobe to assess 

hypoxic intra-islet CD8+ T cells by flow cytometry (Methods). Interestingly, we found an 

accumulation of both hypoxyprobe and Hif1α in intra-islet CD8+ T cells (Fig. 2c–d), with 

percent Hif1α correlating with hypoxyprobe (Fig. 2e). While islets are highly vascularized, 

hypoxia in islets has been reported and is often cited as a barrier to islet transplantation38–41. 

β cells are thought to induce localized hypoxia due to high oxygen consumption demands 

to produce insulin38. Our data suggests that hypoxia may contribute, in conjunction with 

other unknown nutrient deficiencies or pro-inflammatory signals, to immune dysfunction 

in the islets. Together, we observed phenotypic, functional, metabolic, transcriptional, and 

epigenetic alterations in a subset of intra-islet CD8+ T cells that maintain certain features 

of canonical exhaustion (Fig. 2f). These data suggest that the exhaustion-like phenotype 

“restrains” the function of intra-islet CD8+ T cells.

LAG3 limits autoimmune diabetes and promotes terminal differentiation

Given that LAG3/YFP+ intra-islet CD8+ T cells are transcriptionally enriched for genes 

related to exhaustion (Fig. 1b, Extended Data Fig. 2c–d) and that “restrained” CD8+ T 

cell clusters #1 and #3, specifically express LAG3 (Fig. 1a), we aimed to perturb the 

development of this phenotype by deleting LAG3 cell surface expression specifically on 

CD8+ T cells (Lag3L/L-YFPE8iCRE/CRE-GFP.NOD, a model in which the transmembrane 

domain of LAG3 is deleted in CD8+ T cells, thereby allowing the secretion of soluble 

LAG3, which does not have a known function at this time, but preventing LAG3 expression 

on the cell surface and LAG3 cell intrinsic signaling, herein referred to as Lag3ΔTM 

mice; Extended Data Fig. 5a–b)25. We hypothesized that deleting LAG3, a secondary 

inhibitory receptor compared to PD1, would allow us to subtly perturb the development 

of the restrained phenotype observed in WT intra-islet CD8+ T cells. Strikingly, accelerated 

diabetes incidence was observed in both female and male Lag3ΔTM mice compared to 

Lag3L/L-YFP.NOD and E8iCRE/CRE-GFP.NOD (herein referred to as Cre Control) mice, with 

all females diabetic by ~16 weeks of age (Fig. 3a).

To further resolve heterogeneous intra-islet CD8+ T cell populations and to investigate the 

transcriptional consequences of LAG3 deletion, CD8+ T cells from the islets and ndLN were 

isolated and subjected to 5’ single cell RNA sequencing (scRNAseq), allowing us to recover 

paired single-cell gene expression signatures and T cell receptor (TCR) sequences. Analysis 

revealed 8 transcriptionally unique clusters (Supplementary Table 1), 2 of which consisting 

predominantly of ndLN derived CD8+ T cells (clusters 1 and 5), while the remaining 6 

were primarily representative of intra-islet CD8+ T cells (Fig. 3b, Extended Data Fig. 5c–d). 

LAG3 is activation induced, so therefore genotype did not influence the clustering pattern of 

cells from the ndLN, but greatly influenced the clustering of intra-islet CD8+ T cells with 

clusters 3 and 4 exhibiting enrichment for Lag3 ΔTM, while clusters 6 showed enrichment for 

the Cre Control (Fig. 3b [colored red and blue, respectively], Extended Data Fig. 5d).

Using over-representation analyses (ORA)42,43, we explored whether the identified gene 

signatures marking the intra-islet Cre Control and Lag3ΔTM CD8+ T cells were enriched for 

certain pathways. We used the top 50 differentially expressed genes (DEGs) characterizing 
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each genotype (Supplementary Table 2 and Methods) to examine enrichment in the Kyoto 

Encyclopedia of Genes and Genomes (KEGG)44–46 pathway database (Extended Data Fig. 

5e). We find that intra-islet Lag3ΔTM CD8+ T cells show enrichment for viral infection 

KEGG pathways which feature effector genes such as Fos, Jun, Jund, Myc and Nfkbia 
(Extended Data Fig. 5e–f), suggesting enhanced effector function. Conversely, the intra-islet 

Cre Control enriched CD8+ T cell cluster (cluster 6) revealed KEGG pathways featuring 

inhibitory or apoptotic genes (e.g Klrc1/2 [gene encoding NKG2A/C], Klrd1 [gene encoding 

CD94, co-receptor for NKG2A/C], Sh2d1a, Casp3, Ctsb, Ctsd, Bcl2a1d; Extended Data 

Fig. 5e–f)47,48. Interestingly, both intra-islet Cre Control and Lag3ΔTM maintained cytokine 

transcripts. Importantly, analysis of intra-islet CD8+ T cells revealed a distinct transcript 

in the absence of LAG3. Finally, we assessed these distinct phenotypes in the context of 

previously established CD8+ T cell dysfunction in tumors26. Using gene set enrichment 

analysis (GSEA), we find that Lag3ΔTM dominated clusters, 3 and 4, are transcriptionally 

more progenitor-like, while Cre Control dominated cluster 6, is enriched for a terminal 

exhaustion score (Fig. 3c).

To further assess these differences, we used pseudotemporal modeling (Methods)49,50 

to infer differentiation trajectories across genotypes. Pseudotime analysis revealed one 

continuous trajectory of differentiation (Fig. 3d). This differentiation trajectory begins 

with genes associated with naivety including Sell (gene encoding CD62L), Ccr7, Klf2, 
and Lef1 (Fig. 3d–e, Extended Data Fig. 6a–b), and progresses towards genes associated 

with exhaustion and those characteristic of Cre Control intra-islets cells, including Klrc1/2, 
Bcl2a1d, Pdcd1, Tigit, and Lag3 (Fig. 3e, Extended Data Fig. 6c–d). These data indicate 

that the diffusion pseudotime trajectory begins at low values of diffusion component 1 

(DC1), occupied by naïve cells, and progresses through the linear trajectory to terminal 

differentiation which is correlated with upregulation of exhaustion-related signatures and 

downregulation of naïve related signatures, consistent with the intra-islet exhausted-like 

phenotype identified by our flow cytometry experiments. As anticipated, genes associated 

with the middle of pseudotime appear to be related to CD8+ T cell effector function and are 

associated with the Lag3ΔTM ORA: Fos, Jun, Junb, Jund, Nfkbia, Irf7 (Fig. 3e, Extended 

Data Fig 6c). It is worth noting that TOX was a top DEG in islet clusters 2 (~50/50 split 

per genotype) and 6 (Cre Control enriched) but was not in clusters 3 and 4 (Lag3ΔTM 

dominated clusters, Supplementary Table 2). TOX was also expressed through middle and 

late pseudotime, likely due to its upregulation in exhausted progenitor populations as well 

as terminal populations (Extended Data Fig 6c–d). As predicted by the genes dictating 

pseudotime (Fig. 3e, Extended Data Fig 6b–d), intra-islet Cre Control CD8+ T cells occupy 

the space in late pseudotime, while Lag3ΔTM CD8+ T cells more frequently occupy an 

earlier position in the inferred differentiation trajectory (Fig. 3f, Extended Data Fig. 6a). 

Together, these data confirm that LAG3 expression limits effector potential and promotes a 

more terminally differentiated phenotype (Fig. 3f).

We next interrogated the relationship between TCR clonality, gene expression, and 

differentiation states of CD8+ T cells. Initially, we found trends toward increased activation 

(indicated by clonal expansion) amongst intra-islet Lag3ΔTM CD8+ T cells (Extended 

Data Fig. 7a) as well as expanded TCR repertoire, suggestive of a broader CD8+ T cell 

response (Extended Data Fig. 7b, Supplementary Table 3). We sought to characterize the 
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differentiation states of clonally expanded TCRs within the islets between the Lag3ΔTM 

and Cre Controls. We visualized the clonally expanded TCRs (i.e. TCRs with greater than 

4 clones) along the DC1 axis, and found that enhanced clonality was coupled to a less 

terminally differentiated transcriptional state in the Lag3ΔTM CD8+ T cells (Fig. 3g). In 

summary, single-cell TCR analysis revealed (1) trends toward a higher frequency of clonally 

expanded TCRs, (2) trends toward a higher number of unique clones, and (3) a more 

progenitor differentiation status in those clonally expanded Lag3ΔTM intra-islet CD8+ T 

cells.

To explore the functional consequence of positioning in pseudotime differentiation between 

Lag3ΔTM and Cre Control, we divided the diffusion pseudotime trajectory into 5 clusters 

according to the embedding in DC 1 and 2, aiming to determine genes that characterize 

the differentiation trajectory in each genotype (Extended Data Fig. 7c). When specifically 

looking at clusters enriched in the islets (i.e. clusters 3 through 5), we found that markers 

of restrained CD8+ T cells (Batf and Klrc1) are associated with terminal differentiation and 

are more highly expressed in Cre Control mice, while chemokine receptors Cxcr6/3 are 

associated with intermediate pseudotime and more highly expressed in Lag3ΔTM (Extended 

Data Fig. 7d). These findings are consistent with more effector-like CD8+ T cells driving 

accelerated diabetes in Lag3ΔTM mice.

Lag3ΔTM cells have a less restricted interactome than Cre controls

We further contextualized the genotype-specific expression signatures (Extended Data 

Fig. 5e–f) using protein-protein interactions (PPIs) involving proteins encoded by these 

genes. Protein interactomes provide an orthogonal and unbiased way to assess functional 

differences between the Cre Control and Lag3 ΔTM intra-islet CD8+ T cells. We used 

HINT – a widely-used database of PPIs in human and model organisms51 to identify 

the relevant interactions. HINT uses previously established criteria52 to combine literature-

curated and high-throughput interaction datasets with each edge in the corresponding protein 

interaction network based on multiple lines of experimental evidence51. Using the binary 

and co-complex murine protein interactome networks from HINT in conjunction with the 

genotype-specific expression signatures, we identified subnetworks characterizing the Cre 

Control and Lag3 ΔTM CD8+ T cells (Extended Data Fig. 8, Supplementary Table 4).

We observed notable differences in the overall structure of these subnetworks. Genes with 

higher expression levels in Lag3ΔTM CD8+ T cells (i.e., seed genes for the Lag3ΔTM 

subnetwork) encoded proteins with a higher number of interactors on average (i.e., higher 

average connectivity) than genes with higher expression levels in the Cre Control cells (i.e., 

seed genes for the Cre Control subnetwork, Extended Data Fig. 8, Supplementary Table 

4). This suggests that genes encoding proteins characterized by Lag3 ΔTM cells have the 

ability to interact with an expanded repertoire of proteins than those characterizing the 

Cre Control intra-islet CD8+ T cells, and therefore, may be involved in a wider array of 

functions, consistent with a more effector-like transcriptional program. Further, we explored 

the overall connectivity structure (i.e., the degree distribution of number of interaction 

partners for the proteins encoded by the genes) and found that proteins encoded by genes in 

the Lag3ΔTM signature tended to have higher degree than those in the Cre Control signature 
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(Extended Data Fig. 8c). Taken together, our bioinformatic analyses, including ORA, GSEA, 

diffusion pseudotime, and network analyses, suggest that LAG3 expression promotes a more 

terminally differentiated state and serves to restrict effector function by promoting a more 

inhibited and limited transcriptome.

LAG3 limits function and accumulation of intra-islet CD8+ T cells

We sought to confirm our bioinformatic observations at the protein, cellular and mechanistic 

level. Consistent with diabetes incidence (Fig. 3a), Lag3 ΔTM mice have increased islet 

infiltration by insulitis scoring (Fig. 4a). This is reflective of an increase in CD8+ T cells, 

by both percent and cell number (Fig. 4b). Of note, Lag3ΔTM CD8+ T cells had a slight 

survival advantage by decreased cleaved caspase 3, and a modest proliferative advantage by 

Ki67+BrdU+, though BCL-2 remained unchanged (Extended Data Fig. 9a–b). Coupled to an 

increased cell number, we observed an increased expression of CXCR3 and CXCR6 protein 

expression in the Lag3ΔTM CD8+ T cells, suggesting that enhanced trafficking or retention in 

the islets might function as a mechanism for accumulation in the islets (Fig. 4c).

Given the complexity and temporal heterogeneity of diabetes onset in NOD mice, we 

sought to determine if a multivariate partial least squares discriminant analyses (PLS-DA) 

model that incorporates markers of both exhaustion and activation can accurately stratify 

NOD mice by genotype. Using the markers CD44, CTLA4, TOX, PD1, TCF1, and TIGIT 

(assessed by flow cytometry), PLS-DA analysis reveals a significant discrimination between 

intra-islet Cre Control (expressing higher TOX, PD1, and TCF1) and Lag3ΔTM (expressing 

higher CD44, CTLA4 and TIGIT, Fig. 4d, Extended Data Fig. 9c). Traditional flow gating 

confirms Lag3ΔTM CD8+ T cells express significantly higher markers of activation (CD44 

and KLRG1) and have an increase in polyfunctionality by (IFNγ+TNFα+) (Extended data 

Fig. 9d, 10b). Conversely, markers of terminally exhausted sub-populations, such as PD1 

and TOX, or EOMES and CD39 co-expression were decreased in tetramer+ CD8+ T 

cells and the pLN respectively (with trends observed in bulk intra-islet CD8+ population, 

Extended Data 9e).

Finally, the metabolic function and single cytokine production of intra-islet CD8+ T cells 

seemed only modestly affected by LAG3 deletion (Extended Data Fig. 10a–c). Although 

some aspects of exhaustion are not modulated by LAG3 deletion, it appears that LAG3 

limits diabetogenic potential by promoting a restrained phenotype.

LAG3 restricts recognition of secondary antigens

We last sought to assess any differences in antigen recognition between Lag3 ΔTM and Cre 

Control CD8+ T cells as a metric for disease progression. Insulin is thought to be a primary 

target of effector T cells in autoimmune diabetes, followed by recognition of secondary 

epitopes, such as IGRP, through epitope spreading53,54. A similar percentage of intra-islet 

CD8+ T cells from Cre Control and Lag3ΔTM mice were specific for insulin, as determined 

by InsB+ tetramer staining (~5%), however, we found that Lag3 ΔTM CD8+ T cells have 

dramatically increased antigen specificity for IGRP (Nrpv7+ tetramer staining, ~10% Fig. 

4e, Extended Data Fig. 10d), implying that LAG3 may limit epitope spreading and thus 

disease progression55–57. Furthermore, IGRP-reactive Lag3ΔTM CD8+ T cells are enriched 
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for and correlate to the percentage of short-lived effector cells (KLRG1+CD127−, Fig. 4f), 

consistent with a more pathogenic, less restrained phenotype. Analysis of tetramer+ cells 

suggest that LAG3 may restrain disease progression by limiting epitope spreading.

Collectively, our data suggest that LAG3 expression limits: (1) CD8+ T cell trafficking into 

the islets, (2) effector phenotype, (3) survival and proliferation, (4) polyfunctionality and (5) 

may limit epitope spreading (Fig. 4g). Collectively, our data support a model in which LAG3 

limits disease by enhancing the ‘restrained’ CD8+ T cell phenotype and promoting terminal 

differentiation.

Discussion

Our study highlights five important observations that affect our current understanding 

of CD8+ T cell function and pathogenesis in autoimmune diabetes. (1) We reveal the 

presence of intra-islet exhausted-like CD8+ T cell, termed restrained CD8+ T cells, which 

is similar, yet maintains key differences to canonical T cell exhaustion. We expand on 

the current understanding of T cell exhaustion in autoimmunity to show that at least 

a subset of intra-islet CD8+ T cells are phenotypically, epigenetically, transcriptionally, 

and functionally restrained by an exhaustion-like program. However, we also show that 

autoreactive, restrained CD8+ T cells retain some functionality, which given the chronicity 

of autoimmune diabetes, may still allow for destruction of non-replicative β cells over time.

(2) We show that CD8+ T cell restraint is vital to delaying disease onset, as exemplified 

by the consequence of highly accelerated diabetes onset when that restrained phenotype 

is perturbed through LAG3 deletion. Indeed, Lag3ΔTM are more effector-like in function, 

suggesting LAG3 expression is required for terminal restraint and to limiting an 

accumulation of a highly diabetogenic population of CD8+ T cells. Recently, a stem-

like CD8+ T cell population was reported in the pLNs15. We clearly show this TCF1+ 

population also exists in islets and likely hosts an effector pool, but we add to this 

study by highlighting a TCF1+TOX+ and TCF1−TOX+ populations that resemble canonical 

exhaustion progenitors. Induction of this restrained population may be harnessed as a 

therapeutic approach to treating autoimmune diabetes. While our studies are limited to the 

NOD model, further studies could investigate CD8+ T cell restraint and the consequences 

thereof in other autoimmune settings.

(3) LAG3 deletion in CD8+ T cells leads to enhanced recognition of secondary islet 

antigens, clonal expansion, and number of unique TCR clones. This suggests LAG3 

expression may limit epitope spreading, avidity maturation, and disease progression in islet 

reactive CD8+ T cells, though additional studies would be required to further support this 

notion55–57.

(4) LAG3 single deletion or blockade alone has a minimal effect on immune response 

to tumors or LCMV Cl. 13, where it only has a significant and synergistic role when 

combined PD1 blockade or deletion58–60. In striking contrast, LAG3 single deletion from 

the surface of CD8+ T cells is sufficient to accelerate autoimmune diabetes substantively, 

reminiscent albeit slightly delayed to that observed in LAG3 global knockout NOD, or 
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WT NOD treated with anti-LAG323. Interestingly, LAG3 single deletion from the surface 

of regulatory T (Treg) cells has the opposite effect: these mice are protected against 

autoimmune diabetes25. Therefore, the interpretation of the LAG3 global KO or WT NOD 

treated with anti-LAG3 accelerated diabetes phenotype must be driven by CD8+ T cells and 

effector CD4+ T cell activation which can out compete any beneficial effects LAG3 deletion 

on Treg cells. LAG3 deletion clearly alters the developmental state of intra-islet CD8+ T 

cells, where it does not in tumors or LCMV, suggesting that LAG3 plays a more impactful 

role in limiting autoimmunity and implicating agonistic signaling through LAG3 as an 

avenue for future autoimmune therapeutics61. Indeed, recent reports in human autoimmunity 

(Multiple Sclerosis and T1D) support our findings regarding the reliance on LAG3 to limit 

autoimmunity62.

(5) Our study supports the previously reported notion that although autoimmune diabetes 

is traditionally thought of as a CD4+ T cell mediated, CD8+ T cells can contribute 

substantively to disease progression, opening an underappreciated opportunity for CD8+ 

T cell targeted immunotherapy to ameliorate disease. Indeed, modest phenotypic changes 

can result in dramatic differences in disease onset in our Lag3ΔTM NOD model, suggesting 

that modest therapeutically induced changes in autoreactive CD8+ T cells may dramatically 

influence disease outcomes.

An interesting distinction between CD8+ T cells in tumors and LCMV versus autoimmunity 

is that they inhibit disease clearance in the former but allow for disease progression in 

the latter, highlighting the difference between the exhaustion and restrained phenotypes 

detailed herein. Restrained CD8+ T cells in the islets produce cytokine and appear to retain 

proliferative potential. The extent to which they contribute to β cell destruction is yet unclear 

and should be a focus of future studies. Together, our data suggest that autoreactive T cells 

can exhibit a ‘restrained’ phenotype that delays, but cannot prevent overt autoimmunity. 

Future studies should focus on specific mechanisms of inducing restraint. Our observations 

suggest that inhibitory receptor agonism could have a bigger therapeutic index for the 

treatment of autoimmunity than previously appreciated.

Methods

Mice and study design

NOD/ShiLtJ (stock #001976), NOD mice were purchased from the Jackson Laboratory. 

E8iCRE/CRE-GFP C57BL/6 mice were provided by the Littman (The Kimmel Center 

for Biology and Medicine of the Skirball Institute, New York University School of 

Medicine, New York, NY USA, Howard Hughes Medical Institute, New York, NY, 

USA) and Taniuchi (Laboratory for Transcriptional Regulation, RIKEN Center for 

Integrative Medical Sciences (IMS), 1–7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230–

0045, Japan) labs and were bred onto a NOD background at St. Jude Children’s 

Research Hospital. Microsatellite analysis revealed 99.6% NOD, having one heterozygous 

SNP on chromosome 16. Lag3L/L-YFP.NOD were generated and bred onto the NOD 

background25. Lag3L/L-YFP.NOD and E8iCRE/CRE-GFP.NOD were then crossed to be 

homozygous (Lag3L/L-YFPE8iCRE/CRE-GFP.NOD, annotated in the text as Lag3ΔTM for 

simplicity), expressing 2 copies of the E8iCRE to obtain optimal deletion efficiency. 
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Controls similarly maintain 2 copies of E8iCRE (E8iCRE/CRE-GFP.NOD, are annotated 

E8iCRE-GFP.NOD or “Cre Controls” in the text for simplicity)

All animal experiments were performed in the Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC)–accredited, specific 

pathogen–free facilities in the Division of Laboratory Animal Resources of the University 

of Pittsburgh School of Medicine (UPSOM). Animal protocols were approved by the 

Institutional Animal Care and Use Committees (IACUC) of UPSOM. Mice were housed 

in SPF conditions with filtered air, watering system, and 12hr light/dark cycle. The 

temperature and humidity dictated by DLAR/IACUC, cages are changed once per week. 

NOD mice in the UPSOM facility are kept isolated from any C57BL/6 in the facility, and 

are fed special diet to maintain a similar diabetes incidence rate to what was maintained 

at St. Jude Children’s Research Hospital: http://www.labsupplytx.com/wp-content/uploads/

2012/10/5013.pdf (Lab Supply TX, Cat #5013). Mice have continuous access to this diet. 

Mice of different groups were co-housed and randomly assigned to analyses.

Ten to 30 mice per group were used in diabetes incidence studies and followed up to 30 

weeks of age. Three to six age-matched (within 7 days) mice per group were used in each 

analytical experiment, and one to four independent experiments were repeated. Only female 

mice are used in analysis because of the predictable development of autoimmune diabetes66. 

Three 8-week-old female mice per group were pooled and used in bulk RNA-seq analyses, 

and two independent experiments were repeated. Four 8-week-old female mice per group 

were pooled and used in paired 5’ single cell RNAseq and TCRseq analyses. The genotypes 

were not blinded, except for the insulitis scoring. All data points were presented unless 

otherwise noted in figure.

Measurement of diabetes and insulitis

Diabetes incidence and Insulitis were monitored on co-housed animals weekly by urine and 

blood glucose levels. A positive urine strip test using Diastix (Bayer) necessitated blood 

glucose level testing by Breeze2 glucometer (Bayer). A blood glucose level of ≥400 mg/dL 

was considered diabetic and sacrificed.

Pancreata taken for insulitis were fixed in formalin overnight prior to storage in 70% 

isopropanol. Pancreata were embedded in a paraffin block and cut into 4-μm thick sections 

at 150-μm step sections and stained with hematoxylin and eosin. Samples were collected at 

UPSOM and embedded/stained at Harvard University, Department of Pathology, Brigham 

and Women’s Hospital. Insulitis was scored in house at UPSOM. An average of 60 to 100 

islets per mouse were scored in a blinded manner. Two methods of insulitis measurement 

were used as described66.

Islet isolation and lymphocyte preparation

Islets were isolated and lymphocytes excised in accordance with previous publications25,66. 

3 mL of Collagenase Type IV solution - 600U/mL in complete Hanks’ balanced salt solution 

(cHBSS, Corning) with 10% fetal bovine serum (FBS) - are injected into clamped pancreatic 

duct. Perfused pancreata were then excised and incubated in 4 mL of the collagenase 

solution at 37°C for 30 minutes. Each pancreas is then washed with HBSS with 10% 
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FBS and spun down at 1000rpm for 3 minutes, twice, thereby mechanically breaking up 

the pancreas. Pancreas samples were then resuspended in clear cHBSS with 10% FBS. 

Islets were picked by hand under a dissecting microscope and dissociated with 1 mL 

cell dissociation buffer (Life technologies). Islet isolation by hand ensures a pure, β cell 

reactive, population of lymphocytes is collected, with minimal exocrine pancreas tissue 

contaminating the sample. Alternative methods for harvesting intra-islet lymphocytes from 

the pancreas are “dirtier” and may confound subsequent analyses. Previous publications 

suggest that the exocrine tissue of a diabetic pancreas has immune infiltration67. Therefore, 

attempts at isolating intra-islet CD8+ T cells in the NOD model through bulk pancreas 

digestion likely has contaminating lymphocyte populations, as well as other pancreatic tissue 

that confounds analysis and makes it more challenging to isolate lymphocytes of interest in 

the disease progression of autoimmune diabetes. Cells in dissociation buffer are incubated 

for 15 minutes at 37°C, with vortexing every 5 minutes, to create a single cell suspension. 

Once dissociated, cells were washed in 10 mL cHBSS+FBS and used for experiments.

Antibodies and protocol for flow cytometry

Single-cell suspensions were stained with antibodies/mitochondrial stains against: CD8β 
(H35–17.2, BD Biosciences, Cat# 740278, Dilution Factor, DF: 1:500), Thy1.2 (53–2.1 

BioLegend, Cat# 140319, 30-H121 BioLegend, Cat#’s: 140317, 105328, 105306, DF: 

1:500), PD1 (RMP1–30, BioLegend Cat# 109110, BD Biosciences Cat# 749306, DF: 

1:200–250), TCF1 (C63D9, Cell Signaling Cat# 9066S, DF: 1:200), CD44 (IM7, BioLegend 

Cat# 103026, DF: 1:200), CD62L (MEL-14, BioLegend Cat# 104433, DF: 1:200), CTLA4 

(UC10–4B9, BioLegend Cat# 106323, 106323, DF: 1:200, intracellular), CD127 (A7R34, 

BioLegend Cat# 135043, DF: 1:200), ICOS (C398.4A, BioLegend Cat# 313548), LAG3 

(4–10-C9, made and conjugated in-house to AF647 or PeCy7, DF depends on concentration 

of purified antibody), CD4 (GK1.1, BD Biosciences Cat# 564667, Biolegend Cat# 100451, 

100408, DF: 1:500) Foxp3 (FJK-16s, eBioscience Cat# 11–5773-82, DF Fortessa: 1:200, DF 

Cytek: 1:100), KLRG1 (2F1/KLRG1, BioLegend Cat# 138429, 138416, DF Fortessa: 1:500, 

DF Cytek: 1:200), TIGIT (GIGD7, eBioscience Cat# 46–9501-82, DF: 1:200–250), TOX 

(REA473, Miltenyi Cat# 130–118-335, DF: 1:200), TIM3 (RMT3–23, BioLegend Cat# 

1197338, DF: 1:100), aCaspase3 (D3E9 Asp175, Cell Signaling Cat# 8788S, DF: 1:200), 

BrdU (clone Bu20a, eBioscience Cat# 11–5071-42, DF: 1:200), BCL-2 (clone BCL/10C4, 

BioLegend Cat# 633510, DF: 1:200), Ki67 (B56, BD Biosciences Cat# 561284, DF: 1:200), 

CD107a (1D4B, Biolegend Cat# 121617, DF: 1:200), TNFα (MP6-XT22, BioLegend 

Cat# 506329, DF:1:200), IL-2 (JES6–5H4, Biolegend Cat# 503806, DF:1:200), IFN-γ 
(clone XMG1.2, Biolegend Cat# 505810, DF: 1:200), GranzymeB (NGZB, eBiosciences 

Cat# 46–8898-82, DF: 1:200), MitoTracker Deep Red-FM (ThermoFisher Cat# M22426, 

5nM final concentration), Tetramethylrhodamine (TMRM, ThermoFisher Cat# T668, 

25nM final concentration), Tetramethylrhodamine, Ethyl Ester, Perchlorate (TMRE, Cat# 

T669, ThermoFisher, 20nM final concentration) CellROX Deep Red (ThermoFischer Cat# 

C10422, 5uM final concentration), MitoSOX (ThermoFischer Cat# M36008, 5uM final 

concentration), GlucoseCy5 (0.4 uM final concentration, a Cy5-linked 1-amino-glucose 

tracer, was synthesized by the Delgoffe lab in collaboration with M. Bruchez68, gifted to us 

from the Delgoffe Lab), Hypoxyprobe (clone 4.3.11.3, Hypoxyprobe Cat# HP10–1000kit), 

Tbet (4B10, Biolegend Cat# 644835, DF: 1:100), EOMES (Dan11mag, eBiosciences Cat# 
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46–4875-82, DF: 1:100), CD39 (24DMS1, Biolegend Cat# 56–0391-82, DF: 1:200), CD73 

(TY/11.8, Biolegend Cat# 127222, DF: 1:200), HIF1α (IC1935P, R+D Cat# IC1935P, DF: 

1:200), CXCR3 (CXCR3–173, Biolegend Cat# 126521, DF: 1:250), CXCR6 (SA051D1, 

Biolegend Cat# 151115, DF 1:250), HP-Biotin primary antibody (1:100, clone 4.3.11.3, 

from Hypoxyprobe biotin kit HP10–200kit).

Ghost viability dye was stained in the dark for 15 minutes at room temperature in PBS 

(Tonbo Biosciences). Surface staining (without tetramer) was performed on ice for 15–25 

minutes in the dark in FACS buffer (PBS, Sodium Azide, FBS). Surface staining with 

tetramer was performed at room temperature in complete HBSS with 10% FBS, covered, 

for 45 minutes. The NRPv7 tetramer, IGRP206–214 mimotope (KYNKANVFL/H-2Kd), and 

the InsulinB tetramers, InsB15–23 G9L and V mimotope (LYLVCGERL/V/H-2Kd) were 

obtained from the National Institutes of Health Tetramer Core Facility. Tetramers were 

stained 1:250 total (1:500 for each InsB G9L and V tetramer). Cytokine expression analysis 

was performed ex vivo, following 5-hour stimulation with phorbol 12-myristate 13-acetate 

(PMA) (0.1 μg/ml; Sigma) and ionomycin (0.5 μg/ml; Sigma) in cRPMI containing 10% 

FBS and brefeldin A (BFA, 1:1000 dilution, Golgi Plug, BD Biosciences). For cytokine 

staining, BFA 1:1000 dilution is included in viability stain as well as in surface staining to 

ensure retention of cytokines.

For intracellular staining of cytokines and transcription factors, cells were first viability 

and surface stained, and washed prior to being fixed in Fix/Perm buffer (eBioscience) for 

45 minutes to 2 hours. Cells were washed twice in permeabilization buffer (eBioscience) 

and intracellular stained for 45 minutes on ice in the dark in permeabilization buffer 

(eBiosciences). Following this, cells were resuspended in FACS buffer for analysis.

BrdU analysis was performed by injecting 2 mg of BrdU (Sigma) in PBS intraperitoneally 

12 hours ahead of experiment. After viability, surface, Fix/perm, and intracellular staining 

as outlined above, cells were incubated in Cytofix/Cytoperm buffer (BD Biosciences) for 

10 min at room temperature, washed with Perm/Wash buffer (BD Biosciences), treated with 

deoxyribonuclease I (650 U/ml; Sigma) for 30 min at 37°C, and stained with anti-BrdU 

antibody in Perm/Wash buffer for 30 min at room temperature.

GlucoseCy5, CellROX and MitoSOX were applied to single cell suspensions in Serum-Free 

HBSS at 37°C for 45 minutes, prior to viability and surface staining. Mitotracker and 

TMRM were included in surface stain. Cells are run immediately after surface staining as 

metabolic dyes are not fixable.

Hypoxyprobe analysis was performed by injecting 2 mg of Pimonidazole HCl in PBS 

intravenously 90 minutes prior to harvesting tissue (using Hypoxyprobe biotin kit). 

Pimonizazole HCL forms adducts with hypoxic tissues and can be detected by flow 

cytometry. Tissues are then processed as normal, lymphocytes are isolated, viability stained, 

surface stained, fixed and permeabilized (eBioscience), and intracellular stained overnight 

using HP-Biotin primary antibody (1:100, clone 4.3.11.3, in 1x permeabilization buffer). 

Cells were washed the next morning and stained for 45 mins on ice with streptavidin 
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linked APC-Cy7 secondary antibody. Cells are washed and resuspended in FACS buffer for 

analysis.

Cell sorting and flow cytometry analysis

Cells were sorted using Aria II (BD Biosciences) or were analyzed using Fortessa (BD 

Biosciences) or Cytek Aurora (Cytek Biosciences) and data analysis was performed on 

FlowJo versions 9 and 10 (BD Biosciences) or Cytobank Premium for subsequent Cytek 

data analysis. Finally, Simplified Presentation of Incredibly Complex Evaluations (SPICE)69 

plots were used to compare exhaustion marker expression from 6 to 12 weeks of age.

High dimensional analysis of our spectral flow cytometry (Cytek data) was preformed 

using Cytobank Premium (https://cytobank.org)24. FCS files for 12-week-old female WT 

NODs were down-sampled and concatenated in FlowJo to ensure equal number of total 

events from each of the 10 mice. Files were uploaded into Cytobank and traditional flow 

cytometry gating was performed to gate Lymphocytes, single cells, Live, CD8+ T cells. 

viSNE analysis was performed on live, Thy1.2+ CD8+ T cells using equal sampling cells 

from each concatenated FCS files (ndLN, pLN and Islet) to equal 100,000 total events 

with 1000 iterations, a perplexity of 30, and a theta of 0.5. The following markers were 

used to generate the viSNE maps: TOX, TIM3, CD44, PD1, CD62L, CD127, ICOS, 

KLRG1, LAG3, TCF1, TIGIT. The resulting viSNE maps were used to generate FlowSOM 

clustering. A new self-organizing map (SOM) was generated using hierarchical consensus 

clustering on the tSNE axes. The SOM contained 100 clusters and 10 metaclusters for CD8+ 

T cells were identified.

PLS-DA based visualization using cell percentages

We utilized the cell percentage of the 6 cell surface markers in islet cells, gated on 

CD8+ T cells, as features for the partial least squares discriminant analysis (PLS-DA). 

The cell percentages were measured by flow cytometry and quantified by subsequent 

FlowJo analyses. To obtain insights into the multivariate discriminative power (to distinguish 

between WT and LAG3 KO) of the six markers, we performed a PLS-DA using the 6 

features. We assessed model performance using cross-validation, and significance using 

permutation testing. The relative importance of each feature was computed using the 

variable importance in the projection (VIP) metric. PLS was implemented in R using the 

plsr function; VIP scores were calculated using the vip package.

Proliferation assay

Tissues were harvested and cells were processed to single cell suspension. Cells were 

surface and viability stained for sorting, along with labeled with Cell Trace Violet 

(ThermoFischer). Cells were sorted on Lymphocytes, single cells, live, Thy1.2+ CD8+ 

T cells. Cells were sorted directly into 96-well round bottom plate containing 100uL 

of stimulation media (cRPMI+10%FBS, .05ug/mL αCD3/CD28, 200U/mL IL-2). 10,000 

CD8+ T cells were sorted from ndLN and pLN samples. The entire islet samples were 

sorted. For most islet samples, >5,000 CD8+ T cells were obtained. Cells were cultured for 

60hrs and analyzed by flow cytometry.
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Single cell multiome ATAC and gene expression and analysis

CD8+ T cells were isolated from the islets and ndLN of 4 E8iCRE-GFP.NOD (8-week 

females). Samples were viability stained in PBS and surface stained for sorting in sort 

buffer (contains PBS, EDTA, BSA and HEPEs) with 10% normal mouse serum. Cells were 

sorted on Lymphocytes, single cell, Thy1.2+, CD8+ T cells. Cells were sorted into 1.5 mL 

Eppendorf tubes containing cRPMI and nuclei were isolated in accordance with the Nuclei 

Isolation for Single Cell ATAC Sequencing 10x Genomics demonstrated protocol, using the 

adaptations for low cell number input. Nuclei suspended in 0.04% bovine serum albumen 

(BSA, Sigma), counted using Cellometer Auto2000 (Nexcelom), and loaded into Single Cell 

Chip and processed through 10X controller for droplet generation and Library preparation.

scATACseq and RNAseq library preparation

10x genomics 5′ Gene Expression + ATAC Sequencing libraries were generated as 

described in the User’s Guide for Chromium Next GEM Single Cell Multiome ATAC 

+ Gene Expression Reagent Kits User Guide. In brief, nuclei were incubated in a 

Transposition mix that includes Transposases which enter the nuclei and fragment DNA 

in open regions of chromatin, while simultaneously adapter sequences are added to the 

fragments. Single Cell Multiome ATAC + GEX Gel Beads capture the adaptor sequences 

on DNA fragments as well as the poly-A tail of mRNA and GEMs are generated and 

incubated, resulting in 10x Barcoded DNA from the transposed DNA (for ATAC) and 

10x Barcoded, full-length cDNA from poly-adenylated mRNA (for GEX). cDNA was 

then purified, amplified, and sequenced as per the manufacturer’s recommendations (10X 

Genomics).

scATACseq downstream analysis

scATACseq sequenced libraries as part of the 10x Genomics ATAC+GEX assay were 

processed using cellranger-arc-2.0.0. Bigwig files for the ATAC cut sites from the output 

were used to visualize previously generated chromatin accessible sites in CD8 T cells 

d8 post LCMV armstrong infection (Effector) and d30 post LCMV Cl. 13 infection 

(Exhausted)64 using PlotHeatmap (https://deeptools.readthedocs.io/en/develop/content/tools/

plotHeatmap.html).

Gene expression profiling by bulk RNAseq and bioinformatics

YFP+ and YFP− CD8+ T cells from the islets and YFP− CD8+ T cells from non-draining 

lymph node controls were sorted and pooled from three 8wk-old female Lag3L/L-YFP.NOD 

mice. Five hundred cells per sample were used for cDNA preparation following the 

Smart-seq2 protocol as previously described70. Two independent experiments were repeated. 

Sequencing libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina), 

normalized to 2 nM using tris-HCl (10 mM; pH 8.5) with 0.1% Tween 20, diluted and 

denatured to a final concentration of 1.8 nM using the Illumina Denature and Dilute 

Libraries for the NextSeq 500 protocol Revision D (Illumina). Cluster generation and dual-

indexed sequencing was performed on the Illumina NextSeq 500 system using the NextSeq 

500/550 High Output v2 75 cycles Kit (Illumina).
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RNA sequencing reads were aligned to GRCm38/mm10 build of Mus musculus genome 

using STAR-2.5.2a71. The Unique mapped reads were normalized using PORT (https://

github.com/itmat/normalization/wiki) and counts were converted to log2 counts per million, 

quantile normalized and precision weighted with the ‘voom’ function of the limma 

package72,73. A linear model was fitted to each gene, and empirical Bayes moderated 

t-statistics were used to assess differences in expression74. P values from Bayes moderated 

t-tests were adjusted to control the global false discovery rate (FDR). Genes were called 

differentially expressed if they achieved an FDR of 0.05 or less. Heatmaps were created 

using R (3.5.1) package pheatmap_1.0.12 and volcano plot was created using ggplot 

2_3.1.0. Gene set enrichment analysis (GSEA)75,76 was performed against custom CD8 

gene signatures65.

CD8-specific gene signatures were created using datasets corresponding to traits of naïve, 

effector, memory, and exhaustion as described in the LCMV infection model (GSE41867)65. 

The Normalized enrichment score plot from GSEA for the LCMV genes signatures were 

plotted using GraphPad Prism.

Gene expression and TCR profiling by 5’ single cell RNAseq

CD8+ T cells were isolated from the islets and ndLN 4 Lag3L/L-YFPE8iCRE-GFP.NOD and 

4 E8iCRE-GFP.NOD (8-week females). Samples were viability stained in PBS and surface 

stained for sorting in sort buffer (contains PBS, EDTA, BSA and HEPEs) with 10% Normal 

mouse serum. In the surface stain of each individual sample, combinations of 1–2 CD45 

cell hashing antibodies (Biolegend, TotalSeq–C0301–305) were spiked in to label each 

individual sample. Cells were incubated for 30 minutes on ice and washed twice prior to 

sorting on live, TCRb+, CD8b+. All CD8+ T cells from islets were sorted into one 15 

mL conical with cRPMI, while ndLNs were pooled in another. CD8+ T cells were spun 

down and resuspended in 0.04% bovine serum albumen (BSA, Sigma) counted using the 

Cellometer Auto2000 (Nexcelom) and loaded into Single Cell Chip and processed through 

10X controller for droplet generation and Library preparation.

10x genomics library preparation for 5’ scRNAseq and TCRseq

10x genomics 5’ Single Cell V(D)J + 5′ Gene Expression + Feature Barcode Technology 

libraries were generated as described in the User’s Guide for 10x Chromium Single Cell 

V(D)J Reagent Kits with Feature Barcoding technology for Cell Surface Protein. In brief, 

cells were subjected to in-drop lysis and reverse transcription, generating cDNA derived 

from mRNA in each cell and from the oligo tagged cell hashing antibody, bearing bead-

specific sequences to identify the cell of origin. cDNA was then amplified, and SPRI 

selection was performed for downstream library construction for gene expression, TCR 

sequencing, and feature barcode generation. For cDNA amplification, 2 uL of amplified 

cDNA product was used to selectively amplify TCR regions. Gene expression and amplified 

TCR libraries were then subjected to enzymatic fragmentation, end repair, A-tailing, ligation 

to adaptors, and sample indices by PCR. Samples are cleaned up by SPRI selection and 

quantified by BioAnalyzer for pooling into sequencing runs. For the first single-cell RNAseq 

experiment, gene expression and Feature Barcode libraries were pooled and sequenced using 

the NextSeq 500 with the following cycle parameters: read 1: 26 cycles; i7 index: 8 cycles; 

Grebinoski et al. Page 17

Nat Immunol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/itmat/normalization/wiki
https://github.com/itmat/normalization/wiki


i5 index: 0 cycles; read 2 98 cycles. TCR library was sequenced using NextSeq 500 mid 

output 2x150: read 1: 150 cycles, i7 index: 8 cycles, and read 2: 150 cycles. This sequencing 

was performed at the University of Pittsburgh Genomics Research Core.

Generation of filtered gene and barcode matrices and scTCR sequences for scRNAseq

Demultiplexed FASTQ files were generated from raw sequencing data using bcl2fastq (v 

2.20.2). CellRanger (10X Genomics; v3.1.0) was used to align demultiplexed reads to the 

mm10 mouse reference genome to create filtered gene/barcode matrices for downstream 

analysis. CellRanger was also used to generate consensus TCR alpha and beta sequences 

for each cell using the “vdj” command. Briefly, consensus TCR sequences per unique cell 

barcode are generated by first forming a De Bruijn graph and then simplifying it with the aid 

of the mm10 V(D)J reference sequence.

Identifying samples by demultiplexing cell hashes

We performed cell hashing77 to run multiple samples within the same lane of the 10x single-

cell RNAseq chip. For bioinformatics identification of samples, we first utilized the filtered 

gene/barcode matrix from each sample to identify all cell barcodes present in the dataset. 

We then used those cell barcodes and the number of cells identified as input into CITE-seq-

Count (v1.4.3, https://hoohm.github.io/CITE-seq-Count/#how-to-cite-cite-seq-count). CITE-

seq-Count generated a cell barcode and hash-tag matrix, which was then used to identify 

cells based on co-expression of cell hashes.

Downstream clustering and analysis

After creating filtered feature/barcode matrices using CellRanger, we used the R package 

Seurat (v3.1.4)78 with several modifications for analysis in R v3.6.1. First, filtered feature 

barcode matrices were read into Seurat, gene expression levels were normalized for library 

size in each cell by multiplying the expression level by the total number of molecules 

in a given cell and dividing by 10000. Gene expression levels were scaled across cells 

by subtracting the mean expression level across all cells from the expression in a given 

cell and dividing by the standard deviation across all cells79. Dimensionality was then 

reduced based on highly variable genes using principal component analysis, and the 

top principal components were selected heuristically, retaining all the top components 

until the increase in variance explained by including the next principal component was 

negligible. Next, we used UMAP80 to create a 2-dimensional embedding of the cells 

from the significant principal components, and DeteRministic Annealing Gaussian mixture 

mOdels for clusteriNg Single-Cell data (DRAGON) was used for clustering79. Plots 

were generated using ggplot2 (v3.3.281, tidyverse (v1.3.082), pheatmap (v1.0.12; https://

CRAN.R-project.org/package=pheatmap), patchwork (v1.0.0, https://CRAN.R-project.org/

package=patchwork), and ggridges (v0.5.1, https://CRAN.R-project.org/package=ggridges).

scTCRseq analysis

After single-cell TCR sequences were associated with cell barcodes using CellRanger 

vdj, we next filtered TCRs by those that were full-length and productive. We used the 

TCRβ complementarity-determining region 3 (CDR3) sequences in conjunction with the 

Grebinoski et al. Page 18

Nat Immunol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://hoohm.github.io/CITE-seq-Count/#how-to-cite-cite-seq-count
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=patchwork
https://cran.r-project.org/package=patchwork
https://cran.r-project.org/package=ggridges


cell barcodes to add the TCRb sequences as “metadata” to Seurat objects for downstream 

analysis. We used unique TCRβ CDR3 sequences to denote individual T cell clones. We 

evaluated the expression of TCRs across samples and evaluated the clonality and leveraged 

TCRs for analysis of differentiation as described below.

Pseudotemporal modeling of differentiation

Diffusion pseudotime is a bioinformatic method of assigning a temporal order to 

differentiating cells49,50. To perform diffusion pseudotime modeling, we used the R package 

“destiny” v2.14.050. To create the diffusion map, we used all genes expressed with a count 

of at least 3 in a total of at least 10 cells as input using destiny. We identified genes 

associated with differentiation by fitting a generalized additive model with the diffusion 

component 1 as the dependent variable and a loess fit of gene expression as the independent 

variable using the “gam” R package v1.16.1.

GSEA scoring

GSEA was performed using the Broad Institute software (https://www.broadinstitute.org/

gsea/index.jsp). Enrichment scores were calculated by using gene expression counts as input 

from RNAseq and a gene signature from GSE12271326 which were created by comparing 

progenitor and terminally exhausted CD8+ T cells from tumors.

Protein interactome network analysis

We combined context-specific gene expression signatures with HINT51 (a database of 

high-quality interactomes in human and several other model organisms) to define context-

specific protein subnetworks. We started with expression signatures characterizing intra-islet 

Cre Control CD8+ T cells and Lag3ΔTM cells and identified direct interactors of the 

proteins encoded by these seed genes using the murine binary and co-complex interactomes 

from HINT. For the Cre Control CD8+ T cells and the Lag3ΔTM cells, we used the 

top 100 differentially expressed genes (50 in each cluster) that were also significantly 

over-represented in known MSigDB63 immunological gene signatures involving CD8+ T 

cells. The subnetworks thus comprised the context-specific seed genes and their direct 

protein interactors. HINT uses previously established criteria52 to combine literature-curated 

and high-throughput interaction datasets. As such, each edge in the corresponding protein 

interaction network is based on multiple lines of experimental evidence51. Sub-network 

visualizations and network topological analyses were performed using Cytoscape83.

Over-representation analysis

Over-representation analyses (ORA) were used to determine if gene expression signatures 

corresponding to 1) intra-islet Cre Control CD8 T+ cells and 2) Lag3ΔTM cells were enriched 

in KEGG44–46 or C7 pathways63. Using the top 100 differentially expressed genes (DEGs) 

in each case (50 from each cluster), we performed ORA via the Webgestalt tool42,43. ORA 

uses a hypergeometric test to evaluate if an input set of genes is over-represented in a 

pathway, considering jointly the size of the input gene set and the number of genes in the 

pathway. We reported the top 10 enriched pathways in each case (FDR < 0.05 in all cases).
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Statistical Analyses

Data from multiple experiments were pooled for statistical analyses using Prism Version 

7 and 8 (GraphPad). The log-rank test was applied to Kaplan-Meier survival function 

estimates to determine the statistical significance of differences in diabetes incidence 

between experimental groups. A two-sided nonparametric Mann-Whitney test was used in 

most other instances, unless otherwise noted. The Non-parametric, unpaired, Mann-Whitney 

U test is appropriate in the NOD model to compare 2 individual test populations using 

the median (opposed to a T test which uses the mean) because the data are assumed not 

normally distributed (ie. ~20% of WT Female NOD mice will never become diabetic). For 

this reason, the data distribution was assumed to be not normally distributed, but this was not 

formally tested. Therefore, data met the assumptions of the statistical tests used. A two-sided 

Pearson’s correlation was used to quantify relationships between continuous variables. All 

tests and P values reported are two sided where P = * <0.05, ** < 0.01, *** < 0.001, **** < 

0.0001 and exact P values are reported in figure legends.

Code Availability

Standard R packages were used for data analysis and generation of figures as described in 

Methods. Code for previously described custom packages is available at www.GitHub.com/

arc85/dragonsc. Specific code to generate figures is available upon request.

Grebinoski et al. Page 20

Nat Immunol. Author manuscript; available in PMC 2022 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.github.com/arc85/dragonsc
http://www.github.com/arc85/dragonsc


Extended Data

Extended Data Fig. 1. Intra-Islet CD8+ T cells upregulate markers of exhaustion but are a 
heterogeneous population.
Phenotypic quantification of exhaustion markers in the NOD model of diabetes. (a-f) 

Spectral flow cytometry for CD8+ T cell functional markers was completed over a time 

course of 6–14-week-old female WT NOD mice. Representative flow plots are derived from 

total intra-islet CD8+ T cells (gated on lymphocytes, single cells, Live, Thy1.2+, CD8b+) 

of 12-week-old female NOD. Data were accumulated from a total of 5 experiments, each 

experiment had mice of several ages, with n = 10 mice per timepoint, n = 50 total mice. 

Each point on the graph is representative of a single mouse. (a) Representative flow plotting 

demonstrating gating strategy to obtain CD8+ T cells. (b) High dimensional analysis at 

12 weeks of age was preformed using Cytobank38 viSNE map analysis (Methods). viSNE 

maps are shown portraying the 11 markers are used to create FlowSOM clustering analysis. 
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(c) Representative flow plots of intra-islet CD8+ T cell PD1 and LAG3 (6 vs 12 weeks 

p=.0355), TIGIT (6 vs 12, 14 weeks p=.0005, .0011), TIM3, CTLA4, and ICOS expression 

are shown islets and expression of IRs are quantified from the ndLN, pLN, and islets. (d) 

Co-expression of multiple IRs and the transcription factor TOX are represented in Simplified 

Presentation of Incredibly Complex Evaluations (SPICE)71 plots showing bulk CD8+ T cells 

from 6- and 12-week-old islet samples. (e) Representative flow plots and quantification 

of bulk intra-islet CD8+ T cell expression of TCF1 and TOX populations. (TCF1–TOX+ 

6 vs 12, 14 weeks, p=0.0029, 0.0021) (f) % TOX+ correlation to PD1 (p<.0001), TIGIT 

(p<.0001), and LAG3 (p<.0001). Pearson’s correlation coefficients and r2 values were 

calculated. (c and e) A two-sided nonparametric Mann-Whitney was preformed. Graphs 

portray the median. P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Unlabeled indicates 

not statistically significant.
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Extended Data Fig. 2. Intra-islet CD8+ T cells express LAG3, which marks exhausted CD8+ T 
cells, though total intra-islet CD8+ T cells also share features of effector T cells.
Transcriptional and epigenetic analysis was performed on intra-islet CD8+ T cells (a) WT 

Lag3 locus is shown in the top panel. The Lag3L/L-YFP construct is generated by inserting 

LoxP sites flanking the transmembrane region, exon 7, of the Lag3 gene (middle panel). 

(b) YFP expression is demonstrated in the Lag3L/L-YFP.NOD, marking those CD8+ T cells 

which have transcribed Lag3. (c-d) Bulk population RNAseq was preformed comparing 

intra-islet YFP+ and YFP− CD8+ T cells, along with YFP− ndLN and pLN controls. Cells 

are pooled from 3 Lag3L/L-YFP.NOD 8 week old females in 2 independent experiments. 

(c) Relative expression of selected co-stimulatory or co-inhibitory receptors in the YFP+ 

vs YFP− intra-islet CD8+ T cells. (d) Leading-edge gene set enrichment analysis was 

preformed comparing YFP+ and YFP− intra-islet CD8+ T cells to published exhaustion72 

and activation73 datasets. NES = Normalized Enrichment score, fdr = false discovery rate. 

(Methods) (e) scATACseq was preformed comparing E8iCRE/CRE-GFP.NOD CD8+ T cells 

derived from islets and ndLN (n = 4, 8 week Females). Enrichment for effector signature 

peaks is shown.
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Extended Data Fig. 3. ~50% of intra-islet CD8+ T cells express markers of memory, while only 
a small fraction express marker of naivety or effector function, while Tetramer+ cells have 
minimal changes in phenotype with disease progression.
Flow cytometric quantification of markers associated with naïve, effector, and memory 

CD8+ T cell subsets. (a-g) Spectral flow cytometry for CD8+ T cell functional markers 

was completed over a timecourse of 6–14-week-old female WT NOD mice. Representative 

flow plots are derived from total intra-islet CD8+ T cells (gated on lymphocytes, single 

cells, Live, Thy1.2+, CD8b+) of 12-week-old female NOD. Data were accumulated from 

a total of 5 experiments, each experiment had mice of several ages with n = 10 mice per 

timepoint, n = 50 total mice. Each point on the graph is representative of a single mouse. 

Data shown is analyzing total intra-islet CD8+ T cells, gated on Live, Thy1.2+, CD8b+ or 

PD1+ vs PD1− intra-islet CD8+ T cells. (a) Representative flow plot and quantification of 

CD127 expression on total ndLN, pLN and intra-islet CD8+ T cells (6 vs. 8, 12, 14 weeks, 

p=.0288, .0089, .063) (b) Representative flow plot and quantification of CD127 expression 
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on or PD1+ vs PD1− intra-islet CD8+ T cells (PD1+ vs PD1− p<.000001 at all time points, 6 

vs 12, 14 weeks PD1+ p=.05, .05). (c) Quantification of CD62L in islets compared to ndLN 

and pLN, as well as on intra-islet PD1+ vs PD1− populations. (d) Representative flow plot 

and MFI of CD44 expression on ndLN, pLN, islet, and islet PD1 subsets. (e) Representative 

flow plot of KLRG1 expression and quantification of KLRG1 on ndLN, pLN, islet, and 

islet PD1 subsets (PD1+ vs PD1− 6, 8, 10, 12, 14 weeks p = .0288, .0011, .0003, .000076, 

.000011, 6 vs 14 weeks PD1+ p=.055). (f) Quantification of tetramer+ CD8+ T cells in the 

islet’s over time. (g) Expression of CD8+ T cell functional markers on tetramer+ populations 

in the islets. Only samples consisting of >40 Tetramer+ CD8+ T cells are shown. Tetramer 

staining in lymph nodes was negligible and never exceeded 40 tetramer+ cells. (a-g) Each 

data point corresponds to a single mouse. A two-sided nonparametric Mann-Whitney was 

preformed, where P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Unlabeled indicates 

not statistically significant. Graphs portray the median.
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Extended Data Fig. 4. A subset of intra islet CD8+ T cells upregulate markers of exhaustion, as 
well as effector cell markers.
(a-d) Spectral flow cytometry for CD8+ T cell functional markers was completed and 

representative flow plots and graphs appear as described in Extended Data Figure 1, with 

the added sub gate of PD1+ and PD1−. (a) representative flow plot of intra-islet CD8+ T 

cells PD1 expression. (b) Representative flow plots and quantification of LAG3 and TIGIT 

expression on PD1+ and PD1− intra-islet CD8+ T cells. (LAG3+TIGIT+: PD1+ vs PD1− 

6, 8, 10–14 weeks p=.0005, .000002, <.000001, 6 vs 12, 14 weeks PD1+ p=.0039, .0065. 

LAG3−TIGIT−: PD1+ vs PD1− 6, 8–14 weeks p=.000174, <.000001, 6 vs 10, 12, 14 weeks 

PD1+ p=.028, .006, .005). (c) Representative flow plots of TCF1 and TOX staining on 

PD1+ and PD1− intra-islet CD8+ T cells. (d) quantification of (c) (TCF1+TOX−: PD1+ vs 

PD1− p=.000011 at all time points, 6 vs 10, 12, 14 weeks PD1+ p=.0027, .0019, .0064. 

TCF1+TOX+: PD1+ vs PD1− p=<.000001 at all timepoints. TCF1−TOX+: PD1+ vs PD1− 

6, 8–14 weeks p=.000262, <.000001, 6 vs 8, 10, 12, 14 weeks p=.0355, .0355, .0147, 
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.0014). (e-f) Total intra-islet CD8+ T cells from 12-week-old female WT NOD mice were 

analyzed by spectral flow cytometry including ndLN and pLN controls (n=10, 2 independent 

experiments). (e) Representative flow plots (islets) and quantification of CD73 and CD39 

expression (CD73+: islets vs ndLN, pLN p=<.0001, .06. CD39+CD73+: islets vs ndLN, 

pLN, p=<.0001, .0142. CD39+: islets vs ndLN, pLN, p=<.0001, .0315). (f) Representative 

flow plots (islets) and quantification of Tbet and Eomes expression (Tbet+: islets vs ndLN, 

pLN, p=.0056, .0003. Eomes+: islets vs ndLN, pLN, p=.0005, <.0001). (g-i) intra-islet 

CD8+ T cells were isolated and from 12-week-old female WT NODs and analyzed by 

flow cytometry for metabolic markers or cytokines (n = 10, 2 independent experiments, 

techniques described in methods) (g) intra-islet CD8+ T cells are stained for TMRM (islets 

vs ndLN, pLN p=<.0001, .0106), (h) MitoSOX (islets vs. ndLN and pLN, p<.0001) and 

CellROX (islets vs ndLN p=.0019), and for (i) cytokine production. (a-i) Each data point 

corresponds to a single mouse. A two-sided nonparametric Mann-Whitney was preformed, 

where P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Unlabeled indicates not 

statistically significant. Graphs portray the median.
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Extended Data Fig. 5. scRNAseq reveals transcriptionally unique clusters and functions of Cre 
Control versus Lag3∆TM CD8+ T cells.
scRNAseq assessment of intra-islet CD8+ T cells. (a) The Lag3L/L-YFP (Extended Data 

Fig. 2a) construct crossed to a Cre recombinase is shown. Upon crossing Lag3L/L-YFP to a 

Cre recombinase, exon 7 (the transmembrane domain) is deleted (Lag3∆TM). The result is 

the generation of only the soluble form of LAG3 protein. (b) qPCR determining deletion 

efficiency of the CD8 specific LAG3ΔTM mouse. Ratio of Exon 7 to Exon 3 was quantified 

in Cre Control (E8ICRE/CRE-GFP.NOD), vs Lag3∆TM (Lag3L/L-YFPE8ICRE/CRE-GFP.NOD) 

experimental mice. Cells derived from spleens of five 8-week-old females for 1 experiment 

(n = 5). (c-g) CD8+ T cells from the islets and ndLN were isolated from 4 Cre 

Control and 4 Lag3∆TM 8-week-old NOD female mice and were subjected to 5’ paired 

single cell RNAseq (scRNAseq) and single cell T cell receptor sequencing (scTCRseq). 

(c) Cells were visualized by UMAP and colored by tissue, genotype, or individual 

sample. (d) Quantification of specific cell types in each DRAGON cluster (Fig. 3b). (e) 
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Overrepresentation analyses on gene signatures characterizing the Cre Control (6) and 

Lag3∆TM dominated clusters (3+4) was performed using KEGG pathways and the top 

10 overrepresented in each genotype are shown. Enrichment ratio and –log10FDR (false 

discovery rate) are portrayed. (f) Heatmap of gene expression levels in the over-represented 

KEGG pathways.

Extended Data Fig. 6. Pseudotemporal analysis recapitulates the development of exhaustion in 
intra-islet CD8+ T cells and reveals key differences between Lag3ΔTM and Cre Controls.
Diffusion maps were constructed and pseudotemporal ordering was inferred (Methods) 

using single-cell RNAseq data described in Ext. Data Fig. 5. (a-d) CD8+ T cells from the 

islets and ndLN were isolated from 4 Cre Control and 4 Lag3∆TM 8-week NOD female 

mice and were subjected to 5’ paired single cell RNAseq (scRNAseq) and single cell T cell 

receptor sequencing (scTCRseq). Unless otherwise noted, red is representative of Lag3∆TM 

dominated clusters (3+4) and blue is representative of Cre Control dominated clusters 

(6). Diffusion component 1 and 2 portray the trajectory of CD8+ T cell differentiation. 

(a) Diffusion pseudotime colored by DRAGON cluster (Fig. 3b). (b-d) Differential gene 

expression as a function of diffusion pseudotime. Genes associated with early pseudotime 

(b), mid-pseudotime (c), and late pseudotime (d). Red corresponds to ORA markers of 

Lag3∆TM dominated clusters and blue is representative of Cre Control dominated cluster 
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markers derived from ORA analysis. Two sided Pearson’s correlation was used to calculated 

the Pearson’s correlation coefficient where P <2.2x10-16 (indicated as ****) in all cases.

Extended Data Fig. 7. TCR clonality in conjunction with diffusion pseudotime distinguish 
Lag3ΔTM and Cre Control samples.
(a-d) CD8+ T cells from the islets and ndLN were isolated from 4 Cre Control and 4 

Lag3∆TM 8-week NOD female mice and were subjected to 5’ paired single cell RNAseq 

(scRNAseq) and single cell T cell receptor sequencing (scTCRseq). Red is representative 

of Lag3∆TM dominated clusters (3+4) and blue is representative of Cre Control dominated 

clusters (6). (a-b) 5’ scTCRseq was analyzed for frequency of expanded clones (a) and 

number of unique clones (b). Here, the line is the median, box is lower and upper quantiles 

(lower 25% and upper 25%), the upper whisker is the minimum of either the maximum 

value or the upper quartile plus 1.5 times the interquartile ranger. Bottom whisker is the 

maximum of the minimum or the first quartile minus 1.5 times in interquartile ranger. (c-d) 

Diffusion component 1 and 2 portray the trajectory of cellular development. (c) Diffusion 

pseudotime trajectory was divided into 5 clusters based on DC1 and DC2. Enrichment 

for islets begins in cluster 3, and clusters 4 and 5 constitute ~90% of cells derived from 

islets. (d) Expression of genes differentially regulated over time between Cre Control and 

Lag3∆TM in clusters enriched for cells derived from islet (i.e. clusters 3, 4 and 5).
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Extended Data Fig. 8. Network analysis reveals differences in possible interactions between 
Lag3ΔTM and Cre Control
(a-c) CD8+ T cells from the islets and ndLN were isolated from 4 Cre Control and 4 

Lag3∆TM 8-week NOD female mice and were subjected to 5’ paired single cell RNAseq 

(scRNAseq) and single cell T cell receptor sequencing (scTCRseq). Unless otherwise noted, 

red is representative of Lag3∆TM seed genes (Clusters 3+4) and blue is representative of Cre 

Control seed genes (Cluster 6) (Supplementary Table 4). For subnetworks, all gene names 

are shown. (a) Protein subnetworks characterizing Cre Control (b) Protein subnetworks 

characterizing Lag3∆TM cells (c) Degree distribution for the different subnetworks showing 

that Cre Control have a higher frequency of networks with fewer connections
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Extended Data Fig. 9. LAG3 deletion has moderate impacts on proliferation, but phenotypically 
skews cells to an effector, rather than restrained phenotype.
The consequences of LAG3 deletion were evaluated by flow cytometry to phenotype intra-

islet CD8+ T cells for survival, proliferation, and IR/exhaustion related marker expression. 

(a-e) Flow cytometry was performed on 8-week-old female Lag3∆TM and Cre Controls 

taking cells from ndLN, pLN and islets. Data points derived from islets having <40 

tetramer+ cells were excluded. Tetramer staining in lymph nodes was negligible and never 

exceeded 40 Tetramer+ cells. (a) BrdU was injected intraperitoneally 12 hours prior to 

harvest, and percent BrdU, Ki67, cleaved Caspase 3 (p=.0496), and BCL2 were assessed 

by flow cytometry (2 independent experiments, n = 6–8 per genotype). (b) CD8+ T cells 

were labeled with cell trace violet, sorted into 96 well round bottom plate containing 0.05 

ug/mL αCD3/CD28, and 200U/mL IL-2 in cRPMI, and cultured for 60 hours and analyzed 

by flow cytometry (2 independent experiments, n = 6 per genotype). (c) IRs/markers of 

restraint (TIGIT, TCF1, PD1, and TOX) expression were quantified on total and tetramer 
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positive CD8+ T cells (3 independent experiments, n =13–15 per genotype Tetramer: TIGIT, 

PD1, TOX, p=.0473, .0473, .0096). (d) Percent expression of effector molecules CD44 

(3 independent experiments, n = 13–15 per genotype ndLN, pLN, Islets p=.0016, .0007 

.0037) and KLRG1 (1 independent experiment, n = 4–5 per genotype p=.036). (e) Percent 

expression of PD1 and TOX (Nrpv7+ p=.0259, InsB+ p=.0204), CD39 and Eomes (p=.03), 

double positive populations, markers of exhaustion, were monitored on bulk and tetramer 

positive ndLN, pLN, and intra-islet CD8+ T cells (3 independent experiments, n = 13–15 

per genotype and 2 independent experiments, n = 5–6 per genotype, respectively). (a-e) 

Each data point corresponds to a single mouse. A two-sided nonparametric Mann-Whitney 

statistical test was preformed where P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. 

Unlabeled indicates not statistically significant. Graphs portray the median.

Extended Data Fig. 10. LAG3 deletion doesn’t affect single cytokine production or metabolic 
capacity
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The consequences of LAG3 deletion were evaluated by flow cytometry to phenotype intra-

islet CD8+ T cells for cytokine production, metabolic capacity, and antigen specificity. (a-d) 

Flow cytometry was performed on 8-week-old female Lag3∆TM and Cre Controls taking 

cells from ndLN, pLN and islets. (a-b) lymphocytes were stimulated ex vivo for 5 hours 

with PMA, ionomycin, and brefeldin A and then assessed for cytokine production and 

degranulation. CD107a, GzmB, Tnfα and IFNγ were quantified (2 independent experiments 

n = 6–7 per genotype). Cytokine production is unchanged between genotypes, though 

dual cytokine production, an indicator of polyfunctionality, IFNγ+Gzmb+, is increased in 

Lag3∆TM (ndLN, pLN, Islet p=.0083, .035, .44) (b). (c) Lymphocytes were isolated from 

islets, ndLN, and pLN, cultured in serum free media for 37 degrees C in the presence 

of GlucoseCy5, CellROX, or MitoSOX, for 30 mins, surface stained including TMRE 

and MitoTracker, and analyzed by flow cytometry (2 independent experiments, n=2–6 

per genotype). Lag3L/L-YFP.NOD controls were included in this experiment to control for 

fluorescent protein expression that may overlap with metabolic markers. (a-c) Each data 

point corresponds to a single mouse. A two-sided nonparametric Mann-Whitney statistical 

test was preformed where P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Unlabeled 

indicates not statistically significant. Graphs portray the median. (d) representative flow 

plots of tetramer staining in 8-week-old female Lag3∆TM and Cre Controls intra-islet CD8+ 

T cells.
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Extended Data Fig. 2e GSE8679764), Bulk RNAseq GSEA (Extended Data Fig. 2c, 
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Figure 1: Intra-Islet CD8+ T cells feature hallmarks of exhaustion.
The phenotype of intra-islet CD8+ T cells was assessed by high-dimensional spectral flow 

cytometry, bulk RNAseq and scATACseq. (a) High dimensional analysis of spectral flow 

cytometry data of 11 markers on CD8+ T cells from the islets of 12-week-old female NOD 

using Cytobank (Methods)24. ViSNE maps were fed into FlowSOM clustering algorithm. 

(b) Bulk population RNAseq comparing intra-islet YFP+ and YFP− CD8+ T cells, along 

with ndLN and pLN as controls. Cells were pooled from 3 Lag3L/L-YFP.NOD 8-week-old 

females in 2 independent experiments. Volcano plot illustrating top 4 differentially expressed 

genes (up and down) in non-bold, as well as markers of exhaustion in bold. (c) scATACseq 

comparing CD8+ T cells from the islets or ndLN of 8-week-old E8iCRE/CRE-GFP.NOD 

female mice (n = 4). Enrichment for exhaustion signature peaks is shown. (d) Representative 

flow cytometry plot of PD1 expression on intra-islet CD8+ T cells gated on Live, Thy1.2+, 

CD8b+, PD1+. (e) Quantification of LAG3 and TIGIT expression on PD1+ cells over time 

(6 vs 12, 14 p=.0065, .0039). (f) Representative flow plot and quantification of TCF1 and 

TOX staining on Live, Thy1.2+, CD8b+, PD1+. Gating based on total or PD1− CD8+ T cells 
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(Extended Data Fig. 1e, 4c–d). (6 vs 10, 12, 14 p=.0027, .0019, .0064). (a, d-f) Spectral 

flow cytometry for CD8+ T cell functional markers was completed over a time course of 

6–14 week old female WT NOD mice. Representative flow plots are derived from intra-islet 

CD8+ T cells (gated on lymphocytes, single cells, Live, Thy1.2+, CD8b+) of 12-week-old 

female NOD. Data were accumulated from a total of 5 experiments, each experiment had 

mice of several ages with n = 10 mice per timepoint, n = 50 total mice. Each point on the 

graph is representative of a single mouse. A two-sided nonparametric Mann-Whitney was 

preformed, where P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Graphs portray the 

median. Unlabeled indicates not statistically significant.
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Figure 2: Intra-islet CD8+ T cells are different from canonically exhausted CD8+ cells
(a-e) Flow cytometric analysis of intra-islet CD8+ T cells from 12-week-old female WT 

NODs. (a) Representative flow gating and quantification of Eomes and CD39 expression 

(Islets vs ndLN, pLN p= <.0001, .0005), (b) GlucoseCy5 (Islets vs ndLN, pLN p= .0027, 

.0012) and MitoTracker (Islets vs ndLN and pLN p= <.0001), (c) Hypoxyprobe (Islets vs. 

ndLN, pLN, p=.0079, .00709), (d) Hif1α (Islets vs. ndLN, p=.0159) and (e) correlation 

between correlation of Hypoxyprobe to MFI to HIF1α (p=.0459). (f) Diagram comparing 

canonical exhaustion to what we observe in the islets. (a-b) Data is representative of 2 

experiments, with n = 10. (c-d) Data is representative of 1 experiment with n=5 WT 

NODs. (a-e) Each point on the graph represents 1 mouse. A two-sided nonparametric 

Mann-Whitney test was performed. Graphs portray the median. (d) Pearson’s correlation 

coefficients and r2 values were calculated. (a-e) P = * <0.05, ** < 0.01, *** < 0.001, **** < 

0.0001. Unlabeled indicates not statistically significant.
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Figure 3: LAG3 deletion accelerates disease and halts development in a progenitor stage.
(a) Diabetes incidence in female and male Cre Control (n=28 females, 27 males), 

Lag3L/L-YFP.NOD (n=14 females, 8 males) and Lag3∆TM.NOD (n=14 females, 19 males). 

A log-rank (Mantel-Cox) test was used to compare survival curves. (Females: Lag3∆TM 

vs. Lag3L/L-YFP.NOD, Cre Control, p<.0001 for both comparisons. Males: Lag3∆TM vs. 

Lag3L/L-YFP.NOD, Cre Control, p=.0042, <.0001) (b-g) CD8+ T cells from the islets and 

ndLN were isolated from 4 Cre Control and 4 Lag3∆TM 8-week-old female NOD mice and 

were subjected to paired 5’ scRNAseq and scTCRseq. (b) Cells were visualized by UMAP, 

and clustering was performed using DRAGON (Methods). Red is representative of Lag3∆TM 

dominated islet clusters, 3 and 4. Blue is representative of Cre Control dominated islet 

cluster, 6. Selected functional genes from the top 50 DEGs in each cluster are annotated 

(Supplementary Table 2). (c) Gene set enrichment analysis using progenitor and terminal 

exhausted gene sets26 (Methods). A two-sided T test was used to compare Lag3ΔTM versus 

Cre Control, the median point is shown on the graph. (d) Diffusion pseudotime analysis was 

preformed using Destiny (Methods), where cells are embedded in diffusion space using the 
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first two diffusion components DC1 and DC2. (e) Scaled gene expression of selected genes 

as a function of increasing pseudotime along DC1. Red lettering corresponds to markers of 

Lag3∆TM dominated clusters and blue lettering is representative of Cre Control dominated 

cluster markers by ORA. (f) Cell density along DC1. A two-sided Kolmogorov-Smirnov 

test assess distributions along DC1 (Islet Lag3∆TM vs Islet Cre Control, ndLN Lag3∆TM, 

ndLN Cre Control, p=1.522x10-9, <2.22x10-16, <2.22x10-16). (g) Comparison of clonally 

expanded TCRs (greater than 4 copies) across DC1 comparing Cre Control versus Lag3∆TM 

within the islets. A box and whisker plot shows frequency of TCRs in greater than median 

DC1 in each genotype. Here, the line is the median, box is lower and upper quantiles (lower 

25% and upper 25%), the upper whisker is the minimum of either the maximum value or the 

upper quartile plus 1.5 times the interquartile ranger. Bottom whisker is the maximum of the 

minimum or the first quartile minus 1.5 times in interquartile ranger. A two-sided Wilcoxon 

rank sum test was used (p=0.024). (a-g) P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001.
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Figure 4: LAG3 deletion accelerates disease by perturbing the ‘restrained’ phenotype.
(a) Insulitis and scoring of 8-week-old female and male Cre Controls (10 females, 13 males) 

and Lag3∆TM NOD mice (11 females, 11 males) (insulitis: Female Cre Control vs Lag3∆TM 

no insulitis, peri insulitis, insulitis, p = .0006, .05, <.0001, Male Cre Control vs Lag3∆TM 

no insulitis, peri insulitis, insulitis, p=.0257, .1139, .00218, Scoring: females p=.0001, males 

p=.0265). (b-f) Flow cytometry was performed on 8-week-old female Lag3∆TM and Cre 

Controls taking cells from ndLN, pLN and islets. (b) Quantification of T cell percentages 

and numbers (Percent CD8’s comparing Cre Control vs Lag3∆TM islets p=.0058, Cell 

numbers CD4+Foxp3−, CD8+ p=.028, .0009). Data is representative of 3 independent 

experiments with n=8–10 per genotype. (c) Chemokine receptor expression with data 

representative of 2 independent experiment with n=5–6 per genotype (CXCR3 ndLN, 

pLN, Islet p=.08, .0065, .9, CXCR6 Islet p=.0043). (d) Partial least squares-discriminant 

analysis (PLS-DA) of exhaustion/activation markers assessed by flow cytometry with 

data representative of 3 independent experiments n=13–15 per genotype. For the binary 

classification by genotype AUC = 0.94 in a k-fold cross-validation framework, P < 0.01 

compared to a negative control model built using permuted label. (e) Quantification of 

percent tetramer+ CD8+ T cells found in the islets with data representative of 3 independent 

experiments with n = 9 per genotype (%InsB+, Nrpv7+ p=.8, .01, #Nrpv7+ p=.0061). 

(f) Quantification of tetramer+ SLECs (p=.003) and correlation of percent tetramer+ to 

percent SLECS with data representative of 3 independent experiments with n = 8–10 

per genotype (%InsB correlation to SLECs Cre Control, Lag3∆TM p=.08, .9, %Nrpv7 
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correlation to SLECs Cre Control, Lag3∆TM p=.22, .0027). Graphs show only samples 

having >100 Tetramer+ cells. Correlation calculation was preformed using Pearson’s 

correlation coefficients and r2 values were calculated. (g) Model depicting the consequences 

of LAG3 deletion on CD8+ T cells in islets. Created with BioRender.com. (a-f) A two-sided 

nonparametric Mann-Whitney test for significance was preformed (unless otherwise noted). 

Each data point corresponds to a single mouse. Graphs portray the median and error bars 

are the SEM. P = * <0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Unlabeled indicates not 

statistically significant.
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