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Simple Summary: Mounting evidence suggests a relationship between Human Papilloma Virus
(HPV) infection and the occurrence of neoplastic transformations within oral, pharyngeal, and anal
cancers. Other segments of the intestinal tract can also be involved. Knowledge about the association
between HPV infection and gastrointestinal carcinogenesis is crucial for both cancer prevention and
patient care. Unfortunately, definite conclusions cannot be drawn yet, due to the high number of
contradictions in the published papers.

Abstract: Human Papilloma Virus (HPV) is one of the most common sexually transmitted infections
worldwide. HPV infection has a strong relationship with the onset of cervix uteri, vagina, penis, anus,
and oropharynx, but also tonsils and tongue cancers. Some epidemiological data indicate that except
for gynecologic cancers, HPV infection can be one of the risk factors associated with a greater risk
of induction and progression of gastrointestinal cancers. Data, however, remain contradictory and
definite conclusions cannot be drawn, so far. The following review aims to organize recent evidence
and summarize the current state of knowledge regarding the association between HPV infection and
gastrointestinal tumors primarily focusing on esophageal, liver, gastric, colorectal, and anal cancers.

Keywords: human papilloma virus; gastrointestinal cancer; esophageal cancer; liver cancer; gastric
cancer; colorectal cancer; anal cancer; carcinogenesis

1. Introduction

Human Papilloma Virus (HPV) belongs to the group of DNA viruses and Papovaviridae
family, constituting a group of 174 characterized and documented types with the newest
species being constantly discovered [1]. This virus reveals the high tropism rate mainly in
the epithelia of the upper respiratory tract, genitals, as well as skin. The HPV family is di-
vided into two groups according to their oncogenic potential—low-risk and high-risk HPV,
which are either responsible for benign malignancies or major cancers correspondingly [2].
According to the International Agency for Research on Cancer (IARC), several high-risk
HPV have been listed, namely 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59, and these types
are mainly responsible for carcinogenesis [3]. On the other hand, low-risk HPV such as
type 6, 11, 42, 43, and 44 have an impact on benign hyperproliferative lesions or papillo-
matosis [4]. The main way of transmission of HPV includes sexual contacts and the most
commonly infected areas include the genitals, anus, mouth, or throat. In addition to sexual

Cancers 2022, 14, 2607. https://doi.org/10.3390/cancers14112607 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14112607
https://doi.org/10.3390/cancers14112607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-1372-8987
https://orcid.org/0000-0001-8714-7627
https://orcid.org/0000-0001-8261-0192
https://orcid.org/0000-0002-4413-3310
https://orcid.org/0000-0002-1416-6568
https://orcid.org/0000-0002-4184-9305
https://orcid.org/0000-0001-7637-6387
https://orcid.org/0000-0001-6881-3161
https://orcid.org/0000-0001-5359-1471
https://doi.org/10.3390/cancers14112607
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14112607?type=check_update&version=1


Cancers 2022, 14, 2607 2 of 19

intercourse, HPV transmission is facilitated by smoking, multiple partners, deficiency of
some vitamins such as vitamin A, as well as the defective immune system [5]. It is estimated
that, worldwide, there are more than 550,000 new patients annually who suffer from vari-
ous malignancies caused by the infection of HPV [6]. Except for common genital cancers,
esophageal squamous cell carcinoma (ESCC), colorectal cancers, conjunctiva carcinoma
along with oropharyngeal cancers, HPV is considered to play a role in the development of
neoplastic transformations within the gastric mucosa, which may eventually lead to the
progression to gastric cancer [7]. Gastric cancer is the third cause of death associated with
cancer occurrence among both males and females (approximately 723,000 cases of death
per year). Such estimates are more commonly observed in men in comparison to women
with the highest rates in East Asia, East Europe, and South Africa [8,9]. Approximately,
75% of gastric cancer cases are associated with the infection of Helicobacter pylori (H. py-
lori) [10–12]. Likewise, other viral infections such as Epstein–Barr Virus (EBV), for instance,
might be crucial in the development of this malignancy [13] (Figure 1).
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In the following paragraphs, we focus on the malignancies of the gastrointestinal tract
that could be induced by the HPV infection but are not as common in the clinical practice
as HPV-triggered gynecological cancers, primarily considering esophageal cancer, liver
cancer, gastric cancer, colorectal cancer, and anal cancer.

2. Human Papillomavirus Description

Human Papilloma Virus (HPV) is representative of the Papillomaviridiae family having
a double-stranded circular DNA genome with a virion size of approximately 55 nm in
diameter [14]. To date, over 200 types of HPV have been described, and the number
of further types discovered continues to rise [15]. The individual types can be further
classified into five large genera—alfa-papillomas, beta-papillomas, gamma-papillomas, mu-
papillomas, and nu-papillomas. The classification into genera is based on the ORF (open
reading frame) nucleotide sequence encoding the L1 capsid protein, with each type of HPV
sharing less than 60% similarity within the L1 genome. Among the genera, the individual
HPV types are numerically classified according to the Papillomavirus Workshops held
in 1995 and the division is based on less than 90% similarity in the L1 protein-coding
sequence [16]. Alpha-papillomas have an affinity for mucous membranes and skin, while
the other types affect only skin [17]. Mucosal types are further subdivided into high-risk
and low-risk groups that do not typically cause neoplasia [18]. HPV is the most common
sexually transmitted infection (STI) and the leading cause of cervical cancer in women.
Moreover, the virus causes vulvar, vaginal, penile, anal, oropharyngeal, and cutaneous
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carcinomas. Low-risk HPV types are associated with benign skin lesions such as genital,
flat, or common warts [19]. Usually, except for papillomas, such lesions resolve with time
and are cleared by the immune response. Regarding high-risk HPV types, 12 of them have
been classified as group 1 carcinogens to humans—type 16, 18, 31, 33, 35, 39, 45, 51, 52, 56,
58, and 59 according to IARC [20]. In 2018, the total number of cancers attributable to HPV
infection accounted for 690,000 cases worldwide with an age-standardized incidence rate
(ASIR) of 8.0 cases per 100,000 person-years [21]. Of these cases, about 80% were cervical
cancers (n = 570,000). Remaining carcinomas, counted as new cases attributable to the
disease, occurred with the frequency in the presented order: oropharyngeal carcinoma
(n = 42,000), anus squamous cell carcinoma (n = 29,000), penis carcinoma (n = 18,000),
vagina carcinoma (n = 14,000), vulva carcinoma (n = 11,000), oral cavity cancer (n = 5900),
and larynx cancer (n = 4100). According to GLOBOCAN statistics from 2020, cervical
cancer represents the 9th cancer worldwide in terms of incidence, while among women,
it is in the 4th position both in terms of incidence (n = 604,127) and as the leading cause
of cancer death (n = 341,831) [22]. Across all continents, invasive cervical cancer is most
often caused by persistent HPV-16 infection, followed by HPV-18 [23]. HPV-16 is also
the main type responsible for oropharyngeal squamous cell carcinomas [24]. Overall,
HPV-18 and 16 account for 72% and HPV 31, 33, 45, 52, and 58 for an additional 17%
of all HPV-attributable cancer cases [21]. Most anogenital HPV infections are acquired
through sexual contact and the possibility of infection increases with the number of sexual
partners [25]. HPV infections are very common in young women with a peak around
20–25 years of age. Later, the prevalence of infection remains on the stable level of 5–10%.
In total, approximately 80% of sexually active women contract an HPV infection during
their lifetime and, in most cases, it resolves within 6 to 12 months [26]. Viral transmission
is believed to be higher in female-male rather than male-female contacts [27,28]. The
prevalence of genital HPV infection is similar in men and women [29]. Among men,
regardless of their younger or older age, the infection rate remains on a stable level and
varies very little, contrary to women. The highest risk of anal HPV infection is seen in
homosexual and HIV-infected men. HPV infection can also be acquired through skin
abrasions, by kissing and digital contact, with finger–genital contact, perinatal transition,
and oral sex [30]. Concerning perinatal horizontal transmission from mother to child, there
is evidence that caesarean section can reduce the incidence of HPV perinatal infection by
approximately 46% [31]. Interestingly, human papillomavirus can be detected in female
virgins with the prevalence varying from 0 to 51.1%, and some studies commonly found
HPV on the surface of medical instruments and public environments [32].

Concerning gastrointestinal tract (GIT) cancers, they accounted for 26% of new cancer
cases worldwide and 35% of all cancer-related deaths in 2018, with the highest prevalence
of colon cancer (1.8 million new cases) [33]. Based on predictions, by 2040, the global
numbers of new cases and deaths caused by GIT cancers will increase, respectively, by
58% and 78%. HPV infection is a controversial risk factor among esophageal, gastric, liver,
and colorectal malignancies with many conflicting studies, which is presented further in
the review.

3. HPV Oncogenesis

The HPV genome consists of three major functional regions including early, late, and
long control regions, which are separated by early (pAE) and late polyadenylation sites
(pAL) [14]. The early region encodes six common open reading frames (E1, E2, E4, E5, E6,
and E7) translating individual proteins, whereas the late region encodes L1 and L2 ORF for
translation of a major (L1) and minor (L2) capsid protein. The long control region (LCR)
contains transcription factor binding sites and the origin of replication, without a protein-
coding function as with the rest of the regions. HPV infection initiates with the interaction
of the L1 capsid protein on the viral capsid with the heparan sulfonated proteoglycan
found on the cytoplastic membrane of the cell at the basal layer of the epithelium [26,34].
The life cycle of papillomavirus is strictly related to keratinocytes, which are present in
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the epidermis of the skin and stratified squamous epithelia of the genitals, oral cavity,
and esophagus—new virions can only be assembled in keratinocytes undergoing terminal
differentiation [35]. HPV gains access to basal epithelial cells by epithelial trauma and
maintains the viral episome at a low copy number in the infected cells [36]. It is believed
that for the persistent lesion to develop, papillomavirus must infect long-lived epithelial
stem or stem-like cells and that the local microenvironment and growth factors released
around the wound-healing area may play a crucial role for virus reservoir [37]. After the
entry, HPV migrates to the host cell nucleus and rapidly increases its viral DNA genome by
replication, dependent on the viral E1 and E2 replicative proteins [38]. Low-copy episomes
are established in undifferentiated cells and replicated viral genomes are distributed equally
to two daughter cells, of which one migrates toward the suprabasal layer and undergoes
differentiation. Upon differentiation, thousands of genome copies are produced, and finally,
among terminally differentiated cells of the epithelium, the L1 and L2 capsid proteins are
expressed, and viral particles are released with the most exterior part of the squamous
cells layer.

In the 1980s, the first reports of the possibility of HPV-induced cell transformation
appeared and the greatest importance was assigned to the E7 gene encoding a protein of
the same name [39–44]. Subsequent in vitro studies conducted on human keratinocytes
showed that the E7 protein closely cooperates with the E6 protein and only their expression
together leads to the cell immortalization [45–47]. It is claimed that the E7 protein supports
further DNA synthesis among cells of the suprabasal layer of the epithelium, which is
normally limited only to the basal cells [48]. The most frequently described E7 protein
feature responsible for oncogenesis is binding to the pRb family of proteins pRb, p107,
and 130 [49–51]. pRb has an ability to interact with EF2 transcription factors involved in
the activation of DNA replication and the regulation of the G1-to-S phase transition [52].
In a normal manner, pRb is active in a hypophosphorylated form and prevents S-phase
entry [53]. It represses transcription in three distinctive ways—by binding to the E2F activa-
tion site, blocking the assembly of pre-initiation complexes, and associating with complexes
that modify the chromatin structure [54]. The E7 protein-mediated pRb destruction leads
to the release of EF2 factors and activation of genes responsible for cell proliferation [55].
An additional mechanism through which E7 can be responsible for oncogenic transfor-
mation is pRb degradation via a ubiquitin-proteasome pathway [56,57]. In addition to
the well-known interaction with pRb, the E7 protein has been shown to contribute to
genomic instability [58,59]. HPV-16 E7 induces abnormal centrosome duplication and
aberrant mitotic spindle formation. Interestingly, the genomic instability is present at a
very early stage of high-risk HPV infection [58]. E7 induces centriole multiplication via the
up-regulation of Polo-like kinase 4 in HPV-16-expressing cells [60] and alters the recruit-
ment of gamma-tubulin to the centrosome [61]. In addition, E7 can delocalize dynein from
mitotic spindles and interact with NuMA (nuclear mitotic apparatus protein 1), resulting
in mitotic disruptions [62].

In addition to well-known E7 protein-transforming properties, it was quickly noticed
that similar characteristics were exerted by the E6 protein encoded by different types of
human papillomaviruses. E6 can bind to the p53 protein, which, in turn, correlates with
in vitro-transforming activity and in vivo clinical behavior [63]. The degradation of the
p53 protein is ATP-dependent and involves the ubiquitin-dependent protease system [64].
Binding to the p53 is mediated by E6-AP (associating protein) [65–67]. In vitro studies
showed that the downregulation of E6-AP expression on HPV-positive cells leads to growth
suppression and p53 accumulation [68] and that the stability of the E6 protein is strictly
dependent upon E6-AP presence [69]. One study found a complete loss of the oncogenic
potential in mice nulligenic for the E6-associated protein [70]. Notably, the degradation
properties of E6 are not limited only to E6-AP binding [71], and this association alone is
not sufficient [72]. Another property of the E6 oncogenic protein is the ability to activate
telomerase, the enzyme responsible for the synthesis of telomere repeat sequences, which
prolongs the life of HPV-16-infected cells and is independent of p53 degradation [73]. The
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telomeres are the complexes consisting of tandem repeat DNA sequences found at the end of
eukaryotic chromosomes, and they function as a molecular clock that controls the replicative
capacity of human cells [74]. The activation of telomerase is mediated by E6-enhanced
expression of the human telomerase reverse transcriptase (hTERT) catalytic subunit. The
binding of E6 to myc proteins that are closely related to hTERT activation is believed to play
a role [75]. Moreover, other targets for the E6 protein are two isoforms of NFX-1-NFX1-123
and NFX1-91. NFX1-91 is a repressor of telomerase and, by binding with E6, it undergoes
ubiquitination and degradation [76]. On the other hand, NFX1-123 interacts with HPV type
16 E6 and increases hTERT mRNA levels [77] (Table 1). Morgan et al. demonstrated that the
HPV E6 protein stimulates the proto-oncogenic transcription factor STAT3 and the process
is mediated by the IL-6 and a subsequent activation of the transcription factor NFκB [78].
The authors indicate that the activation of the whole axis remains crucial in the further
proliferation and survival of cancer cells. Other studies indicate that HPV E7 is involved in
the activation of the STAT-5 phosphorylation promoting further HPV replication through
activating the ATM DNA damage response [79]. Further, an increased expression of EGFR
and a subsequent activation of JNK/c-Jun signaling are crucial for further activation of
HPV E6 and E7 proteins [80]. The Hippo signaling pathway combined with the EGFR
signaling interact with HPV E6 and E7 oncoproteins, enhancing tumor growth, proliferation,
and migration of the cancerous cells [81,82]. Generally, HPV oncoproteins—primarily E5,
E6, and E7—are involved in facilitating numerous signaling pathways, providing an
environment beneficial for the viral replication and further oncogenesis [83].

Table 1. Oncogenic proteins of HPV and their mechanisms of action.

Protein Mechanism of Action Effect References

E6

Binding to cellular ubiquitin ligase E6-associated protein (E6-AP)
and E6/E6AP/p53 complex formation Promotion of p53 degradation [64,84]

Binding to the cellular proteins containing PSD-95/DLG/ZO-1
(PDZ) domains

Proteolytic degradation of potential tumor suppressor
proteins, such as Dlg, Scribble, and MAGI-1 [85]

Binding to myc proteins and inducing expression of the human
telomerase reverse transcriptase (hTERT) catalytic subunit

Telomerase activation leading to prolonged life of
HPV-16 infected cells [73,75]

Binding to NFX-1 isoforms: NFX1-123 and NFX1-91 Increase in hTERT mRNA levels and degradation of
NFX1-91 telomerase repressor [75,77]

Binding to the Fas-associated Death Domain (FADD) Prevention of Fas-induced apoptosis [86]

Stimulating pro-apoptotic Bak degradation by E6AP protein Inhibition of Bak-induced apoptosis [87,88]

Bax protein inhibition and reduction in Bax mRNA expression Inhibition of Bax-induced apoptosis [89,90]

Dysregulation of cellular microRNAs (miRNAs) Dysregulation of cycle regulation, apoptosis, cell–cell
adhesion, cell mobility, and proliferation [91–93]

Increasing the level of miR-20b Inducing morphological cell alterations [94]

E7

Proteasomal degradation of the pRB/E2F repressor complex Activation of genes necessary for S-phase progression [48]
Binding to p107 and p130

Abrogation of the inhibitory activities of the CKIs p21CIP1 and
p27KIP1 Dysregulation the G1/S-phase transition [95–98]

Overexpression of cyclins E and A—the regulatory subunits of
cdk2

Inhibition of TGFβ signaling Impaired cellular differentiation [99,100]
Binding to PTPN14

Binding with class I histone deacetylases (HDACs) Invalid chromatin remodeling [101]

Binding to KDM6A/B Cellular histone modifications [102,103]

Binding to DNMT1 Epigenetic dysregulation [104]

Binding to IRF1, IRF9
Repression of the innate antiviral immune response [105–109]

Secretion of IL-18BP

Inhibition of the TLR9 and cGAS-STING signaling axis

Activation of the ATM and ATR pathways Genome instability, aberrant centrosome duplication [61,110,111]
γ-tubulin disturbance
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Apoptosis, as a process of programmed cell death, is one of the most important cellular
processes that regulates the quantity of cells. Several tumors can inhibit apoptosis, thereby
preventing cell death and allowing the cells to multiply uncontrollably. The E6 and E7
oncoproteins produced by HPV interfere with apoptotic processes. The E6 protein leads
to the degradation of the pro-apoptotic Bak protein [87,88]. It also inhibits the action of
the Bax protein and downregulates the expression of Bax mRNA, which interacts with
the Bak protein in the process of controlled cell death [89,90]. Moreover, the E6 protein
can bind directly to the Fas-associated Death Domain (FADD), preventing Fas-induced
apoptosis [86]. Both E6 and E7 proteins attenuate the action of transforming growth factor-
β2 (TGF-β2) in keratinocytes, which is characterized by regulation of the cell cycle and
tissue remodeling [112].

Another mechanism responsible for the neoplastic transformation of many human
tissues is related to the downregulation of miRNA, non-coding small RNAs that are post-
transcriptional mRNA regulators [91]. In one study, after sequencing RNAs of human
foreskin keratinocytes expressing either HPV16 E6/E7 proteins or control vectors, 51 differ-
entially expressed miRNAs turned out to be associated with the modulation of 1456 target
mRNAs [92]. Another similar research showed a dysregulation of 60 and 90 miRNAs in
the presence of either the E6 or E7 protein, respectively; further, the joint expression of both
proteins was associated with the alterations in the levels of 64 miRNAs [93]. For example,
HPV proteins alter the miR-203 expression, miRNA that is mostly present in suprabasal
layers of stratified epithelia and is responsible for suppressing the proliferative capacity of
epithelial cells upon differentiation [113]. The HPV E6 oncoprotein can increase the level of
miR-20b inducing morphological cell alterations in cervical carcinoma tissue [94].

4. HPV Detection Methods

Concerning human papillomavirus detection, the determination of anti-HPV antibod-
ies is of limited diagnostic value as they may persist for many years and their presence
does not distinguish between past and present infection [114,115]. In addition, human
papillomavirus cannot be grown in conventional cell cultures. Thus, detecting viral nu-
cleic acid is of the greatest importance. Most methods of detecting HPV infection are
reserved for prompt diagnosis and early prevention of the development of cervical cancer
in women. For this purpose, many tests have been developed to investigate the presence
of HPV-DNA in cervical specimens, and five of them have been approved by the Food
and Drugs Administration for wider use—Hybrid Capture II HPV DNA test, Cervista
HPV HR, Cervista HPV 16/18, Cobas HPV test, and APTIMA HPV Assay [116]. One of
the methods of HPV-DNA detection is in situ hybridization (ISH), which relies on the
usage of labeled probes that specifically hybridize to DNA, but the disadvantage of ISH
is its limited specificity [114,117]. The undoubted advantage of this method, however, is
the determination of the exact location of HPV in the sample—the virus integrated with
the genetic material reveals itself as a punctuated signal, while the episomal form reveals
itself as a diffused signal [118]. Other techniques that use hybridization are Southern blot,
dot blot, and reverse blot and non-radioactive hybrid capture [119]. The most sensitive
method is the polymerase chain reaction (PCR), which can detect a single genetic mate-
rial per 100,000 cells while the previously discussed ISH method provides a detection of
one DNA per 100 cells [120]. PCR is the reaction relying on the set of oligonucleotide
primers and thermostable DNA polymerase that will elongate the genetic material [121].
The process depends on DNA denaturation followed by the annealing of primers and
DNA replication. There are multiple PCR methods using consensus primers that target
mainly conserved regions of L1 ORF or type-specific primers, allowing the detection of
individual HPV types [121]. It should be noted that PCR must be performed on fresh or
frozen tissue [122,123]. Doeberitz in his work proposed three criteria that should be met
to accept HPV as the direct cause of malignancy: (1) for each cancer cell, there should be
at least one HPV genome, (2) cells should transcribe and translate oncoproteins E6 and
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E7, and (3) there should be the loss of tumorigenic ability with the inhibition of E6/E7
activity [124,125].

5. HPV and Esophageal Cancer

Esophageal cancer is currently the 10th most commonly diagnosed cancer worldwide,
with an estimated number of 604,100 cases, being, at the same time, the 6th most common
cause of cancer-related deaths with an estimated number of 544,076 deaths [22]. Esophageal
cancer constitutes a malignancy that is usually about three to four times more prevalent in
males rather than in females. Two major types of a cancer can be distinguished—(ESCC)
and esophageal adenocarcinoma (EAC) [126]. For ESCC, the main risk factors primarily
include increasing age, male sex, cigarette smoking, and alcohol consumption, while gender,
cigarette smoking, gastroesophageal reflux disease (leading to Barret’s dysplasia (BD)),
and obesity constitute the major risk factors for EAC [127,128]. The involvement of human
papillomavirus (HPV) in the onset of ESCC remains controversial—positive relationships
between those two factors have already been reported in many Chinese studies, whereas
studies from the Western countries usually report no clear associations [129–132]. One
explanation for this might be that HPV DNA contamination cannot be ruled out as a cause
for high HPV prevalence in ESCC tissue [131]. Rajendra et al. proved a strong association
between high-risk HPV and BD, as well as EAC. Amongst 261 patients, 81 were positive
for HPV DNA. HPV was mostly detected at the transformation zone in both controls and
BE. Compared with controls (18.0%), HPV positivity was significantly more common in
BD (68.6%, incidence rate ratio (IRR) 2.94, 95% confidence interval (CI) 1.78–4.85, p < 0.001)
and EAC (66.7%, IRR 2.87, 95% CI 1.69–4.86, p < 0.001) [133]. Based on the results of the
study, they conducted a further investigation on whether HPV-positive and HPV-negative
EAC demonstrate the distinct genomic difference. The HPV-positive cohort harbored
approximately 50% fewer non-silent somatic mutations compared to the virus-negative
patients with esophageal cancer (1.31 mutations/Mb vs. 2.56 mutations/Mb, p = 0.048).
Regarding the TP53 aberrations, in the HPV-positive EAC group, they were absent, whilst
50% of the HPV-negative patients with EAC tended to exhibit the TP53 mutations. The
results indicate different biological mechanisms of tumor formation regarding HPV-positive
and HPV-negative EAC [134]. In the study conducted by Agalliu et al., HPV16 and
other oral alpha, beta, and gamma HPVs are not associated with the risk of esophageal
cancer [135]. The relationship between ESCC and HPV still requires further validation,
although the strong association between EAC and high risk-HPVs has been proved. A meta-
analysis considering the relationship between HPV infection and overall esophageal cancer
survival has been conducted. It indicated that HPV infection may not be of prognostic
utility in the evaluation of factors contributing to esophageal cancer [136]. Esophageal
cancer treatment consists of two main parts—neoadjuvant concurrent chemoradiotherapy
(CCRT) and surgery [137]. Randomized trials have demonstrated a convincing survival
rate benefit through the use of neoadjuvant CCRT followed by a surgery for the patients
with locally advanced esophageal cancer [138]. Bognar et al. found an association between
the HPV infection and a poor response to oncological treatment, as well as a decreased
overall survival, proving to be a negative prognostic factor in patients with ESCC [139].
Therefore, so far, the relationship between the HPV infection and esophageal cancer cannot
be clearly established. Results of the research mentioned above show that there might be
a connection between HPV prevalence and EA occurrence; however, there seems to be a
lack of reliable data considering the HPV impact on ESCC. A further investigation needs to
be conducted.

6. HPV and Primary Liver Cancer

Primary liver cancer constitutes the 6th most prevalent cancer, as well as the 3rd
leading cause of cancer death worldwide in 2020, with approximately 906,000 new cases
and 830,000 deaths reported. Primary liver cancer includes hepatocellular carcinoma (HCC)
(reported as about 75–85% of the total number of cases) and intrahepatic cholangiocarci-
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noma (10–15%); other liver cancers constitute those of rare types [22,140]. Chronic infection
with hepatitis B virus (HBV) or hepatitis C virus (HCV), aflatoxin-contaminated foods,
and heavy alcohol intake are the main risk factors for HCC. Further, excess body weight
along with type 2 diabetes as components of the metabolic syndrome act as predisposing
factors to the metabolic-associated fatty liver disease (non-alcoholic fatty liver disease) and
progression to liver fibrosis, cirrhosis, and HCC [141–146].

Smoking is another predisposing factor for HCC [147]. The HPV impact on HCC
prevalence has not been researched thoroughly. In 1992, it was suggested that infection
with either HPV-16 or HPV-18 could act synergistically with HBV to promote HCC de-
velopment [148]. However, to the best of the authors’ knowledge, these results have not
been replicated anymore; thus, more studies are needed to provide further conclusions
regarding this matter. Ma et al. conducted research in which they proved that HPV 18
E6 and E7 genes can be successfully integrated into Hep G2 cells, ultimately observing a
low prevalence of HPV 16/18 in HCC samples [149]. The results of the study indicate that
oncogenic HPV might constitute a cofactor acting synergistically with HBV in the onset of
the HCC. HBV and HPV are DNA viruses that share a replication strategy, including the
reverse transcriptase along with a characteristic life cycle that involves the integration of
viral DNA into the host genome [150]. Both viruses integrate into the human telomerase
reverse transcriptase (hTERT) gene in non-random sites, which might contain the genes that
are altered by the viral integration event and might participate in further carcinogenesis.
In addition, the viral integration site into the hTERT is involved in the determination of
the tumor phenotype [151]. However, the risk of HPV as a causative agent of HCC needs
further studies and verification due to a number of limited reports.

7. HPV and Gastric Cancer

Gastric cancer (GC) is responsible for over one million new cases along with an
estimated number of 769,000 deaths in 2020 [22]. GC is a multifactorial disease. Several
risk factors have been noted to have a significant impact on GC carcinogenesis including
diet, smoking, family history, alcohol consumption, EBV, and H. pylori [152,153]. The World
Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) stated that
fruits and vegetables protect from GC development, whereas broiled, salt-preserved foods,
and smoked foods provoke GC progression [154]. Considering alcohol intake and smoking
influence on GC development, the data are consistent. Studies indicate that smokers
display around an 80% increase in the risk for GC development among the population of
nondrinkers. Further, individuals abusing alcohol (compared to light or moderate drinkers)
are found to be at higher risk of intestinal-type non-cardia GC; a positive association was
found for beer but not for wine or liquor [155,156]. It is well-established that H. pylori
has been classified as a class I carcinogen by the World Health Organization. It directly
inflames gastric mucosa and causes epigenetic effects on individual cells [157]. Except the
H. pylori infection, EBV constitutes the second most relevant viral factors associated with
the onset of GC. EBV-associated gastric carcinoma (EBVaGC) constitutes about 10% of all
gastric carcinomas. The recruitment of the EBV-infected B-lymphocytes in the vicinity of
gastric epithelia is primarily induced because the inflammation of the stomach will and
might eventually increase the frequency of EBV infection of the epithelia [158,159]; in the
case of the HPV relationship with gastric cancer, the data are contradictory. Similarly to
EBV infection, HPV stimulates the NFκB signaling pathway crucial for the proliferation
and survival of cancer cells [78]. It was also demonstrated that a promotion of EBV lytic
gene expression is facilitated by the interferon regulatory factor 8 (IRF8) in complex with
PU.1 [160]. Snietura et al. conducted research involving 84 surgically treated patients
with gastric adenocarcinoma from Central Europe regardless of the clinical stage of the
disease. All the individuals were considered negative for the highly oncogenic HPV
subtypes. Having in mind the above-mentioned results, a relationship between GC and
HPV infection seems doubtful considering the Central European population [161]. On the
other hand, studies from China indicated that HPV infections increased the risk of GC [162].
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A meta-analysis consisting of 1917 cases showed that HPV might be highly associated
with a pathogenesis of GC. The pooled HPV prevalence was 28.0% (95% CI: 23.2%, 32.7%)
among all the patients with GC. However, the HPV prevalence was significantly higher
in Chinese patients compared to those from non-Chinese regions (31% vs. 9%, I2 = 95.0%,
p < 0.001). HPV detection in the cells of GC precursor lesions (gastric dysplasia or adenoma)
constitutes the only possibility to confirm any relationships [163]. Based on the currently
available data, the relationship between HPV infection and GC is questionable, due to the
high possibility of heterogeneity bias. More studies with an improved methodology are
needed to confirm the association described above.

8. HPV and Colorectal Cancer

With respect to colorectal cancer (CRC), risk factors such as age over 50–60, genetic
syndromes, adenomatous polyps of the colon, inflammatory bowel disease, and hereditary
familial history of CRC were determined. It may also occur due to lifestyle and environ-
mental factors including quality of nutrition, obesity, smoking, alcohol abuse, and many
more [164,165]. However, a virologic component such as HPV should also be considered.
HPV is associated with the development of several types of carcinomas such as cervical
cancer, a subset of other anogenital cancers including vulvar, vaginal, and penile cancer,
and also head and neck tumors [166,167]. Additionally, many studies have underlined the
significance of HPV infection and CRC risk [168–171]. Among the more than 200 genotypes
of HPVs identified, HPV 16, 18, and 33 with their highest carcinogenic capacity are the
main HPV types found in colorectal cancer [172,173]. The meta-analysis of Baandrup et al.
included 2630 colorectal adenocarcinomas with an HPV prevalence of 11.2%. However, the
prevalence among studies ranged from 0% to 84% in the CRC and a significant geographical
variation was also discovered. The highest incidence of HPV in CRC was noted in studies
in South America, Asia, and the Middle East, while the lowest incidence was in North
America, Europe, and Australia [174]. A significant heterogeneity among studies was also
observed in Ibragimova’s meta-analysis [172]. Yet, the results of the studies investigating
the presence of HPV in premalignant adenomatous polyps remain contradictory. While
Cheng et al. confirmed the association between HPV and colorectal adenomas, no evidence
for this coincidence was found in the Burnett-Hartman study [175,176]. The potential
mechanism for HPV infection of the colorectum may consider ascending infection from
anogenital sites or through hematogenous or lymphogenic spread [174]. Chen et al. investi-
gated the expression of the E6 oncoprotein (an inactivator of p53) in HPV16 DNA-positive
tumors. The study showed that the E6 oncoprotein, which was involved in CRC develop-
ment, may downregulate p21 and Mdm2 transcription via inactivation of p53. In addition,
it was indicated that the E6 oncoprotein was expressed in both tumor-infiltrating lympho-
cytes and endothelial cells of HPV16 DNA-positive colorectal tumors. This phenomenon
supported the idea that the transmission of HPV to the colon might occur through periph-
eral blood lymphocytes [170]. It was also suggested that regarding the CRC development, a
relationship between the HPV infection and new molecular biological markers of genomic
instability (primarily microsatellite instability and the CpG island methylation phenotype)
should be investigated [177].

Currently used HPV vaccines tuned out to be effective in preventing intraepithelial
neoplasia of the cervix, vulva, vagina, and anus, which are related to HPV type 16 and 18 [19].
It was suggested that HPV vaccination not only prevents these cancers but also reduces the
development of other HPV-associated cancers including CRC [170]. Therefore, there is a
likelihood of a reduction in the incidence of colorectal cancer in vaccinated people [178].

9. HPV and Anal Cancer

Anal cancer is a rare malignancy that accounts for approximately 3% of all gastroin-
testinal cancers. According to current data, it is estimated that in 2020, 50,865 new cases
and 19,293 deaths occurred worldwide [22]. Despite these relatively minor rates, the proper
management and treatment of anal cancer are crucial as there has been an increase in the
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incidence over the past several decades [179,180]. Studies report that women and patients
with lower socioeconomic status are more likely to present more advanced stages and more
likely to die [181].

There is a close relationship between the development of anal cancer and HPV infec-
tion. Statistics show that 91% of all anal cancers are associated with this pathogen and
79% are caused only by the HPV-16 and HPV-18 subtype [182]. Subtypes HPV-39, 56, 59,
66, and 68 are considered as low-risk neoplasms. They occur in people with condylomata
acuminates. However, their presence carries an increased risk of acquiring anal cancer as
they are more likely to acquire high-risk HPV subtypes such as 16, 18, 31, 33, and 45 [183].

The virus penetrates the transformation zone located in the rectal columnar mucosa,
distal to the dentate line, and escalates proximally from the squamocolumnar junction [184].
The initiation of the oncogenesis process is due to E6 and E7 proteins produced by the virus.
These components inactivate the function of two tumor suppressors, p53 and retinoblas-
toma protein (pRb). As a result, repair mechanisms are stopped and the dysregulated cell
cycle promotes tumor progression [37,170].

There are several risk factors for anal cancer such as older age, smoking, or immuno-
suppression. However, the greatest risk is seen in individuals who have multiple sexual
partners and practice promiscuous sexual behaviors [185].

10. HPV Vaccination

Globally, 5% of all human cancers are attributable to HPV, including cervical, other
anogenital, as well as head and neck cancers. Together, they pose a serious problem of
630,000 new cancer cases per year worldwide [186]. HPVs are DNA tumor viruses with
more than 200 genotypes described. They are categorized into two groups—‘high-risk’ or
‘low-risk’ HPV types [187]. HPV-16 and -18, which belong to the first group, are the most
prevalent types associated with cervical cancer but also with abovementioned colorectal
and anal cancers [98,172,182].

As it comes to pathogenesis, HPV infects the basal epithelial cells, which may occur
in microlesions of the skin or mucosa. The entry of the virus and its genome into the
nucleus of the infected cell is possible due to the attachment of L1 and L2 capsid proteins
to epithelial cell receptors [2]. The integration of HPV DNA into the host cell genome is
a key event in carcinogenesis. Proteins that are first expressed may regulate the host cell
life cycle and genome replication, leading to oncogenes amplification and the disruption
of tumor suppressor genes [188]. E6 and E7, which are specific viral oncoproteins, play
the main role by interfering with two essential tumor suppressor genes: host apoptosis
regulator protein p53 and pRb. As a result, the cell cycle regulation is disrupted and the
host cell life is prolonged, leading to genomic instability and ultimately to cancer [189].

Fortunately, HPV prophylactic vaccines, which are based on recombinantly expressed
virus-like particles (VLPs), were found to be effective at preventing infection and neoplastic
disease [188]. According to Castle et al., the inactive HPV L1 VLPs produce neutralizing
antibodies against targeted HPV types and elicit a strong humoral immune response at
the same time. As an effect, the entrance of viral particles into host cells is blocked by
the binding antibodies. Additionally, the immune response invoked by HPV VLPs was
stronger than the one induced by natural infection [190]. Although these vaccines block
initial infection by certain HPV types, they are not effective at eliminating pre-existing
infections. This is because L1 capsid proteins, which are the target antigens, are not
expressed in the infected basal epithelial cells [191]. Interestingly, immunization at younger
age resulted in higher antibody titers than at older age [190].

HPV vaccines development started at the beginning of the early 1990s. Currently, there
are three available HPV vaccines including bivalent Cervarix, quadrivalent Gardasil, and
nonavalent Gardasil9. Cervarix protects against two high-risk types, HPV 16 and 18, while
Gardasil is also directed against two low-risk types, HPV 6 and 11. Gardasil9 targets the
four HPV types (6, 11, 16, 18) that are in the quadrivalent HPV vaccine and five additional
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oncogenic types including type 31, 33, 45, 52, and 58 [192]. Additionally, HPV vaccination
is recommended due to its proven effectiveness, cost-effectiveness, and safety profile [193].

11. Conclusions

Persistent HPV infection targets immune signaling as well as tumor suppression
pathways, eventually leading to the induction of oncogenic promotion in the form of
tumors primarily located within the cervix, vulva, head and neck, and anus. Although HPV
infection is mostly recognized as being associated with gynecologic tumors, the increasing
amount of research also suggests its association with GI cancers; amongst these, most of
the data concern anal cancer, indicating a clear relationship between HPV infection and the
possible induction and progression of anal cancerous lesions. HPV infection is most likely
to facilitate the worsening of the course of other concomitant infections (either bacterial
or viral) that, together with other coexisting infections by highly oncogenic bacteria and
viruses, might include precancerous alterations, ultimately leading to cancer. The aspect of
concomitant viral and bacterial diseases that are potentially oncogenic is crucial regarding
the discussion about the potential oncogenic effects of HPV infection and its association
with GI cancers. Based on the current state of knowledge, the relationship between HPV
infection and the onset of esophageal, liver, colorectal, and gastric cancer cannot be clearly
established, due to many contradictory research data. What should further be evaluated as
well is the association between HPV vaccination and the risk of GI cancers as, except for
gynecological cancers, it was suggested that the HPV vaccine might also minimize the risk
of CRC. Nevertheless, much research suggests strong evidence for a potential association
between HPV infection and either the induction or progression of GI cancers, which should
be further evaluated via more research with improved methodological tools and on the
greatest number of patients as possible.
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ESCC esophageal squamous cell carcinoma
GC gastric cancer
GIT gastrointestinal tract
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HPV Human Papilloma Virus
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