Skip to main content
. 2022 May 24;14(11):2590. doi: 10.3390/cancers14112590

Table 2.

Characteristics of the artificial intelligence models in endometrial, gastric, and ovarian cancers.

Organ
/Cancers
Author Year Country AI-Based Model Data Set/WSIs/No. of Patients (n) Pixel Level Additional Methodology for Validating MSI Performance Metrics External Validation Dataset/WSIs/No. of Patients (n) External Validation Result Ref.
Endometrial cancer Zhang 2018 USA Inception-V3 TCGA-UCEC and CRC/1141/NC 1000 × 1000 NC ACC: 84.2% NS NS [51]
Kather 2019 Germany ResNet18 TCGA-FFPE/NC/492 NC PCR AUC: 0.75 NS NS [29]
Wang 2020 China ResNet18 TCGA/NC/516 512 × 512 NC AUC: 0.73 NS NS [59]
Hong 2021 USA InceptionResNetVI TCGA, CPTAC/496/456 299 × 299 PCR/NGS AUC: 0.82 NYU-H/137/41 AUC: 0.66 [57]
Gastric cancer Kather 2019 Germany ResNet18 TCGA-FFPE/NC/315 NC PCR AUC: 0.81 KCCH-FFPE-Japan/NC/185 AUC: 0.69 [29]
Zhu 2020 China ResNet18 TCGA-FFPE/285/NC NC NC AUC: 0.80 NS NS [55]
Schmauch 2020 USA ResNet50 TCGA/323/NC 224 × 224 PCR AUC: 0.76 NS NS [54]
Ovarian cancer Zeng 2021 China Random forest TCGA/NC/229 1000 × 1000 NC AUC: 0.91 NS NS [58]

Abbreviations: AI, artificial intelligence; DL, Deep learning; WSIs, whole slide images; TCGA, The Cancer Genome Atlas; CPTAC, Clinical Proteomic Tumor Analysis Consortium; CRC, Colorectal Cancer; UCEC, Uterine Corpus Endometrial Carcinoma; NYU-H, New York University-Hospital; KCCH-Japan, Kanagawa Cancer Centre Hospital-Japan; ACC, accuracy; AUC, area under the ROC curve; NC, not clear; NS, not specified.