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Abstract

Purpose of the review: Human Immunodeficiency Virus (HIV)-associated neurocognitive 

disorders (HAND) continues to be prevalent in people living with HIV despite antiretroviral 

therapy. However, understanding disease mechanisms and identifying therapeutic avenues has 

been challenging. One of the challenges is that HAND is a heterogeneous disease and that patients 

identified with similar impairments phenotypically may have very different underlying disease 

processes. As the NeuroAIDS field is re-evaluating the approaches used to identify patients with 

HIV-associated neurological impairments we propose the subtyping of patients into biotypes based 

on viral and immune pathogenesis.

Recent findings: Here we review the evidence supporting subtyping patients with HIV-

associated neurological complications into four biotypes: (1) Macrophage-mediated HIV 

encephalitis, (2) CNS viral escape, (3), T cell-mediated HIV encephalitis, and (4) HIV protein-

associated encephalopathy.

Summary: Subtyping patients into subgroups based on biotypes has emerged as a useful 

approach for studying heterogeneous diseases. Understanding biotypes of HIV-associated 

neurocognitive impairments may therefore enable better understanding of disease mechanisms, 

allow for the development of prognostic and diagnostic markers, and could ultimately guide 

therapeutic decisions.
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Introduction

Subtyping patients into groups based on biological disease features, or biotypes, has 

emerged as a useful approach for studying heterogeneous diseases. Biotypes based on 

immune specificities have long been established in rheumatic diseases and are reliable 

predictors of prognosis and treatment response [1, 2]. Biotypes are also being applied to 
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neurologic diseases including cancer related cognitive impairment [3] and autism spectrum 

disorder, where outcomes are improved when biotype-specific therapies are implemented 

[4]. Further, biotypes identified by imaging studies in depression were shown to predict 

response to treatment [5]. Understanding biotypes of neurocognitive impairments may 

therefore enable better disease trajectory prediction and could ultimately guide therapeutic 

decisions.

Human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND), 

is a heterogeneous disease which occurs in a subset of people living with HIV, 

even those well controlled on antiretroviral therapy (ART) [6]. Patients with HAND 

have neurocognitive and motor function deficits which are classified as Asymptomatic 

Neurocognitive Impairment (ANI), HIV-associated Mild Neurocognitive Disorder (MND), 

and HIV-Associated Dementia (HAD) [7]. These impairments represent a major quality 

of life issue for patients, however understanding disease mechanisms and identifying 

therapeutic avenues has been challenging. One reason for this is that the defined phenotypes 

(ANI, MND, and HAD) are themselves heterogeneous. The bulk of patients with HAND 

have ANI may be functionally cognitively normal. The large number of patients categorized 

as having ANI is likely due to outdated criteria resulting in an over-estimation of the true 

burden of neurocognitive deficits in people living with HIV [8**, 9*]. Including patients 

with ANI within the umbrella of HAND may therefore mask important biological findings 

as these patients may not be impaired. Further, patients classified as having MND or 

HAD have very different diseases, disease trajectory, and disease manifestations and can 

be subtyped into profiles based on types of deficits [10-14]. Therefore, defining disease 

mechanisms within MND or HAD may be obscured by disease heterogeneity. This is 

further complicated by the fact that not all patients are treated with antiretroviral drugs and 

when treatment is initiated, it may be at different stages of the illness which would further 

contribute to the heterogeneity of the disease. The choice of antiretroviral drugs and their 

variable penetration into the brain can further impact the neuropathogenesis of the infection. 

As in other diseases, clarity may be found by further sub-setting patients into biotypes.

Biotypes of HIV-Associated Cognitive Impairments

Although multiple approaches to subtyping patients with HAND are possible, including 

clinical assessment and presence of symptoms [8] or imaging findings [15], in this 

manuscript we focus on the biotypes of HIV-associated cognitive impairments based on viral 

and immune pathogenesis. Specifically, we propose four distinct biotypes of HAND that 

may have some overlap: (1) Macrophage-mediated HIV encephalitis, (2) CNS viral escape, 

(3) T cell-mediated HIV encephalitis, and (4) HIV protein-associated encephalopathy (Table 

1). Subtyping patients into these categories may facilitate a better understanding of disease 

mechanisms that underlie each phenotype, ultimately leading to interventions that target the 

virologic or immunologic process driving the neurologic damage and impairments.

Macrophage-mediated HIV encephalitis

In individuals who have not been treated with antiretroviral drugs, macrophage infiltration 

and the presence of multinucleated giant cells is considered the hallmark of HIV infection 
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in the brain [16]. These cells are predominantly in the perivascular region and some but 

not all are productively infected with HIV. In some individuals, perivascular astrocytes 

also contain the virus, however these cells have a restricted or latent viral infection [17]. 

There is also evidence of microglial cell activation, compromise of the blood brain barrier 

as indicated by leakage of serum proteins, and neuronal injury. Macrophage activation 

markers such CCL-2, tumor necrosis factor (TNF)-α, and neopterin can be detected in 

the cerebrospinal fluid, the dynamics of which change over the course of disease [18*]. 

MRI scans show atrophy of the brain with periventricular diffuse hyperintensities on T2 

weighted images or FLAIR sequences (Figure 1 and reviewed in [19, 20]). These individuals 

often have severe cognitive impairment and bradykinesia or Parkinsonism and present with 

a subcortical dementia. They are usually severely immunosuppressed (CD4 cell counts 

<200 cells/mm3) with high viral loads. If they remain untreated, they may die within a 

few months from the onset of the dementing illness. This syndrome develops in nearly 

20-30% of untreated immunosuppressed individuals. It has been termed HIV encephalitis, 

AIDS dementia complex or HIV-associated dementia (HAD) in the literature [16, 21]. 

However, we propose that the term, macrophage-mediated viral encephalitis may be more 

appropriate to distinguish it from other forms of encephalitis seen in individuals treated with 

antiretroviral drugs.

CNS viral escape

CNS viral escape is characterized by high viral load in the CNS despite low serum 

viral loads and has been defined as asymptomatic, secondary, and symptomatic [22]. 

Asymptomatic viral escape has no evidence of brain injury or inflammation and may be 

a transitory finding [22, 23]. Both secondary and symptomatic viral escape phenotypes are 

associated with CSF pleocytosis [22] although etiology of the inflammation may be driven 

by different processes. Secondary CSF escape occurs during a CNS co-infection, such as 

syphilis or herpes viruses which may result in increased trafficking of CD4+ T cells into 

the CNS, some of which may be latently infected with HIV [22, 24]. The inflammation 

associated with symptomatic viral escape likely occurs due to the presence of HIV itself [22, 

25-27]. CSF viral escape is an important contributor to the development of HIV-associated 

CD8+ T cell encephalitis, accounting for 68% of patients in a recently examined cohort 

[28**], suggesting that this process is mediated by immune responses directed towards HIV. 

Elevated WBC counts in the CSF may even predict viral escape and cognitive decline [22].

HIV viral escape in symptomatic patients can occur due to low penetration of ART into 

the CNS, poor adherence or compliance to ART, or mutations that confer resistance [22, 

25]. Drug resistant mutations may arise more frequently in the CNS as there might be 

enhanced viral replication in this compartment. Recent studies documented elevated levels 

of soluble CD30, a marker of ongoing HIV-1 transcriptional activity, in the CSF despite 

ART [29*]. This contrasts sharply with ART induced decreases in soluble CD30 in the 

serum, suggesting that there may be ongoing viral replication in the CNS compartment 

despite ART. Which cells produce the virus detected in the CSF is an area of ongoing 

investigation. HIV establishes CNS infection early in disease [30] and has been documented 

primarily in microglia [31, 32], but also in astrocytes [17]. Some emerging evidence 

suggests that virus detected in the CSF during viral escape contains CD26, a marker 
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expressed on activated T cells, and therefore may be from CD4+ T cells [33*]. However, 

it is unknown if the T cells are trafficking in from the periphery or are brain-resident. 

Further, CD26 is expressed in regions of the human CNS with high levels in the meningeal 

endothelial cells [34] and is present in neurons and activated glia in rodent models [35].

Patients with symptomatic viral escape have a wide spectrum of symptoms including 

headache, tremors, cognitive impairment, confusion, focal neurologic deficits, and seizures 

[25, 36, 37]. These symptoms most often occur months to years after being stable on ART 

[22, 25]. Brain atrophy in viral escape is rare and neuroimaging in patients most commonly 

demonstrate white matter hyperintensities (Figure 1) with deep brain nuclei involvement and 

enhancement in some patients [22, 25]. Patients with symptomatic viral escape benefit from 

changes to ART regimens that provide better CNS penetration or to compensate for viral 

mutations [22, 25, 38]. Although similar clinical manifestations can occur in patients with 

secondary viral escape, these patients may benefit from therapies targeting the co-infection 

or steroids that help to control inflammation [39].

T cell mediated HIV encephalitis

T cell mediated HIV encephalitis is characterized by a CD4+ or CD8+ immune infiltrate 

that can be perivascular and diffuse into the parenchyma [40, 41]. This biotype encompasses 

both immune reconstitution inflammatory syndrome (IRIS), which can be driven by CD4+ 

or CD8+ T cells, and CD8+ T cell encephalitis. Patients with T cell mediated HIV 

encephalitis present with a wide range of clinical symptoms and signs including headache, 

confusion, cognitive impairment, and seizures [42]. This clinical syndrome overlaps with 

symptomatic viral escape described above. Neuroimaging can show diffuse white matter 

hyperintensities with mild edema (Figure 1 and reviewed in [43]). IRIS specifically occurs 

after ART initiation (reviewed in [44-46]) whereas HIV associated CD8 encephalitis can 

occur at any time and has been observed in patients who are well controlled on ART, 

treatment naïve, or as an IRIS event [28, 47, 48].

Risk factors for this biotype include low CD4+ T cell nadir (<100 cells/μL), the presence of 

opportunistic infections, and a rapid immune restoration after initiation of ART [45, 46]. The 

immune pathogenesis of this biotype is underscored by the increased risk of development 

of IRIS in patients treated with integrase inhibitors, which cause a rapid decline in viral 

loads [49-51]. This viral load decrease is accompanied by a sustained, hyperactive, and 

dysregulated immune response most often directed at opportunistic pathogens, residual 

HIV, or less frequently to self-antigens [52-56]. Metabolic alterations, including increased 

glycolysis and altered amino acid and lipid metabolism, which are correlated with immune 

activation, have been noted in patients that develop IRIS prior to the initiation of ART 

and during the IRIS event [57, 58]. Overactivation of both the innate and adaptive immune 

responses have been noted with particular activation of monocytes [59] and antigen specific 

CD4+ T-cells [52, 53, 60, 61] which results in an over production of proinflammatory 

cytokines and chemokines, further driving inflammation.

In patients with opportunistic infections, antigen specific T cells can infiltrate the CNS 

[54]. In contrast, little is known about the antigen specificity of the T cells that infiltrate 

the brain in the absence of an opportunistic infection. In four patients where T cell 
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receptor sequencing from the CNS was performed there was no evidence of a dominant 

clone [28]. Even in the absence of HIV CSF escape it may be that there is an influx of 

HIV-specific CD8+ T cells, as well as non-specific T cells, into the CNS as has been 

reported in acute infections [62] and IRIS [53]. Although not specifically examined in the 

context of T cell mediated viral encephalitis, brain resident T cells may also influence the 

disease process. In murine models, brain resident viral specific T cells have been shown 

to induce reactive gliosis during antigen restimulation [63*] and a recent cohort study of 

neuropathological findings in patients with HIV-associated CD8 encephalitis revealed that in 

addition to T-cell infiltration microglial activation is a common feature of this disease [28]. 

Microglial activation, in turn, can recruit additional T cells into the brain, driving widespread 

inflammation.

Importantly, patients with this biotype may benefit from immune modulatory therapies. 

While the immune response is important for containing the HIV or underlying opportunistic 

infections, the immune response during T cell encephalitis contributes to CNS damage 

and therefore dampening the response with corticosteroids can significantly reduce the 

incidence of death [28]. Other immune modulatory therapies, such as the use of maraviroc, 

a CCR5 inhibitor, have been suggested to have clinical utility. However, in a small study, 

IRIS associated with PML was not prevented nor was disease course influenced by CCR5 

inhibition when compared to patients who received corticosteroids only [64].

HIV protein associated encephalopathy

HIV can also induce CNS damage through the production and release of toxic proteins 

and by driving proteinopathy processes. Once integrated, current ART does not impair 

translation of viral proteins, therefore proteins such as Tat, Nef, gp120, Vpr, and Gag, 

which modify CNS cell viability and functioning, are still produced, even from defective 

proviruses [56, 65, 66*]. Patients with viral protein associated encephalopathy are typically 

well controlled on ART with no detectable virus in the blood or CSF, but HIV proteins 

such as Tat can be detected in the CSF and the presence of this protein is associated with 

cognitive impairments [56, 65]. The production of viral proteins in the brain can directly and 

indirectly damage the CNS by several mechanisms including inducing apoptosis, causing 

synaptic loss, impairing metabolic pathways, driving inflammation, and inducing oxidative 

stress (Figure 2) [56, 67-73]. Further, the production of viral proteins in the periphery can 

result in endothelial dysfunction which contributes to the development of cardiovascular 

disease (reviewed in [74]) that can result in ischemic stress in the CNS.

In addition to inflammation and direct neurotoxicity, viral proteins can also induce 

proteinopathy. Amyloid beta (Aβ) [75, 76] and Tau [77, 78] deposits are present in the 

brains from patients with HIV and deposition of Aβ is correlated with HIV disease duration 

and not age [79], suggesting the virus contributes to the deposition of this protein. Viral 

proteins induce the production of Aβ and its secretion (Figure 2). Gag drives secretase-

dependent cleavage of amyloid precursor protein (APP) which amplifies the production of 

Aβ in microglia [80] and Tat drives the enhanced expression of β-site cleaving enzyme, 

APP, and Aβ in astrocytes [81]. Both Tat [82] and Nef [83] stimulate the secretion of Aβ 
from neurons. Tat also inhibits neprilysin and thus prevents the degradation of Aβ [84, 85]. 

Johnson and Nath Page 5

Curr Opin Infect Dis. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tat may also stimulate the phosphorylation of Tau into its pathogenic isoforms [77]. Further, 

viral proteins can increase the toxicity of protein aggregates. For example, Tat can complex 

with Aβ forming multifibrillar structures which have increased toxicity as compared to Aβ 
alone [71]. Understanding the contribution and mechanisms behind proteinopathies driven 

by viral proteins is critical for therapeutic development. For example, in in vitro models, 

Aβ deposition and neurotoxicity induced by Gag could be prevented with gamma-secretase 

inhibitors [80]. Additionally, as the production of viral proteins from integrated virus is 

not targeted by ART, the development of adjunctive therapies inhibiting the expression or 

biological function of these proteins is needed.

Conclusion

Despite rigorous efforts and extensive research, little progress has been made in our 

ability to predict, prevent, or treat HIV-associated neurocognitive impairments except for 

optimization of ART. One large barrier to these advancements is that despite similar clinical 

phenotypes, patients with HAND may have highly divergent disease processes. In this 

review we suggest that classifying patients based on viral and immune pathogenesis may 

clarify important disease mechanisms and elucidate pathways for therapeutic targeting. 

It also helps identify some clinical phenotypes that are based on distinct underlying 

pathophysiological processes. Further deep phenotyping of these biotypes is necessary to 

understand the underlying mechanisms and clinical manifestations. This could provide clues 

for the proper diagnosis and treatment of these conditions.
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Key points

• HIV-associated neurocognitive disorders is a heterogenous disease

• Biotypes of HIV-associated neurocognitive impairments based on 

pathogenesis may elucidate key disease mechanisms

• There are four distinct pathological biotypes driven in part by the choice, 

timing of initiation, and duration of treatment with antiretroviral drugs

• Each of these biotypes have overlapping yet distinct clinical and neuro-

radiological features, prognostic features and require unique modes of 

intervention
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Figure 1. 
Magnetic resonance imaging of brain showing distinct biotypes of HAND: (A) 

Periventricular high signal intensities in the white matter that spares the U fibers and 

the juxta cortical fibers. The ventricles are enlarged. This is representative of a patient 

with HIV associated dementia which would correspond to macrophage-mediated HIV 

encephalitis. (B) Periventricular high signal intensities that extend to the juxta cortical 

fibers (arrows) and the cortex (arrowhead). This represents a patient with HIV associated 

immune reconstitution inflammatory syndrome which corresponds to a T cell mediated 

HIV-encephalitis. (C) Diffuse cortical atrophy with preservation of the subcortical structures 

which was progressive over several years. This represents a patient well controlled on 

long-term antiretroviral therapy and corresponds to HIV-protein associated encephalopathy. 

(D) Patient with HIV infection and progressive multifocal leukoencephalopathy. (Di) Focal 

areas of high signal intensity lesions that extend to the U fibers and juxta cortical regions. 

(Dii) enhancement with gadolinium in the center of the lesion which corresponds to T cell 

encephalitis in the setting of an opportunistic infection.
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Figure 2. Viral protein mediated neurotoxicity and proteinopathy.
Once integrated, provirus from microglia and astrocytes continue to produce viral proteins, 

some of which are secreted into the extracellular environment or released in exosomes. 

These proteins can cause neurotoxicity by direct and indirect mechanisms. Extensive 

investigations have found numerous mechanisms by which viral proteins indirectly 

damage the CNS (summarized in the main panel) and broadly include excitotoxicity, 

metabolic alterations, proinflammatory processes, and blood brain barrier impairments. 

Direct neuronal toxicity has been demonstrated for both Tat and gp120 (top inset). These 

proteins can induce neuronal apoptosis by engaging with the NMDA receptor and allowing 

for calcium flux into the cell leading to apoptosis. Additionally, gp120 can bind to CXCR4 

and CCR5 resulting in activation of p38 mitogen-activated protein kinase (MAPK) resulting 

in apoptosis.

Viral proteins can also drive proteinopathies including amyloid-beta (Aβ) accumulation. 

Aβ can be produced from microglia, astrocytes, and neurons and viral proteins increase 

the synthesis and secretion of Aβ from all these cell types. In neurons, both Tat and Nef 

stimulate the secretion of Aβ (main figure). In microglia, Gag increases APP cleavage by 

γ-secretase resulting in an increase in secretion of Aβ from microglia (middle inset). Tat 

drives the expression of APP and beta-secretase 1 (BACE1) in astrocytes which results in 

increased release of Aβ from these cells (bottom inset). The released Aβ from all these 
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cell types can form protein aggregates that are stabilized in a complex with Tat and exert 

enhanced neurotoxicity as compared to Aβ alone (main panel).
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Table 1.

Key immune, viral, and pathology features of proposed biotypes of HIV-associated neurologic impairments.

Biotype Macrophage-
mediated HIV
encephalitis

CNS viral escape T cell-mediated
HIV encephalitis

HIV protein-
associated
encephalopathy

Clinical 
features

Subacute subcortical 
dementia

Headache, tremors, 
cognitive impairment, 
confusion, focal 
neurologic deficits, and 
seizures

Diverse symptoms. Can 
include sensory and visual 
changes, headache, confusion, 
cognitive impairment, seizures 
and coma

Slowly progressive 
cognitive and psychomotor 
impairments

ART status Untreated. Treated. Associated with 
low CNS drug penetration, 
poor drug compliance, 
and drug resistant viral 
mutations

Treated. Treated.

Immune profile CD4 T cells <200/mm3; 
elevated markers of 
macrophage activation in 
CSF

Asymptomatic: none; 
secondary and 
symptomatic: lymphocytic 
pleocytosis

Low CD4+ T cell nadir 
(<100 cells/μL) prior to ART, 
rapid immune restoration after 
initiation of ART; Lymphocytic 
pleocytosis(CD4+ or CD8+); 
microglial activation

Neuroinflammation, 
lymphocytic infiltration is 
possible. Microglial and 
astrocyte activation.

Viral profile Viral load elevated in 
blood and CSF

Viral load elevated in CSF; 
ART resistant mutations

Often associated with 
opportunistic infections; HIV 
can be present in CSF or brain

Undetectable viral loads, 
but viral proteins (Tat, 
Nef, gp120, Vpr, and Gag) 
detectable in CSF

Pathology Macrophage infiltration; 
multinucleated giant 
cells infected with 
HIV; astrocyte infection, 
neurodegeneration

Lymphocytic infiltrate into 
the CNS.

CD4+ or CD8+ immune 
infiltrate that can be both 
perivascular and diffuse into 
the parenchyma

Neuronal loss, Aβ and Tau 
deposits

Neuroimaging Diffuse periventricular 
hyperintensities in white 
matter

White matter 
hyperintensities with deep 
brain nuclei involvement 
and enhancement

diffuse white matter 
hyperintensities with mild 
edema

Brain atrophy

Treatment ART with CNS 
penetration

Changes to ART to 
enhance CNS penetration 
or overcome viral 
mutations. Treatment of 
secondary infection.

Treatment of opportunistic 
infection and corticosteroids.

None currently available.

Aβ - Amyloid beta, ART – Antiretroviral therapy, CSF - Cerebrospinal fluid, CNS – Central nervous system
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