
Citation: Mohammed, M.; Munir, M.;

Aljabr, A. Prediction of Date Fruit

Quality Attributes during Cold

Storage Based on Their Electrical

Properties Using Artificial Neural

Networks Models. Foods 2022, 11,

1666. https://doi.org/10.3390/

foods11111666

Academic Editor:

Juan Luis Valenzuela

Received: 4 May 2022

Accepted: 2 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Prediction of Date Fruit Quality Attributes during Cold Storage
Based on Their Electrical Properties Using Artificial Neural
Networks Models
Maged Mohammed 1,2,* , Muhammad Munir 1 and Aljazi Aljabr 3

1 Date Palm Research Center of Excellence, King Faisal University, Al Hofuf 36362, Saudi Arabia;
mmunir@kfu.edu.sa

2 Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Menoufia University,
Shebin El Koum 32514, Egypt

3 Date Palm Research Center Al-Ahsa, Ministry of Environment, Water and Agriculture,
Al Mubarraz 36321, Saudi Arabia; jazi.jabr@gmail.com

* Correspondence: memohammed@kfu.edu.sa

Abstract: Evaluating and predicting date fruit quality during cold storage is critical for ensuring
a steady supply of high-quality fruits to meet market demands. The traditional destructive meth-
ods take time in the laboratory, and the results are based on one specific parameter being tested.
Modern modeling techniques, such as Machine Learning (ML) algorithms, offer unique benefits in
nondestructive methods for food safety detection and predicting quality attributes. In addition, the
electrical properties of agricultural products provide crucial information about the interior struc-
tures of biological tissues and their physicochemical status. Therefore, this study aimed to use an
alternative approach to predict physicochemical properties, i.e., the pH, total soluble solids (TSS),
water activity (aw), and moisture content (MC) of date fruits (Tamar), during cold storage based on
their electrical properties using Artificial Neural Networks (ANNs), which is the most popular ML
technique. Ten date fruit cultivars were studied to collect data for the targeted parameters at different
cold storage times (0, 2, 4, and 6 months) to train and test the ANNs models. The electrical properties
of the date fruits were measured using a high-precision LCR (inductance, capacitance, and resistance)
meter from 10 Hz to 100 kHz. The ANNs models were compared with a Multiple Linear Regression
(MLR) at all testing frequencies of the electrical properties. The MLR models were less accurate than
ANNs models in predicting fruit pH and had low performance and weak predictive ability for the
TSS, aw, and MC at all testing frequencies. The optimal ANNs prediction model consisted of the
input layer with 14 neurons, one hidden layer with 15 neurons, and the output layer with 4 neurons,
which was determined depending on the measurements of the electrical properties at a 10 kHz testing
frequency. This optimal ANNs model was able to predict the pH with R2 = 0.938 and RMSE = 0.121,
TSS with R2 = 0.954 and RMSE = 2.946, aw with R2 = 0.876 and RMSE = 0.020, and MC with R2 = 0.855
and RMSE = 0.803 b by using the measured electrical properties. The developed ANNs model is a
powerful tool for predicting fruit quality attributes after learning from the experimental measurement
parameters. It can be suggested to efficiently predict the pH, total soluble solids, water activity, and
moisture content of date fruits based on their electrical properties at 10 kHz.

Keywords: pH; water activity (aw); moisture content (MC); total soluble solids (TSS); Machine
Learning (ML); Artificial Neural Networks (ANNs); Multiple Linear Regression (MLR)

1. Introduction

Date palm (Phoenix dactylifera L.) is one of the oldest fruit trees that grow widely in the
Middle East and North Africa. Dates are a key source of income and a staple food for locals
in many regions where they are cultivated. They have also played an essential role in the
socioeconomic and environmental conditions of those countries [1]. The demand for dates
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has increased significantly in date-importing countries like India, Germany, the United
Kingdom, the USA, Netherlands, Canada, Spain, Italy, Belgium, and Switzerland. Given
the importance of the date palm trade on a local and global scale, ensuring a continuous
supply in the market is vital [2]. Therefore, it is imperative to preserve date fruits in cold
storage to maintain their supply chain. The fully ripe date palm fruits (Tamar) can be stored
at 0–5 ◦C for 6–12 months [3–6]. Stored date fruits (cv. Khalas) at freezing temperature
for up to 6 months reduced fruit weights, moisture content, pH, titratable acidity ratio,
and pectin, while their total soluble sugars and titratable acidity increased [7]. Date palm
cvs. Sukkary and Khalas had their fruit size, water activity, pH, and redness color reduced
after being stored at 5 ◦C for 12 months. However, fruit firmness and color (lightness and
yellowness) increased [8].

Food security necessitates the storage of fruits in suitable conditions. The primary
goals of fruit storage are to preserve fruits for consumption out of season, keep food in good
shape, slow down fruit decaying, ensure an even supply to the market, and acquire higher
pricing [9–11]. The flavor, color, texture, and nutrients of fruits are preserved when correctly
stored. The most critical factors that affect the longevity of fruits after harvesting and during
storage are temperature and relative humidity [12–14]. Optimal relative humidity helps
prevent weight loss, the spread of fungal diseases, and physiological disorders [5,15].
Lowering these factors to a suitable level is one approach to slow down the deterioration
of fruits and hence increase the fruit preservation time during storage [16,17]. Every fruit
has a ‘critical temperature’ below or above where unfavorable and irreversible chemical
reactions occur. Therefore, high but not saturated relative humidity is required for most
stored fruits [18–23].

Many studies on the quality assessment of agricultural products before and after
storage have been conducted. Fruits have substantially contributed to these studies due to
their widespread production and consumption [24]. Over the last few decades, several scien-
tists have established a variety of methodologies for evaluating the quality of agricultural
products other than analytical laboratory techniques [25,26]. The quality of consumable
products such as fruits and vegetables comprise multiple characteristics. Sensory properties
(appearance, texture, taste, and aroma), nutritional values, physicochemical and mechan-
ical properties, functional properties, and defects are all considered when determining
the quality of a product [27]. Nondestructive methods are widely used to measure fruit
and vegetable quality; it is precise and rapid, making them ideal for online applications.
All production and distribution chain activists, such as insurance companies, packaging,
and transportation businesses, wholesalers, and retailers, benefit from nondestructive
instrumental research in fruit firmness assessment. These studies can be used to assess fruit
quality, predict the best time for their harvest, classify them according to their quality de-
gree, and detect visible and internal fruit defects [26,28–32]. The measurement of electrical
properties of biological materials permitted the possibility of a solution to the challenge of
nondestructive fruit quality evaluation simply and quickly [33,34]. Changes in electrical
characteristics can infer interior quality changes indirectly [35]. Physical properties as indi-
cators for food quality can be used to determine food quality through electric conductivity
or resistivity measurements [33,36,37]. The electrical properties of fruits have also been
studied, such as the electrical impedance, resistance, and reactance [38–40].

In agricultural products, the electrical properties of cell tissues have been studied as in-
dicators for cell tissue integrity. The electrical characteristics of cell membranes are distinct,
and when the cell membrane is disrupted, these qualities decline [39,41]. The amount of
water in biological cells is critical for their structural and functional integrity [42]. Therefore,
structural changes in the cell membrane are supposed to cause a decrease in cell membrane
capacitance when fruit moisture is decreased [43]. Extracellular resistance has been found to
decrease as cell membrane integrity deteriorates during storage [44]. Electrical impedance
spectroscopy is used as a rapid indicator for the freshness of fruit [45]. The impedance and
capacitance of the cell membrane drop substantially as the electricity frequency rises [46].
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The acquisition of digital data of the physicochemical properties is essential, and real-
time quality monitoring is unattainable without it. The conventional procedures are time-
consuming and ineffective for this cutting-edge technology. Artificial intelligence models
are currently simple and have sparked interest in agriculture. Neurocomputing does not
require the formulation of rules or algorithms, which affects a software’s performance [47].
It is easy to collect data and monitor food quality with the Internet of Things (IoT) and
industrial automation applications [48]. Artificial neural networks (ANNs) modeling has
increased acceptance as an exciting approach for predicting and real-time monitoring of
stored food quality parameters [49]. These models are a set of computing algorithms that
can solve difficult problems or establish complex relationships between variables by simply
simulating human brain techniques. The ANNs are important because of their unique
information processing qualities, including nonlinearity, noise and fault tolerance, and
learning and generalization [50].

The application of ANNs in food technology has an inclusive scope. It can convert
electrophoretic focusing patterns and chromatographic and spectrum data into meaningful
information for predicting various food products’ functioning, physical, chemical, sensory,
and rheological properties [51]. The ANNs, unlike other modeling techniques such as
multilinear regression (MLR), can predict various parameters using multiple variables.
Furthermore, these models differ from traditional modeling methods in that they can learn
about the operation being represented without knowing the input variables or output
parameters. Therefore, ANN applications are considered useful food quality and safety
tools, such as modeling microbial growth; interpreting spectroscopic data; and predicting
the food safety, physiochemical, sensory, and functional properties of food products during
processing, storing, and distribution. In addition, these models are innovative techniques
that offer a lot more potential for complicated modeling tasks in simulation and process
control for food safety and quality management [52].

This study aimed to develop and evaluate an Artificial Neural Networks (ANNs)
model to predict the most important physicochemical properties of date palm fruits, i.e.,
the pH, total soluble solids, moisture content, and water activity during cold storage based
on their electrical properties.

2. Materials and Methods
2.1. Sampling Material

Ten cultivars of high-quality date palm fruits at Tamar stages (brown color, full ripen-
ing) were selected, i.e., Ruziez, Khodry, Khalas, Sagai, Sukkari, Sullag, Medjool, Sheshi,
Ajwa, and Rushodiya. The date palm fruits were obtained from the orchard of Research and
Training Station, King Faisal University, Al-Ahsa, Saudi Arabia (Latitude: 25◦16′19.0344′′ N,
Longitude: 49◦42′25.8228′′ E) and from the Dates Packing Plant Al-Ahsa, Date Palm Re-
search Center Al-Ahsa, Ministry of Environment, Water, and Agriculture, Kingdom of
Saudi Arabia (Latitude: 25◦27′54.75′′ N, Longitude: 49◦33′49.51′′ E).

The obtained fruits were cleaned, air-dried, and then placed into aerated plastic
containers (65 cm × 14 cm × 21 cm) and left at room temperature (25 ◦C) for 24 h. Then,
they were transferred for storage in a cold storage room (48.8 m3 total capacity) with a
set-point temperature of 5 ◦C [5] at the Date Palm Research Center of Excellence, King
Faisal University, Saudi Arabia.

2.2. Physicochemical Properties Determination

The physicochemical properties, i.e., the pH, total soluble solids (TSS, Brix), moisture
content (MC, %), and water activity (aw) of the different cultivars of date palm fruit, were
measured at 0, 2, 4, and 6 months of cold storage. These quality parameters of date
palm cultivars were determined in laboratories at the Date Palm Research Center Al-
Ahsa, Ministry of Environment, Water, and Agriculture, Saudi Arabia. The measurements
were carried out on 20 samples from each date fruit cultivar (10 cultivars) at four cold
storage times (0, 2, 4, and 6 months). The total measured samples were 800 from all
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selected cultivars before and after the cold storage of date fruits. Therefore, 200 samples
were randomly selected for measuring at each target storage time. The physicochemical
properties, i.e., the pH, total soluble solids (TSS), water activity (aw), and moisture content
(MC) of the different cultivars of date palm fruit, were measured according to AOAC
analysis methods [53].

The pH of the date palm fruit was determined using a pH meter (Model HI-99121,
Hanna Instruments, Leighton Buzzard, Bedfordshire, UK). Next, the TSS of the date
palm fruits was determined using a digital refractometer (Model 614 RFM 840, Richmond
Scientific Ltd. Unit 9, Lancashire, UK). The TSS results were expressed as Brix at 25 ◦C.
Next, the aw of date fruits was determined using a portable water activity device (Model
Aqualab Series 3, Decagon Devices, Inc., Pullman, WA, USA). Finally, the MC of the fruit
was determined using a portable electronic moisture balance (Model MOC-120H, Shimadzu
Corporation, Kyoto, Japan.

2.3. Electrical Properties Determination

The electrical properties of the same fruits were nondestructively measured in intact
conditions at room temperature (25± 0.5 ◦C) before they were destructed for measuring the
physicochemical properties. These electrical properties of date palm cultivars were deter-
mined in the post-harvest laboratories of the Date Palm Research Center of Excellence, King
Faisal University, Al-Ahsa, Saudi Arabia. A high-precision LCR (inductance, capacitance,
and resistance) meter (Model Instek LCR-6100, 10 Hz–100 kHz, Good Will Instrument Co.,
Ltd., Tucheng Dist., New Taipei, Taiwan) was used to measure the electrical properties of
the same fruits selected to measure the physicochemical measurements (800 samples) at 10,
100, 1000, 10,000, and 100,000 Hz. The measured electrical properties were the capacitance
value at the series equivalent circuit model (Cs, nF), the equivalent series resistance (Rs,
kΩ), the dissipation factor (D), the capacitance value at the parallel equivalent circuit model
(Cp, nF), the equivalent parallel resistance (Rp, kΩ), the inductance value in the parallel
equivalent circuit model (Lp, H), the inductance value in the series equivalent circuit
model(Ls, H), the resistance (R, kΩ), the reactance (X, kΩ), the direct current resistance
(DCR, kΩ), the absolute value of the impedance (Z, kΩ), the phase radian (θ, rad), the
phase angle (θ◦, degree), and the quality factor (Q). The LCR meter calculates θ and Z
by measuring the electrical current flowing to the fruit being measured and the voltage
across the applied electrodes. It then calculated the measurement parameters, i.e., Cs,
Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, and Q values. The equations employed to calculate
these measurement parameters differ depending on whether the LCR meter operates in
a parallel equivalent circuit mode or series equivalent circuit mode. In the case of series
and parallel circuits, Figure 1 illustrates the measured electrical properties and equivalent
circuits. Figure 2 shows the components of the date fruits electrical parameters measuring
system. The system consists of a high precision LCR Meter, a plastic clamp with two copper
electrodes, Instek LCR-06, a test lead with an alligator clip connected with the LCR meter,
and a laptop. As the dielectric material, dates were placed between two conductive plate
electrodes made of copper. The parameter values of electricity are monitored within a
frequency range of 10 Hz to 100 kHz. The signal’s input voltage was 1 volt (RMS). Each
sample was measured three times and then the average was calculated. The measurements
of the electrical parameters were grouped based on the physicochemical properties of date
fruits to determine the correlation and regression model.
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Figure 2. Photographic view of the measurement system to determine the electrical properties of the
tested date fruits.

2.4. Structure of Artificial Neural Networks

In this study, ANNs have been used as an alternative approach to predict date fruit
quality attributes, i.e., the pH, TSS, aw, and MC, of date fruits during cold storage, which
are based on 14 electrical properties (i.e., Cs, Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, Z, θ, θ◦,
and Q). The block diagram of the applied ANNs prediction model is shown in Figure 3.
The input layer acquires data obtained from the electrical properties measurement system.
The hidden layer performs the data processing, and the output layer creates the continuous
predicted values of the target physicochemical property. The values acquired from the
input layer joined to a hidden node are multiplied by their weights, a set of predetermined
values, and the outcomes, which are added to create a new value. Finally, the created value
is passed as an argument to a mathematical function and an activation function to predict
the target property values.
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The sum of the weighted inputs entering a neural network node j and the output
activation function converts a neuron’s weighted value to its hyperbolic tangent (TanH)
output activation function, as shown in Figure 4. The summation and the activation
functions can be expressed by the following equations:

Xoj =
n

∑
i=1

XiWij (1)

Oj =
2

1 + e−2Xoj
− 1 (2)

where Xoj is the outcome of the sum, X is the input value with i as the number of the inputs,
W is the weight of the input weight, and Oj is the neuron output.
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The error function depends on the values of the weights, which need to be adjusted
to minimize this error. For example, for a training set (X1, t1), (X2, t2), . . . , (Xn, tn) that
consisted of k ordered pairs of n-inputs and m-outputs (the input and output patterns), the
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error for the neuron output and the error function of the minimizing network error can be
expressed by the following equations:

Ej =
1
2
(
Oj − tj

)2 (3)

Ej =
1
2

k

∑
j=1

(Oj − tj)
2 (4)

where Ej is the error, Oj is the output created by the input pattern from the training set, and
tj is the target value.

Bias, denoted by bj in Figure 4, has either an increasing effect or lowering of the net
input of the activation function. Increasing the learning rate of the ANNs model accelerates
the convergence around the optimal solution—then the convergence becomes impossible.
Once a set of acceptable weights has been determined, the ANNs model can use another
dataset with unknown output values to automatically predict the related outputs.

For conducting this study, the multilayer perceptron module of IBM SPSS Statistics 26
(IBM Corporation, Armonk, NY, USA) was used to develop ANNs models and evaluate
their accuracy. The multilayer perceptron module neural networks are trained with a
backpropagation learning algorithm that uses gradient descent to update the weights
toward minimizing the error function. The data were randomly set to 60% for training, 20%
for testing, and 20% for holdout subsets. The training dataset was used to determine the
weights and construct the model; the testing data was used to determine the errors and
stop overtraining in the training mode. Finally, the holdout data was used to validate the
prediction ANNs model.

2.5. Multilinear Regression

In this study, the multilinear regression (MLR) was used to develop a model for
predicting date fruit quality attributes, i.e., the pH, total soluble solids (TSS), water activity
(aw), and moisture content (MC), of the fruits during cold storage, which is based on
14 electrical properties (i.e., Cs, Rs, D, Cp, Rp, Lp, Ls, R, X, DCR, Z, θ, θ◦, and Q). The MLR
function is a linear equation that can be expressed in the following formula:

yi = B0 +
n

∑
i=1

Bixi (5)

y = B0 + B1x1 + B2x2 + . . . + Bnxn (6)

where yi is the dependent variable, i is the variable’s number (n), xi is the independent
variable, B0 is the constant of the y-intercept, and Bi is the constant of the slope coefficients
for each explanatory variable. The constant of the regression equations for the pH, TSS, aw,
and MC were determined using IBM SPSS Statistics 26 software.

2.6. Statistical Analysis and ANNs Evaluation

After measuring the physicochemical and electrical properties of different cultivars of
date fruits, the data were analyzed using IBM computer software SPSS Statistics, version 26.
A Tukey test was used at a 5% probability level to separate mean differences. The values of
the coefficient of determination (R2) and the root-mean-square error (RMSE) were used to
evaluate the performance of the prediction MLR and ANNs models at the various testing
frequencies. The criteria of R2 and RMSE can be expressed as follows:

R2 = 1− ∑
(
Mj − Tj

)2

∑ M2
j −

(∑ Mj)
2

n

(7)
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RMSE =

√
∑n

j
(
Mj − Tj

)2

n
(8)

where Mj and Tj are the measured and the predicted values, respectively, of data j, and n is
the number of the measurement.

3. Results and Discussion
3.1. Physicochemical Data

Fruit pH showed a statistically significant (p ≤ 0.05) difference among date palm
cultivars, and cv. Khalas had the highest fruit pH, followed by Sukkari, Sheshi, Khodry,
and Sullag (Table 1). Similarly, the TSS was maximum in cv. Khalas and minimum in cv.
Salag. The lowest moisture content was recorded in cvs. Rushodiya and Sukari, which were
statistically at par, whereas it was highest in cv. Sagai. The highest range of water activity
was determined in cvs. Rushodiya and Sagai, followed by Khadri, which significantly
decreased in cvs. Ruziez, Medjool, and Ajwa.

Table 1. Comparison of the mean values ± standard deviation of the pH, total soluble solids (TSS),
water activity (aw), and moisture content (MC) of the ten stored date fruits cultivars.

Date Fruit
Cultivars

Characteristics

pH TSS (Brix) MC (%) aw

Ruziez 5.61 ± 0.32 G 57.55 ± 13.73 B 18.34 ± 1.31 D 0.52 ± 0.12 F

Khodry 6.14 ± 0.09 D 56.07 ± 9.71 C 20.52 ± 0.91 B 0.61 ± 0.07 A

Khalas 6.56 ± 0.32 A 65.63 ± 6.56 A 19.03 ± 2.52 C 0.59 ± 0.08 B

Sagai 5.77 ± 0.18 F 44.42 ± 9.12 I 21.06 ± 0.95 A 0.62 ± 0.04 A

Sukkari 6.32 ± 0.23 B 51.28 ± 12.93 E 15.85 ± 1.47 G 0.56 ± 0.05 C

Sullag 6.05 ± 0.29 E 47.76 ± 14.12 F 18.59 ± 1.75 D 0.55 ± 0.09 CD

Medjool 5.81 ± 0.24 F 52.8 ± 11.71 D 18.57 ± 1.32 D 0.54 ± 0.06 E

Sheshi 6.23 ± 0.2 C 46.08 ± 3.82 H 17.74 ± 1.17 E 0.55 ± 0.09 CD

Ajwa 5.50 ± 0.18 H 46.64 ± 9.3 G 16.96 ± 1.3 F 0.54 ± 0.09 E

Rushodiya 5.28 ± 0.13 I 51.45 ± 8.98 E 15.72 ± 1.18 G 0.62 ± 0.08 A

The means (n = 80) within each column with the same letters are not significantly different at p ≤ 0.05.

Previous studies have demonstrated that various date cultivars have considerable
variations in fruit physicochemical attributes [23,54–56]. The pH variations can affect
the fruits’ flavor, aroma, texture, and shelf life due to organic acids, which change from
cultivar to cultivar. Since pH levels greater than 4.6 indicate low-acidic values, the current
investigation found that all date palm cultivars at the Tamar stage exhibited low-acidic
qualities. It has already been reported in a few other studies that the fruit pH decreases with
maturity stages, and it is lowest at the final stage of ripening [57–59]. In general, the increase
in the TSS value is related to the decrease in the moisture content of the fruit [60–62].

In this study, it was observed that each cultivar of the ten tested cultivars responded
individually. For example, the TSS value in cv. Khalas was 71% higher than the moisture
content, which means the higher TSS value of cv. Khalas might be due to the significant
decrease in moisture content from the fruit surface. The moisture content of date palm fruits
declines rapidly as they ripen. For example, the fruits of certain date palm cultivars that
were sold as fresh at the Rutab stage have a moisture content of less than 35%. It further
decreases to less than 24% when the fruit ripened at the Tamar stage and reaches 4–10% in
ripened dry date cultivars [63,64]. Similarly, date fruits with a moisture content < 40% and
a water activity < 0.90 are generally unsuitable for microbial growth [65].

Our results indicated 15.72–21.06% of the moisture content in the date palm cultivars
studies and are categorized as semi-dry cultivars. These findings coincide with those
previously reported, with a few variations due to the date palm cultivars and climatic
conditions [66–68]. Due to its importance as an index of date quality stability and microbial
spoilage, water activity must be considered in date fruit standards. A water activity of more
than 0.95 generally encourages the growth of microorganisms in fruits and vegetables [69].
Nadeem et al. [70] reported that many local and commercial date palm cultivars had a 0.32
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to 0.48 water activity. Aleid et al. [8] reported a non-significant difference in water activity
in date palm cultivars, i.e., Sukkary, Khalas, Sugai, and Anbara, ranging from 0.417 to 0.623.
They were studied on date palm cvs. Aseel, Dhakki, Karbalain, Muzawati, and Rabai,
Rashid et al. [71] determined the lowest water activity (0.680) in cv. Aseel and highest
(0.795) in cv. Rabai. They stated that the product deterioration risk is minimal in cv. Aseel
because of low water activity. In the present study, although the water activity in all date
palm cultivars is lower than 0.95, cys. Ruziez, Ajwa, Medjool, Sullag, Sheshi, and Sukkari
cultivars have minimal risk of microbial spoilage.

Fruit pH was significantly decreased when date palm fruits were stored for different
durations (Table 2). It was higher in unstored fruits (6.07), which decreased to 5.69 after
6 months of storage. Fruit TSS, moisture content, and water activity showed the opposite
trend to pH, as these attributes increased with the increase in storage duration. Unstored
fruits had a lower TSS (42.32 Brix), moisture content (17.05%), and water activity (0.49)
compared to fruits stored for 6 months, which had a higher TSS (64.11 Brix), moisture
content (19.49%), and water activity (0.64).

Table 2. Comparison of the mean values ± standard deviation of the pH, total soluble solids
(TSS), moisture content (MC), and water activity (aw) of the stored date fruits under different cold
storage times.

Characteristics
Storage Time (Months)

0 2 4 6

pH 6.07 ± 0.45 A 6.02 ± 0.42 B 5.91 ± 0.4 C 5.69 ± 0.41 D

TSS (Brix) 42.32 ± 7.01 D 46.44 ± 6.7 C 54.99 ± 9.29 B 64.11 ± 11.09 A

MC (%) 17.05 ± 1.95 D 17.68 ± 1.8 C 18.74 ± 2.01 B 19.49 ± 2.24 A

aw 0.49 ± 0.06 D 0.54 ± 0.05 C 0.61 ± 0.07 B 0.64 ± 0.07 A

The means (n = 800) within each column with the same letters are not significantly different at p ≤ 0.05.

Hazbavi et al. [72] mentioned that, after storing dates (cv. Stamaran) for six months
of storage, the pH was reduced by 5.4%. A 10.97% decrease in the pH of the date palm cv.
Tamar fruits of date palm (cv. Khalas) stored at −18 ◦C for 6 months had the lowest pH
compared to Khalal and Rutab fruits [7]. Aleid et al. [8] reported that fruit pH decreased
while TSS and moisture content increased when the date fruits (cv. Khalas) were stored at
5 ◦C for 12 months.

The findings of the present study showed a 6.26% reduction in the fruit pH after
6 months of storage. Microorganisms’ fermentative activity results in the production of
organic acids and a decrease in pH [73]. According to our study, the TSS of date palm fruits
stored for 6 months increased by 51.48%. Similarly, an increase in TSS was observed in
date palm cv. Barhi, which was stored for 70 days at 0 ◦C and 90–95% RH [60]. The TSS
increased in Tamar fruits of date palms (cv. Mazafati) stored for 180 days at 4 ◦C [19].
The enzymatic conversion of large polysaccharides into small sugars would be the main
reason for the increase in TSS [72]. Radi et al. [74] suggested that the increase in TSS of date
fruits during storage could be related to microbial and enzymatic activities degrading high
molecular weight compounds to low molecular weight ones.

Our study also showed that the moisture content and water activity of date palm
fruits were increased by about 14.31% and 30.61%, respectively, after 6 months of storage.
Mohammed et al. [14] recorded a 19.05% moisture content and 0.76 water activity in date
fruits (cv. Khalas) stored at 5 ◦C and 80% RH. Another study indicated that the moisture
content was not significantly increased in cvs. Majhoul and Boufeggous, whereas TSS
was increased in cv. Majhoul after 5 months of storage at 2–4 ◦C and 66–68.5% RH [75].
The evaporation of fruit water caused by the relatively high temperature and moderate RH
could explain the decrease in both moisture and water activity.
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3.2. Electrical Properties Data

The electrical properties of date palm fruits were determined at different frequencies
and were significant at p ≤ 0.05 (Table 3). The measured electrical properties, such as the
capacitance value (series equivalent circuit model), equivalent series resistance, dissipation
factor, capacitance value (parallel equivalent circuit model), equivalent parallel resistance,
resistance, and the absolute value of impedance, were very large at a low frequency (10 Hz).
However, the reactance, phase radian, and phase angle electrical properties were higher at
100 Hz. As a result, the inductance value (series equivalent circuit model) was a maximum
at 1000 Hz frequency, while the inductance value (parallel equivalent circuit model) was
measured as higher than 100,000 Hz. The statistical difference was non-significant regarding
the direct current resistance parameter; however, its value was linearly increased with the
increase in frequency.

Table 3. Comparison of the mean values± standard deviation of the electrical parameter of the stored
date fruits under various testing frequencies. Where Cs is capacitance value (series equivalent circuit
model), Rs is equivalent series resistance, D is dissipation factor, Cp is capacitance value (parallel
equivalent circuit model), Rp is equivalent parallel resistance, Lp is inductance value (parallel
equivalent circuit model), Ls is inductance value (series equivalent circuit model), R is resistance, X is
reactance, DCR is direct current resistance, Z is the absolute value of impedance, θ (rad) is phase
radian, θ◦ is phase angle, and Q is the quality factor.

Parameters
Frequency (Hz)

10 100 1000 10,000 100,000

Cs (nF) 1916.73 ± 1926.05 A 771.77 ± 1369.47 B 40.89 ± 55.76 C 2.3 ± 3.63 C 0.3 ± 0.3 C

Rs (kΩ) 687.33 ± 738.17 A 602.25 ± 610.49 B 542.33 ± 534.54 B 389.32 ± 339.27 C 91.1 ± 51.63 D

D 28.55 ± 16.79 A 20.19 ± 12.05 B 8.86 ± 3.95 C 3.28 ± 1.71 D 1.19 ± 0.87 E

Cp (nF) 136.15 ± 159.6 A 31.52 ± 66.83 B 2.97 ± 4.84 C 1.09 ± 1.85 C 0.7 ± 1.3 C

Rp (kΩ) 646.73 ± 686.5 A 606.4 ± 616.16 AB 552.71 ± 551.47 B 468.83 ± 456.8 C 308.34 ± 264.8 D

Lp (H) −1422.6 ± 1641 C −1261.5 ± 2214 C −725.71 ± 592.5 B −34.98 ± 51.45 A −29.31 ± 97.31 A

Ls (H) −464.63 ± 617.51 C −86.85 ± 123.01 B −11.67 ± 14.8 A −65.5 ± 209.08 B −12.77 ± 42.96 A

R (kΩ) 640.7 ± 677.13 A 605.6 ± 613.19 AB 547.58 ± 537.3 B 391.56 ± 339.1 C 94.59 ± 53.75 D

X (kΩ) −110.84 ± 330.09 B −65.09 ± 104.27 A −103.71 ± 137.53 B −163.82 ± 203.84 C −130.02 ± 103.78 B

DCR (kΩ) 681.48 ± 698.49 A 689.85 ± 709.44 A 705.66 ± 726.77 A 708.08 ± 728.74 A 713.14 ± 730.99 A

Z (kΩ) 642.84 ± 679.61 A 614.38 ± 619.67 AB 554.67 ± 547.39 B 454.89 ± 452.38 C 164.41 ± 111.08 D

θ (rad) −0.14 ± 0.12 B −0.11 ± 0.08 A −0.16 ± 0.07 B −0.41 ± 0.18 C −0.86 ± 0.26 D

θ◦ −8.17 ± 6.75 B −6.32 ± 4.48 A −9.06 ± 4.26 B −23.45 ± 10.27 C −48.74 ± 14.74 D

Q 0.16 ± 0.13 C 0.44 ± 1.11 B 0.17 ± 0.08 C 0.47 ± 0.25 B 1.27 ± 0.6 A

The means (n = 610 for Lp parameter at 10 Hz, N = 649 for Lp parameter at 100 Hz, n = 800 for Lp at 1000, 10,000,
and 100,000, n = 800 for other electrical parameters) within each column with the same letters are not significantly
different at p ≤ 0.05.

Due to the high electrical capacity of cell membranes, electrical current only flowed via
extracellular fluid, which has a relatively high resistance in the low-frequency area. How-
ever, the impedance drops significantly in the high-frequency range because the current
can travel through intracellular fluid, which has a low resistance. It can be seen that, as the
frequency increased, the impedance decreased dramatically. Dispersion is a phenomenon
in which the decrease in impedance is proportional to the increase in frequency [46]. As the
frequency increased, the capacitance of the cell membrane dropped. The amount of water
in biological cells is critical for their structural and functional integrity [42]. As a result,
it is supposed that when fruit moisture is reduced, structural changes in the cell mem-
brane cause a decrease in cell membrane capacitance [43]. The ion efflux across the fruit
membrane produced by osmotic changes in the extracellular fluid modified the electrical
properties of the cell membrane. Thus, alterations in cell membrane capacitance could have
been created by ion movement caused by plasmolysis when moisture is declined [34,43].
Heat injury to plant cells causes a reduction in the capacitance of the cell membrane [40].

At low temperatures, electrode polarization was shown to account for a higher fraction
of overall impedance in potatoes, but extracellular resistance and capacitances continued
to decline. It could be the electrolyte leakage to the extracellular space, presumably due to
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membrane injury [76]. Soltani et al. [77] applied a capacitance sensing system to predict
banana quality during ripening and found a good relationship between SSC and firmness
at a 1 MHz frequency. Similarly, the highest inductive value was observed at 34 MHz
frequency to determine the ripening time of oil palm fruit bunch [78]. The electrical
impedance values of various apple cultivars rapidly decreased, which is assumed to
correlate to dispersion induced by cell membrane capacitance [39,41]. Electrical current
flows through the extracellular fluid at low frequencies, thereby avoiding cell membranes.
At high frequencies, however, the cell membranes act as a conductor. The current flows
through the intracellular fluid, which contains more electrolytes; thus, the impedance at
low frequencies is higher [39,79].

Table 4 shows that the average values of important electrical properties of date
palm fruits were significantly (p ≤ 0.05) varied at different storage durations (0, 2, 4,
and 6 months). The fruits before storage showed higher values regarding series resistance,
dissipation factor, parallel resistance, resistance, direct current resistance, the absolute value
of impedance, phase radian, and phase angle. However, there was a non-significant differ-
ence in the phase radian and phase angle parameters between before storage and 2 months
of storage fruits. The maximum quality factor value was observed in fruits stored for
4 months, followed by 6 months of storage fruits and before storage fruits. The capacitance
value (series equivalent circuit model), capacitance value (parallel equivalent circuit model),
inductance value (parallel equivalent circuit model), inductance value (series equivalent
circuit model), and reactance were maximal after 6 months of cold storage fruits. However,
there was a non-significant difference in the capacitance value (series equivalent circuit
model) and capacitance value (parallel equivalent circuit model) parameters between 4 and
6 months of stored fruits.

Table 4. Comparison of the mean values ± standard deviation of the electrical parameter of the
stored date fruits under different cold storage times.

Parameters
Storage Time (Months)

0 2 4 6

Cs (nF) 287.35 ± 785.39 B 418.68 ± 927.34 B 682.6 ± 1459.09 A 796.96 ± 1709.89 A

Rs (kΩ) 725.08 ± 728.62 A 515.7 ± 525.32 B 400.64 ± 426.96 C 208.44 ± 321.16 D

D 17.46 ± 18.78 A 13.17 ± 13.66 B 11.49 ± 11.33 C 7.53 ± 8.55 D

Cp (nF) 20 ± 70.79 B 27.05 ± 61.87 B 42.39 ± 98.19 A 48.49 ± 125.91 A

Rp (kΩ) 809.45 ± 703.16 A 575.89 ± 507.79 B 447.81 ± 415.44 C 233.32 ± 324.18 D

Lp (H) −841.67 ± 1700 C −597.43 ± 1155.3 AB −642.08 ± 1219.2 B −508.65 ± 1213.8 A

Ls (H) −155.74 ± 231.36 B −127.86 ± 323.04 AB −127.79 ± 314.91 AB −101.73 ± 290.9 A

R (kΩ) 715.97 ± 702.6 A 508.86 ± 506.09 B 394.65 ± 410.81 C 204.6 ± 310.65 D

X (kΩ) −134.65 ± 174.08 B −112.78 ± 135.64 AB −115.95 ± 199.72 AB −95.41 ± 260.1 A

DCR (kΩ) 1059.65 ± 928.51 A 767.66 ± 672.26 B 619.92 ± 553.36 C 351.33 ± 430.64 D

Z (kΩ) 763.3 ± 714.42 A 542.55 ± 514.96 B 420.84 ± 418.87 C 218.28 ± 320.59 D

θ (rad) −0.28 ± 0.35 A −0.29 ± 0.3 A −0.38 ± 0.33 B −0.39 ± 0.3 B

θ◦ −15.87 ± 19.91 A −16.62 ± 17.04 A −21.79 ± 18.6 B −22.32 ± 16.86 B

Q 0.48 ± 0.91 AB 0.46 ± 0.69 B 0.54 ± 0.65 A 0.52 ± 0.53 AB

The means (n = 720 for Lp parameter at 0, n = 979 for Lp parameter at 2-months, n = 980 for Lp parameter at 4
and 6-months, n = 1000 for all other parameters) within each column with the same letters are not significantly
different at p ≤ 0.05.

Different researchers reported that fruit electrical conduction increases with temper-
ature, field strength, storage duration, sugar concentration, and fruit firmness [38,80–84].
Watanabe et al. [39] stated that the initial resistance and reactance values of apple fruit
varied by cultivar and declined as storage duration increased. The non-uniformity of
electrical characteristics was attributed to non-uniform conditions, such as differences in
cell size or shape between cultivars. They also stated that the LTO, which relates to the
resistance of the extracellular parts of the fruit, declined after four weeks of storage and
then increased. However, it decreased after 16 weeks of storage in some apple cultivars.
Our study indicated that resistance decreased with the increase in storage duration. Extra-
cellular resistance has been reported to decrease in vegetables due to the degradation of
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cell membrane integrity during storage [44,85]. It is assumed that the electrical resistance
increase in apples after storage was caused by water transpiration during storage [86].
The water activity and moisture content of apples significantly impacted dielectric char-
acteristics during storage. Therefore, the change in electrical parameters can be used to
indirectly reflect changes in internal quality [35]. Jiangjie et al. [87] found that a frequency
of 39.8 kHz could be used for nondestructive post-harvest quality detection for new red
star apples, and that the absolute value of impedance, equivalent parallel resistance, and
capacitance could be used as sensitive electrical parameters to indicate quality parameter
changes during the ripening and senescence. According to Sastry [88], electrical conduction
increases with storage duration and the difference was negligible when the temperature is
changed. In the present study, electrical parameters such as capacitance, dissipation factor,
inductance, and reactance increased with the increased storage time.

3.3. Correlation between Physicochemical and Electrical Properties

Table 5 shows the correlation between the fruit physicochemical traits, such as pH,
TSS, moisture content, and water activity. The electric parameters at various frequencies
vary significantly, either positively or negatively. At a low frequency (10 Hz), there was a
significant positive correlation between pH, inductance value (parallel), and inductance
value (series); and TSS, moisture content, and water activity with capacitance value (paral-
lel) and quality factor. Similarly, at 100 Hz frequency, pH had a strong positive correlation
with dissipation, phase radian, phase angle, and quality factor. The electrical parameters,
inductance value (parallel) and inductance value (series), had a better positive correlation
with TSS and moisture content.

In contrast, water activity positively correlated with inductance value (parallel) at
1000 Hz frequency. The electric parameter reactance was positively correlated with pH
and moisture content at a 10,000 Hz frequency. At a high frequency (100,000 Hz), fruit pH
was positively correlated with equivalent series resistance, capacitance value (parallel),
equivalent parallel resistance, resistance, and the absolute value of impedance; fruit TSS
with capacitance value (series) and reactance; moisture content with capacitance value
(series), phase radian, and phase angle; and water activity with capacitance value (series),
dissipation factor, inductance value (series), reactance, phase radian, and phase angle.

The electrical resistance showed a significant decline as the citrus fruit matured and
was closely correlated to the changes in pH [89]. Our results showed a negative correlation
of resistance when correlated with pH, TSS, moisture content, and water activity. However,
it positively correlated with pH when the frequency was 10,000 and 100,000 Hz. A reduced
resistance is also linked to a reduction in hardness and TSS rise [90]. Soltani et al. [77]
found a correlation between the soluble solid contents, firmness of the fruit, and the
capacitance sensing system parameters. There was a strong correlation between the quality
parameters and the relative permittivity of the capacitive property. Citrus tissues found
a linear relationship between the matrix moisture content and the dielectric constant γ-
relaxation was found in citrus tissues. They indicated that the dielectric constant under
γ-relaxation is an important tool for predicting the moisture content of citrus fruit [91].
The highest correlation with various frequencies predicted the quality parameters of the
damaged apples [92]. The cell wall, membranes, and composition of the cell contents may
all undergo significant modifications during storage. All these alterations would have
an impact on tissue capacitance. A change in reactance can be used to indicate changes
in capacitance. The impedance values will change when the resistance and reactance
parameters change. As a result, its relationship with physicochemical properties will
be comparable. During the storage of date fruits, the value of resistance and reactance
decreased, lowering the value of its impedance [93].
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Table 5. The correlation between the pH, total soluble solids (TSS), water activity (aw), and moisture content (MC) of the stored date fruits and the electrical
parameters at various frequencies.

Cs Rs D Cp Rp Lp Ls R X DCR Z θ θ◦ Q

pH

10 −0.063 −0.120 ** 0.375 ** −0.144 ** −0.140 ** 00.054 0.307 ** −0.125 ** −0.087 * −0.133 ** −0.123 ** 0.423 ** 0.427 ** −0.406 **
100 −0.223 ** −0.082 * 0.722 ** 0.461 ** −0.086 * −0.222 ** 00.062 −0.082 * 0.128 ** −0.126 ** −0.075 * 0.483 ** 0.496 ** 0.129 **

1000 −0.280 ** −00.063 0.420 ** 0.498 ** −0.077 * −0.167 ** 0.234 ** −00.062 00.047 −0.125 ** −00.067 0.306 ** 0.350 ** −0.304 **
10,000 −0.383 ** 00.061 0.235 ** 0.540 ** −00.042 −00.051 00.026 00.065 0.154 ** −0.120 ** −00.069 0.281 ** 0.265 ** −0.223 **
100,000 −0.454 ** 0.325 ** 0.176 ** 0.559 ** 0.111 ** 0.027 0.030 0.374 ** −0.170 ** −0.069 0.237 ** 0.059 0.076 * −0.104 **

TSS

10 0.236 ** −0.307 ** −0.589 ** 0.378 ** −0.302 ** −0.193 ** 0.078 * −0.322 ** −0.200 ** −0.305 ** −0.325 ** −0.621 ** −0.623 ** 0.591 **
100 0.231 ** −0.347 ** −0.189 ** 0.292 ** −0.346 ** 0.425 ** 0.077 * −0.349 ** −00.021 −0.321 ** −0.351 ** −0.433 ** −0.433 ** −0.220 **

1000 0.395 ** −0.368 ** −0.153 ** 0.229 ** −0.362 ** 0.439 ** 0.279 ** −0.369 ** 00.011 −0.324 ** −0.366 ** −0.337 ** −0.360 ** 0.339 **
10,000 0.249 ** −0.410 ** −0.285 ** 0.204 ** −0.366 ** 0.250 ** 0.120 ** −0.414 ** 0.292 ** −0.328 ** −0.361 ** −0.435 ** −0.430 ** 0.429 **
100,000 0.618 ** −0.658 ** −0.116 ** 0.172 ** −0.421 ** 0.110 ** 0.117 ** −0.665 ** 0.444 ** −0.334 ** −0.542 ** −0.071 * −0.080 * 0.007

MC

10 −0.160 ** −0.500 ** −0.293 ** 0.102 ** −0.487 ** −0.225 ** 0.270 ** −0.493 ** 0.178 ** −0.465 ** −0.487 ** −0.504 ** −0.507 ** 0.489 **
100 −0.078 * −0.492 ** −0.400 ** −00.028 −0.489 ** 00.068 0.408 ** −0.488 ** 0.402 ** −0.466 ** −0.491 ** −0.440 ** −0.434 ** −0.018

1000 0.049 −0.497 ** −0.370 ** −00.038 −0.492 ** 0.495 ** 0.448 ** −0.501 ** 0.434 ** −0.477 ** −0.500 ** −0.415 ** −0.446 ** 0.413 **
10,000 0.092 ** −0.492 ** −0.233 ** −00.056 −0.497 ** 0.153 ** 00.022 −0.497 ** 0.484 ** −0.479 ** −0.511 ** −0.234 ** −0.224 ** 0.244 **
100,000 0.367 ** −0.366 ** −0.109 ** −0.080 * −0.500 ** 0.020 0.025 −0.395 ** 0.469 ** −0.479 ** −0.475 ** 0.120 ** 0.115 ** −0.213 **

aw

10 0.186 ** −0.258 ** −0.644 ** 0.268 ** −0.255 ** −0.159 ** −0.088 * −0.265 ** −00.039 −0.244 ** −0.270 ** −0.643 ** −0.637 ** 0.623 **
100 0.164 ** −0.310 ** −0.403 ** −0.004 −0.309 ** 0.070 0.071 * −0.311 ** 00.010 −0.254 ** −0.302 ** −0.574 ** −0.575 ** −0.153 **

1000 0.292 ** −0.322 ** −0.290 ** −0.030 −0.319 ** 0.487 ** 0.168 ** −0.324 ** 0.082 * −0.249 ** −0.320 ** −0.524 ** −0.484 ** 0.510 **
10,000 0.299 ** −0.438 ** −0.224 ** −0.064 −0.350 ** 0.324 ** 0.174 ** −0.441 ** 0.217 ** −0.252 ** −0.329 ** −0.378 ** −0.399 ** 0.437 **
100,000 0.610 ** −0.689 ** 0.086 * −0.096 ** −0.427 ** 0.174 ** 0.177 ** −0.616 ** 0.513 ** −0.254 ** −0.568 ** 0.076 * 0.089 * −0.120 **

* The correlation is significant at the 0.05 level. ** The correlation is significant at the 0.01 level (2-tailed).
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3.4. ANNs and MLR Models

The ANNs technique in SPSS was adopted to determine the optimal prediction model
at different testing frequencies. The number of hidden layers was one for all ANNs at
the various testing frequencies. The input layer in the ANNs at 10 and 100 Hz contains
13 neurons for the independent variables (Cs, Rs, D, Cp, Rp, Ls, R, X, DCR, Z, θ, θ◦, and
Q), and the optimal hidden layers contain 12 neurons at 10 Hz and 14 neurons at 100 Hz.
The input layer in the ANNs at 1000, 10,000, and 100,000 Hz contains 14 neurons for the
independent variables (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X, DCR, Z, θ, θ◦, and Q), and the
optimal hidden layers contain 15 neurons. The output layer contains four neurons for
the dependent variables (pH, TSS, aw, and MC). The rescaling method for covariates was
standardized. The activation function applied for the hidden layers was a hyperbolic
tangent. The activation function applied for the output layers was Identity for all ANNs
models at the different testing frequencies. About 60% of the measured data were used as a
training dataset, 20% for model testing, and 20% for evaluation. The sum of squares was
used as an error function because of the Identity function.

Figure 5 shows the optimal ANNs diagram applied to predict the pH, TSS, aw, and MC
of the date fruits during cold storage based on their electrical properties at 10,000 Hz. The
diagram shows the 14 input nodes (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X, DCR, Z, θ, θ◦, and Q),
the 15 hidden nodes, and the 4 output nodes representing the predicted values of the target
physicochemical properties (pH, TSS, aw, and MC). The trained ANNs quickly determine
the target physicochemical properties when fed the system’s electrical properties data.
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Figure 5. Network diagram of the ANNs prediction model to predict the pH, TSS, aw, and MC of the
date fruits during cold storage based on their electrical properties (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X,
DCR, Z, θ, θ◦, and Q) at 10,000 Hz. The hidden layer activation function is Hyperbolic tangent, and
the output layer function is Identity.
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Figure 6 shows the importance of the independent variables (Cs, Rs, D, Cp, Rp, Ls, Lp,
R, X, DCR, Z, θ, θ◦, and Q) at 10,000 Hz in the ANNs model in terms of the relative and
normalized importance. This figure displays the impact of the change of each independent
variable on the ANNs prediction model. The variables related to DCR, Ls, Z, Lp, θ, X, and
θ◦ have the most critical effect on how the network predicts the values of the dependent
variables, i.e., pH, TSS, aw, and MC at 10,000 Hz.
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Figure 6. Importance of the independent variable electrical properties (Cs, Rs, D, Cp, Rp, Ls, Lp, R, X,
DCR, Z, θ, θ◦, and Q) at 10,000 Hz.

Table 6 displays the comparison between error results of the ANNs models, i.e., the
sum of squares error, average overall relative error, and relative error in the training,
testing, and holdout phases at various testing frequencies. In addition, relative errors were
displayed depending on the dependent variables of the pH, TSS, aw, and MC measurement
levels. From Table 1, it is noticed that the values of the electrical parameters at 10,000 Hz
gave better results regarding the model errors in the phases of training, testing, and holdout
datasets. Based on these results, adopting electrical measurements of dates at 10,000 Hz
can successfully predict the pH, total soluble solids (TSS), water activity (aw), and moisture
content of the date fruits during cold storage.

Table 6. A comparison between the ANNs models’ errors in the training, testing, and holdout phases
at various frequencies.

Phases
Frequency (Hz)

10 100 1000 10,000 100,000

Training

Sum of squares error 130.82 135.43 101 96.1 102
Average overall relative error 0.133 0.142 0.107 0.098 0.108

Relative error

pH 0.122 0.120 0.079 0.058 0.075
TSS 0.083 0.106 0.054 0.044 0.067
MC 0.144 0.165 0.155 0.161 0.153
aw 0.183 0.177 0.139 0.128 0.137

Testing

Sum of Squares Error 39.657 51.039 36.098 28.304 36.408
Average overall relative error 0.140 0.172 0.121 0.098 0.119

Relative error

pH 0.125 0.153 0.070 0.078 0.081
TSS 0.084 0.143 0.075 0.053 0.084
MC 0.165 0.206 0.184 0.143 0.161
aw 0.188 0.182 0.146 0.113 0.158

Holdout

Average overall relative error 0.152 0.145 0.158 0.101 0.139

Relative error

pH 0.160 0.163 0.120 0.082 0.105
TSS 0.117 0.107 0.116 0.055 0.103
MC 0.151 0.153 0.210 0.144 0.175
aw 0.188 0.153 0.183 0.121 0.167
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The R2 and RMSE related to the MLR models for predicting the pH, TSS, aw, and MC
parameters under the testing frequencies are presented in Table 7. The F-test showed that
several independent variables in the MLR for pH property are significant (p ≤ 0.05) at
10,000 Hz.

Table 7. Comparison between values of R2 and RMSE for the developed ANNs and MLR models in
the evaluation phase at various frequencies.

Properties Models

Frequency (Hz)

10 100 1000 10,000 100,000

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

pH ANNs 0.878 0.14 0.871 0.191 0.924 0.122 0.938 0.121 0.924 0.129
MLR 0.573 0.289 0.813 0.289 0.842 0.176 0.843 0.175 0.746 0.222

TSS
(Brix)

ANNs 0.919 3.79 0.886 7.542 0.927 3.451 0.954 2.946 0.929 3.469
MLR 0.734 6.215 0.609 6.215 0.563 7.975 0.735 6.208 0.76 5.903

aw
ANNs 0.816 0.034 0.823 0.039 0.862 0.026 0.876 0.02 0.859 0.024
MLR 0.704 0.047 0.689 0.047 0.741 0.044 0.787 0.047 0.729 0.045

MC (%) ANNs 0.853 0.852 0.826 1.239 0.841 0.816 0.855 0.803 0.844 0.816
MLR 0.656 1.297 0.676 1.297 0.583 1.267 0.686 1.387 0.617 1.369

The MLR prediction models for pH values based on the electrical parameters at 100 Hz
(R2 = 0.813, RMSE = 0.289), 1000 Hz (R2 = 0.842, RMSE = 0.176), 10,000 Hz (R2 = 0.843,
RMSE = 0.175) are characterized by a significative determination coefficient, which can
be used as a significative predictive model at one of these frequencies. The other MLR
models were characterized by low R2 and high RMSE values. Therefore, the MLR models
are considered unsuitable for accurately evaluating the TSS, aw, and MC.

The prediction models using the MLR technique based on the electrical properties
measured by a 10,000 Hz frequency are the best for all target properties of pH, TSS, aw,
and MC.

The developed MLR prediction models for pH, TSS, aw, and MC at 10,000 Hz that
acquired the best results are given below:

pH = 6.146 − 0.058 × Cs + 0.003 × Rs + 0.105 × D + 0.155 × Cp − 0.035 × Lp + 0.008 × Ls − 0.013 × X + 0.001 × DCR − 0.01 × Z − 0.126 × θ + 0.064 × θ◦ + 1.949 × Q

TSS = 57.303 + 0.788 × Cs − 0.062 × Rs − 2.151 × D + 1.784 × Cp − 1.755 × Lp + 0.413 × Ls − 0.544 × X − 0.104 × DCR − 0.09 × Z − 231.5 × θ + 3.51 × θ◦ + 2.749 × Q

aw = 0.583 + 0.006 × Cs + 0.0001 × Rs − 0.011 × D + 0.011 × Cp − 0.006 × Lp + 0.001 × Ls − 0.001 × X + 0.0001 × DCR − 0.001 × Z + 1.283 × θ − 0.027 × θ◦ − 0.114 × Q

MC = 23.5 + 0.052 × Cs − 0.003 × Rs − 0.915 × D + 0.011 × Cp + 0.134 × Lp − 0.031 × Ls + 0.065 × X + 0.014 × DCR + 0.009 × Z − 36.349 × θ + 0.869 × θ◦ + 0.114 × Q

The performance of the ANNs and MLR prediction models at various frequencies
based on R2 and RMSE values in the evaluation set is shown in Table 7. The high R2 and low
values of RMSE indicated that the ANNs models present promising possibilities to predict
the target physicochemical properties of date fruits based on their electrical properties.
Based on R2 and RMSE in Table 7, it is shown that the ANNs modeling techniques were
more efficient compared with the MLR models for predicting the pH, TSS, aw, and MC
values at all testing frequencies. The results showed that the R2 for ANNs models at
frequencies of 1000, 10,000, and 10,0000 Hz was more acceptable than the ANNs models at
10 and 100 Hz. The high values of R2 were obtained for pH (R2 = 0.938), TSS (R2 = 0.954),
aw (R2 = 0.876), and MC (R2 = 0.855) in the evaluation set of ANNs models based on
the measured electrical properties of the stored date fruits at 10,000 Hz. Furthermore,
the low values of RMSE were obtained also at 10,000 Hz for the pH (RMSE = 0.121),
TSS (RMSE = 2.946), aw (RMSE = 0.020), and MC (RMSE = 0.803) in the evaluation set of
ANNs models.

Generally, based on these results, the MLR models had lower performance and weaker
predictive ability than ANNs for predicting pH, TSS, aw, and MC at various frequencies
(Table 7). Based on these results, the MLR models are unsuitable for predicting the tar-
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get properties and show a relative disadvantage because they only describe the linear
relationship between variables.

Figure 7 presents the scatter plots of the measured values of pH, TSS, aw, and MC
of the stored date fruits versus the predicted values by the neural networks model in the
evaluation phase based on the measured electrical properties of the stored date fruits at
10,000 Hz. The network structure of the model was one hidden layer and 14 neurons,
which exhibited the highest level of accuracy. The prediction error in the training and
testing phases at 10,000 Hz was lower than in the same phases at other frequencies. The
results displayed that the ANNs model at 10,000 Hz was more accurate than the various
frequencies in the evaluation phase. The regression line between the predicted and the
observed values of the target properties, i.e., pH (y = 0.38 + 0.94 x), TSS (y = 1.87 + 0.96 x),
aw (y = 0.09 + 0.84 x), and MC (y = 2.36 + 0.87) at validation sets, nearly overlapped the 1:1
line (y = x + 0).
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So far, to our knowledge, there is no study that has employed the feed-forward
ANNs with a backpropagation training algorithm for the prediction of the physicochemical
properties of date fruits based on their electrical properties. Nayak et al. [48] mentioned
that the dates are the type of fruit that have been used very rarely to process with ANNs.
However, Fadel suggested a novel method for classifying dates using Probabilistic Neural
Networks (PNN) based on the color of five cultivars of date fruits. The authors observed
good classification accuracy in the experimental process [94]. Hsu et al. [95] mentioned
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that the ANNs learned to find the solutions for the problem by developing a memory
capable of associating many input patterns with a resulting set of effects or outputs. The
problem with these ANNs models is the dependency on data for their training. The training
phase of the models is the process of updating the internal representation of the model in
response to external variables to achieve a specific task. In addition, it modifies the network
architecture, which involves modifying the weights of the links, changing connection links
by removing or creating new links, and changing the individual neurons firing rules [96].
Sablani and Rahman proposed [49] an ANNs model to predict the thermal conductivity of
food, i.e., apple, corn starch, pear, raisin, potato, starch, ovalbumin, sucrose, carrot, and
rice, as a function of moisture content, apparent porosity, and temperature. The optimal
proposed ANNs model consisted of two hidden layers with four neurons in each layer.
This model predicted the thermal conductivity with low mean absolute and relative errors.
Singh [97] has proposed a methodology for the sweet potatoes during drying using an
ANNs model to get online predictions of moisture kinetics in the potatoes. The results
achieved in their work showed that the predicting ANNs model with two hidden neurons
and a feed-forward network could help envisage and model the moisture relocate in
the product.

Our results indicated that the MLR models were less accurate than the ANNs models
for the prediction of fruit pH and had low performance and weak predictive ability for the
TSS, aw, and MC at all testing frequencies. If the constants or parameters of a mathematical
equation that relates the input variables to the output variable are defined for a given
mathematical equation that relates the input variables to the output variable, the difference
between the predicted output and the observed output of the equation for the set of input
data is a minimum for statistical regression, such as the MLR. As a result, ANNs can
be used to study ambiguous and unclear datasets and their interactions, but statistical
regression analysis, i.e., MLR, will fail in such cases. Furthermore, ANNs can be used to
analyze more data at the same time with more complicated and complex interactions. Even
if the data is incomplete and noisy, ANNs can outperform MLR in prediction, modeling,
and optimization [52]. Therefore, MLR models were unsuitable for our research, whereas
the ANNs prediction model accurately predicted the quality attributes we were looking
for. The results of ANNs are simple and do not require any modifications. ANNs are
several types of intelligent modeling techniques that can solve a problem by analyzing
scarce, unstructured, and incomplete numerical data about non-stationary and nonlinear
systems [98]. The ANNs developed a solution by training on their measurements using the
nonlinear correlation between various variables.

This study indicated that the ANNs model was found to be a powerful tool for
efficiently predicting the pH, TSS, water activity, and moisture content of date fruits based
on their electrical properties.

4. Conclusions

This study indicated that the ANNs model is a powerful tool to efficiently predict
the date fruits’ quality based on their electrical properties during cold storage. The model
established a new solution based on measured data using the nonlinear correlation between
numerous variables. The optimal developed ANNs model had a 14-neuron input layer
(electrical properties), a 15-neuron hidden layer, and a 4-neuron output layer. This model
enhanced the fast and easy prediction of the pH, TSS, aw, and MC of stored date fruits
during cold storage with high R2 and low RMSE. The MLR models, on the other hand, were
less accurate than ANNs models in predicting fruit pH and had poor performance and
prediction abilities for the TSS, water activity, and moisture content across all testing fre-
quencies. Based on these results, the MLR models are unsuitable for predicting the targeted
attributes. Further research is needed to predict more chemical and mechanical properties
of stored fruits based on their electrical properties, such as reducing and non-reducing
sugars and texture parameters (hardness, adhesiveness, springiness, cohesiveness, gummi-
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ness, chewiness, and resilience). In addition, the quality of the stored fruits can be remotely
monitored in real time using the Internet of Things (IoT) and ANNs prediction models.
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Nomenclature

ANNs Artificial Neural Networks
aw water activity
B constant
C capacitance, nF
Cp capacitance value at parallel equivalent circuit model, nF
Cs capacitance value at series equivalent circuit model, nF
D dissipation factor
DCR direct current resistance, kΩ
Ej error
L inductance, H
Lp inductance value at parallel equivalent circuit model, H
Ls inductance value at series equivalent circuit model, H
MC moisture content, %
Mj measured value
ML Machine Learning
MLR Multiple Linear Regression
n number of measurements
Oj neuron output
pH power of hydrogen
Q quality factor
R resistance, kΩ
R2 coefficient of determination
RMSE root-mean-square error
Rp equivalent parallel resistance, kΩ
Rs equivalent series resistance, kΩ
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tj target value
TanH hyperbolic tangent
Ti measured value
TSS total soluble solids, Brix
Wj input weight
X reactance, kΩ
Xi independent variable
Xoj the outcome of the sum value
yi dependent variable
Z the absolute value of the impedance, kΩ
θ phase angle in radian, rad
θ◦ phase angle, degree
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