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Abstract: As a simple and programmable nuclease-based genome editing tool, the CRISPR/Cas9
system has been widely used in target-gene repair and gene-expression regulation. The DNA
mutation generated by CRISPR/Cas9-mediated double-strand breaks determines its biological and
phenotypic effects. Experiments have demonstrated that CRISPR/Cas9-generated cellular-repair
outcomes depend on local sequence features. Therefore, the repair outcomes after DNA break
can be predicted by sequences near the cleavage sites. However, existing prediction methods rely
on manually constructed features or insufficiently detailed prediction labels. They cannot satisfy
clinical-level-prediction accuracy, which limit the performance of these models to existing knowledge
about CRISPR/Cas9 editing. We predict 557 repair labels of DNA, covering the vast majority of
Cas9-generated mutational outcomes, and build a deep learning model called Apindel, to predict
CRISPR/Cas9 editing outcomes. Apindel, automatically, trains the sequence features of DNA with
the GloVe model, introduces location information through Positional Encoding (PE), and embeds
the trained-word vector matrixes into a deep learning model, containing BiLSTM and the Attention
mechanism. Apindel has better performance and more detailed prediction categories than the most
advanced DNA-mutation-predicting models. It, also, reveals that nucleotides at different positions
relative to the cleavage sites have different influences on CRISPR/Cas9 editing outcomes.

Keywords: DNA repair; deep learning; positional encoding; attention mechanism

1. Introduction

The CRISPR/Cas9 system is derived from the type II CRISPR/Cas system, which
provides adaptive immunity to viruses and plasmids for bacteria [1–3]. The full name
of CRISPR is Clustered Regularly Interspaced Short Palindromic Repeats [4], and these
repetitive sequences are separated by distinct non-repetitive sequences called spacers.
When an exogenous virus invades the host, the viral DNA is processed by Cas nuclease,
into small DNA fragments, which are then integrated into the CRISPR of the host genome
as spacers. The spacers are used as the transcriptional templates to produce crRNA, and
the mature crRNA with tracrRNA form a special RNA structure (gRNA), through base
complementary pairing, which guides the cas9 protein to recognize the specific site (PAM
motif) [5,6] of the target DNA, causes double-strand breaks, and enables targeted editing of
the genome [7]. Since cells cannot survive long with their DNA cleavage, their alarms go
off, as soon as the DNA is broken. The steps to repair the break begin quickly.

DNA double-strand breaks are, primarily, repaired by one of two pathways: non-
homologous end-joining (NHEJ) and homology-directed repair (HDR) [8,9]. In addition
to this, there is evidence for microhomology-mediated end-joining (MMEJ). HDR [10]
is complex and precise, can only occur in the G2 and S phase of the cells, and repairs
double-strand breaks (DSBs), using homologous template sequences, but it is inefficient.
In contrast, NHEJ [11] is rapid and imprecise, directly rejoining broken ends, usually in
the form of short insertions or deletions (indels), which occur throughout the cell cycle.
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Unlike classical NHEJ, MMEJ [12] relies on regions of microhomology, to repair breaks.
MMEJ repair of broken DNA, often, results in the deletion of micro-homologous fragments
at the junction or, even, leads to gene rearrangements, so it is an error-prone repair method.
Recent studies have shown that the repair outcomes of NHEJ and MMEJ are determined
by the sequence characteristics of the target DNA [13].

Owing to the fact that mutational outcomes vary with cell lines and Cas9 modifica-
tions [14], accurate prediction of template-free CRISPR/Cas9 editing outcomes is, undoubt-
edly, a challenging bioinformatics problem. Thanks to rapid advances in machine learning,
researchers better conducted CRISPR/Cas9 studies. Various machine-learning-based pre-
diction tools have been developed and put into use (Table 1).

Table 1. Comparison of designs and results of CRISPR/Cas9 editing outcome prediction.

Model Cell Line(s) Indels Predicted 1 Methods 2

Apindel K562 536 classes of Deletions,
21 classes of Insertions.

GloVe + Positional
Encoding

BiLSTM + Attention

CROTON K562

Deletion frequency,1 bp
Insertion/Deletion,

1/2 bp Frameshift frequency,
Frameshift frequency.

CNN + NAS

Lindel HEK293T 536 classes of Deletions,
21 classes of Insertions. Logistic Regression

SPROUT T cell

9 types statistics of the
repair outcomes
such as average
insertion length.

Gradient Boosting
Decision Tree

FORECasT
K562, RPE1,

iPSC, CHOHAP1,
mESCs

~420 classes of Deletions,
20 classes of Insertions.

Multi-Class Logistic
Regression

InDelphi
HEK293, K562,

HCT116, mESCs,
U2OS

~90 classes of MH Deletion,
59 classes of Non-MH Deletion,

4 classes of 1 bp Insertion.

Deep neural
network

k-Nearest Neighbor
1 Indels predicted indicates the repair labels that can be predicted by the model. 2 Methods represents the main
algorithms used by the model.

inDelphi [15] introduced different sequence features, such as microhomology length,
built three interconnected modules based on the deep neural network or k-Nearest Neigh-
bor algorithm, and, then, predicted MH deletions, MH-less deletions, and 1 bp insertions,
respectively. SPROUT [16] took the 20 nucleotides of the spacer sequences plus the PAM,
as inputs, and built a Gradient Boosting Decision Tree model. At each target site, the
model predicted nine statistics, such as the average deletion length. CROTON [17] is a
deep learning framework based on the Convolutional Neural Network (CNN) and Neural
Architecture Search (NAS), which predicted 1 bp insertion and deletion probability as well
as deletion and frameshift frequency, from raw one-hot encoded DNA sequences. Several
models mentioned above predicted only a few fixed repair labels during model building,
which cannot cover all mutational outcomes and have insufficient prediction accuracy.
FORECasT [14] generated candidate mutations for each gRNA and derived features for
them based on local sequence characteristics, training a multi-class Logistic Regression
model designed to predict repair outcomes. Lindel [18] defined binary features to charac-
terize the target sequences and used one-hot encoding to convert the sequences to matrixes
as model inputs, so three components were trained independently using different Logistic
Regression models aiming to predict the ratio of insertions to deletions, the distribution of
deletion events, and the distribution of insertion events. Although the above two models
can predict the vast majority of mutational outcomes, the inherent mechanism of CRISPR
gene editing technology is, still, unclear, and both the artificial construction of a set of binary
features describing the sequences or mutational information alone and the conversion of
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the sequences into sparse matrixes using unique one-hot encoding as model inputs may,
negatively, affect the prediction performance.

Here, we developed a model named Apindel (a deep learning framework based on
the Attention mechanism and Positional Encoding, for predicting CRISPR/Cas9 repair
outcomes) to address the problem of predicting DNA mutations, using contextual sequences
surrounding the cleavage sites. First, through introducing the GloVe embedding model,
the cooccurrence matrixes were constructed to extract the global statistical information
of the input sequences; second, the target sequences were converted into dense matrixes,
by combining the Positional Encoding; finally, the model was combined with the deep
neural network model, adding an attention layer, which can reveal that the bases at
different sequence loci have varying degrees of effect on predicting DNA repair outcomes.
Apindel can, accurately, predict the mutational outcomes for a given target sequence. We
demonstrated that Apindel, which was trained on the FORECasT dataset, outperformed
existing approaches on the most prediction tasks. Therefore, it is expected to be a potential
tool to aid research on CRISPR systems.

2. Materials and Methods
2.1. Data Sources

To date, there is no public website to integrate large-scale mutational profiles [19].
Most studies, still, use various detection methods to measure editing produced by gR-
NAs in synthetic constructs and to study the effect of flanking DNA target sequences on
repair outcomes. Since Lindel [18] was the only published paper to date that provided
data corresponding to 557 repair labels, we used the data that has been published in the
Lindel article as our training data. Lindel obtained a large number of repair outcomes, by
high-throughput sequencing, which was analyzed and aggregated to result in a dataset
of~1 million UMIs, representing 4790 target sequences. The 4790 target sequences in the
modeling dataset were split into subsets of 3900 (for training), 450 (for validation), and
440 (for testing), to ensure that the training, testing, and validation sets were consistent
with the Lindel model. We, also, selected 4298 targets in the ForeCasT [14] test set, as an
independent dataset for the test of generalization ability.

We selected the dataset from the FORECasT-improved scaffold [14] as the baseline
data (because FORECasT provided one of the largest datasets of CRISPR/Cas9 edit-
ing outcomes, relative to inDelphi [15], SPROUT [16], and Lindel [18]), with a total of
35,129 target sequences. The data were randomly divided into training, validation, and
test data, in a ratio of 8:1:1. The training set was used for the construction of Apindel, the
validation set was used to monitor the model training convergence and early stopping,
while the test set was used to evaluate the prediction performance of the training model.

We, also, selected the test set of SPROUT [16], as an independent, unseen dataset,
for the evaluation of the generalization ability of the model, with a total of 1603 target
sequences. To obtain the DNA sequences for SPROUT, the retrieved genomic coordinates
were mapped to the human genome construct 38 (hg38).

2.2. Data Preprocessing

For the above datasets, we truncated 60 bp genomic sequences as the model inputs.
Specifically, for each DNA target sequence in the datasets, we aligned the PAM site at 33nt,
so that the cut site was located at the center (30nt) of all input sequences. For sequences
less than 60 bp, we considered adding “ATG” before the reverse sequences and “ATGC”
after the forward sequences (see Supplementary Note, for more details).

In order to compile repair outcomes comprehensively and model efficiently, we con-
sidered a total of 557 repair labels for prediction. Specifically, since large mutational events
rarely occur, we restricted the deletion length to <30 bp and overlapped with the window
(from 3 nucleotides upstream to 2 nucleotides downstream of the cut site), for a total of
536 deletion labels, considering the sites where the deletion events occurred as well as the
length. The insertion labels contain 4 possible single nucleotide insertions and 16 possible
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dinucleotide insertions and ≥3 bp insertions, for a total of 21 insertion labels [18]. For
example, “−5 + 6” means a deletion occurs at 5 nucleotides upstream of the cleavage site,
and the deletion length is 6 bp.

For preprocessing the FORECasT data (Figure 1A), first, we converted the content and
format of the mutational outcomes obtained from large-scale sequencing, to obtain the ini-
tial dataset. Second, data cleaning was performed on the SupplementaryData1 mentioned
in the FORECasT article, and the ID, GuideSequence, and TargetSequence correspond-
ing to the improved scaffold data were selected, to obtain the improved scaffold dataset.
Then, the two aforementioned datasets were merged according to the ID, converting the
reverse sequences and their mutational outcomes into forward sequences, to obtain the
merged dataset. Next, the conversion of the CIGAR string was performed (Figure 1B). For
example, “D1_L-2C1R1” and “0 + 1” represent the same repair outcome, while converting
“D1_L-2C1R1” to “0 + 1” and “I1_L-1R0” and “1 + T” indicate the same repair result,
and “D4_L-6R-1” and “−5 + 4” represent the same repair result. Finally, we needed to
collate the mutational outcomes obtained from large-scale sequencing into 557 repair labels
(Figure 1C), adjusted the data format, selected the 60 bp sequence as the model inputs,
aligned the PAM site at 33nt, and performed the normalization operation, so that the sum
of the frequencies of mutational labels for each DNA sequence is one. The data processing
for the SPROUT test set was similar to the operation in the CROTON paper [17], and was
not repeated here. For each DNA sequence, the following edit-outcomes statistics were
calculated: 1 bp insertion frequency, 1 bp deletion frequency, deletion frequency, removed
outliers, and missing values. For the Lindel [18] dataset, we directly selected the data from
published papers.
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Figure 1. Overview of data preprocessing. (A) Data preprocessing process from left to right.
(B) Example of conversion of CIGAR strings. The yellow dashed line indicates the cut site, the
yellow font represents the PAM, the top is the DNA sequence of the editing target, and the bottom is
the repair labels corresponding to the three mutational outcomes. (C) The 557 repair labels, including
insertions and deletions.

2.3. Data Encoding
2.3.1. Global Vectors for Word Representation

GloVe [20] is a global log bilinear regression model, an unsupervised learning algo-
rithm for obtaining vector representations of words. Considering the global features of the
corpus and that the words are represented by vectorization, the vectors contain as much
semantic and syntactic information as possible between them. First, the model trained on
aggregated global word–word cooccurrence statistics from the corpus, and, then, it learned
word vectors based on the cooccurrence matrix and the GloVe model, as input vectors to the
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neural network. The model-result representation shows an interesting linear substructure
of the word-vector space. GloVe model is based on global prior statistical information from
matrix decomposition, coupled with local information from text-box restrictions, which
both speed up the training of the model and limit the relative weights of words.

In order to implement the GloVe embedding model, for a sequence of given length L0,
the whole sequence was scanned with a sliding window of window length Kmer = K and
sliding step size Kstep = s, before it was split into multiple k-mer based on the information
intercepted by each window, to obtain a k-mer sequence of length L = [(L0 − K)/s] + 1.
Given each k-mer, an index corresponds to the set of positive integers Z =

[
1, 2, · · · , 4K].

For all k-mer sequences obtained, a transformation dictionary of k-mer embedding vectors
was obtained, using the GloVe word-vector-generation model, which, with the help of a
single k-mer, could be transformed into a vector, with the whole k-mer sequence transformed
into a matrix for subsequent calculations.

2.3.2. Positional Encoding

Experiments showed that nucleotides at different positions in the sequence have
a preference for repair outcomes [16,21]. Positional Encoding vectors are added to the
embedding, to convey position information throughout the model. Positional Encoding [22]
is a method that uses the position information of the word to represent each word in a
sequence secondarily. While the original input to the model is the word vector without
word order information, Positional Encoding requires the combination of word order
information and word vectors to form a new representation input to the model, so that the
model has the ability to learn word-order information.

In this work, we used the sine and cosine functions [23]. Given an input sequence
of length n, t denoted the position of the word in the sequence,

→
pt ∈ Rd represented the

vector corresponding to position t, and d was the dimension of the vector. f : N→ Rd was
a function that generated position vector

→
pt, defined, as follows:

→
pt

(i)
= f (t)(i) : f (x) =

{
sin(ωk·t), i f i = 2k

cos(ωk·t), i f i = 2k + 1
(1)

where frequency ωk was defined, as follows:

ωk =
1

100002k/d (2)

It followed from the definition of the function that the frequency decreased along
the vector dimension. In order for each word vector to have its positional information,
Positional Encoding was added to the model inputs. Specifically, for each word ωt in the
sentences, to calculate its corresponding word embedding ψ(ωt), the model input was,
then, obtained, as follows:

ψ′(ωt) = ψ(ωt) +
→
pt (3)

To ensure that this summation operation was correct, let the dimension of the Positional
Encoding be equal to the dimension of the word encoding (WE), i.e., dWE = dPE. Instead
of a single value, this encoding was a d-dimensional vector, containing information about
a particular position in the sentence; instead of integrating into the model, this encoding
used this vector to represent information about the position of each word in the sentence.
In other words, the model input was augmented, by injecting information about the order
of the words.

In the GloVe model, the sequence of a given length L0 had been transformed to k-mer
sequence of length L = [(L0 − K)/s] + 1. To implement Positional Encoding, giving each
k-mer an index corresponding to the set of positive integers Z = [1, 2, · · · , L], we considered
a vector representation of L positions, ensured that the dimension of the location Positional
Encoding was equal to the dimension of the word encoding, and obtained a transformed
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dictionary of location vectors, with which the information of the different loci can be
represented for subsequent computations.

2.4. Deep Learning Algorithm
2.4.1. Bidirectional Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN).
Since LSTM can learn which information to remember and forget through training, the
LSTM model can capture longer-distance dependencies well, but the LSTM model, also,
has a certain limitation: it cannot capture information from back to front. We consider using
the BiLSTM model, Bi-directional Long Short-Term Memory (BiLSTM), which is composed
of forward LSTM and backward LSTM. BiLSTM allows for better capture of bidirectional
semantic dependencies.

2.4.2. Attention Mechanism

The Attention mechanism [23] is a technique that enables models to focus on important
information and learn it sufficiently, which can be applied to any sequence model. In
contrast to conventional encoding methods, such as Convolutional Neural Networks
(CNN) and RNN, which employ various pooling or, directly, take the hidden state of the
last t-moment as the vector output of the sentence and do not pay special attention to
the location information, the Attention mechanism provides a set of weights that reflect
the distinct degree of attention given to different morphemes in a sentence sequence,
through calculation.

To capture the important contextual sequence features involved in the determinants of
DNA repair outcomes, we incorporated an attention layer in our model, given the feature
matrix H = (h1, · · · , hL), we computed the attention score ai of the ith position in the
attention vector a = (a1, · · · , aN)

T by

ai =
exp

(
wT

2 f (hi)
)

∑L
i=1 exp

(
wT

2 f (hi)
) , (4)

f (hi) = tanh(W1hi) (5)

where W1 ∈ RT×C stands for a weight matrix (T is a hyperparameter that needs to be
determined, and C is the dimension of the feature matrix) and w2 represents a weight
vector. Next, we multiplied the attention vector aT = (a1, · · · , aN) with the original feature
matrix H and, then, fed the result into a multilayer perception (MLP) network, followed by
a SoftMax activation function.

2.5. Model Training

We trained the GloVe model, by calling the Python extension package mittens, usually
setting the truncation values of the co-occurrence matrix (XMAX) to the average of the ele-
ments in the co-occurrence matrix and the set parameters ensure that (60− KMER)/Kstep
was an integer. Call torch, to build Positional Encoding, vector dimensions, and Dropout
parameter p were the hyperparameters that we needed to set. Building a deep learning
framework with Keras (Table S1), in order to prevent the model from encountering the
overfitting problem, we added L1 regularization, Batch Normalization, and Dropout layers
to the model. Since each target sequence can produce many possible repair outcomes, we
trained our model with soft labels (i.e., the probability that each sequence corresponds to
each category), instead of hard labels (i.e., each sequence can only correspond to one repair
category). The model was trained using the Adam optimizer, with the learning rate set to
0.0001, the loss function set to categorical_crossentropy, and the evaluation metric set to
mse. In order to obtain a model with good performance, many hyperparameters needed to
be set during training, such as epoch. We chose EarlyStopping and ReduceLROnPlateau to
solve the problem that the number of epochs needed to be set manually. We selected the
best model based on performance on the validation set according to the coefficient of deter-
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mination using grid search over hyperparameters. This search included coefficients for L1
regularization ranging from 10−4 to 10−7, parameters for the Dropout layer (p = 0.5,0.6),
batch size (64, 128 or 256), scaling learning rate (factor) for ReduceLROnPlateau, patience
(ReduceLROnPlateau), and patience (EarlyStopping).

We implemented the proposed methods in Python 3.8.8 and Keras library 2.4.3. The
training and testing processes were performed on a desktop computer with Intel® Xeon
(R) Gold 5118 CPU @ 2.30 GHz × 45(Intel, Santa Clara, CA, USA), Ubuntu 16.04 LTS
(GNU/Linux 4.15.0-142-generic x86_64) and 125 GB RAM. Two NVIDIA TITAN Xp per
GPU have been used to accelerate the training and testing process.

2.6. Performance Testing of Machine Learning Models

In order to test the model prediction performance, we selected Lindel as the control
models. We selected the same 440 sequences as Lindel, as a test set, to examine the
prediction performance of both Apindel trained on the Lindel dataset and Lindel on this
dataset. To test the generalization ability of Apindel trained on the Lindel dataset, we chose
the independent FORECasT dataset as the test set.

In addition, we selected CROTON as the control models. First, we chose the same
3512 sequences as CROTON, as the test set, and we applied Apindel trained on the FORE-
CasT dataset to this test set. Second, we selected six prediction tasks for model comparison,
namely 1 bp insertion frequency, 1 bp deletion frequency, deletion frequency, 1 bp frameshift
frequency, 2 bp frameshift frequency, and overall frameshift frequency. Since Apindel could
predict the repair labels covering almost all possible unique mutational outcomes, when
checking the accuracy of the model, we needed to convert the prediction outcomes of
Apindel into the set-prediction tasks. For the CROTON model, we directly selected the
results from the published papers [17].

To test the generalization ability of Apindel trained on the FORECasT dataset, we se-
lected the reserved SPROUT dataset and Lindel dataset, as the test set, and compared with
SPROUT, inDelphi, CROTON, FORECasT, and Lindel. The comparison on the SPROUT
dataset was similar to the accuracy validation described above, and we collated the pre-
diction outcomes of Apindel, FORECasT, and the Lindel model into selected prediction
tasks. For the CROTON model, we, directly, selected the results from published papers [17].
For inDelphi model, metrics are reported for the best-performing model on HEK293 cell
lines [15]. For the SPROUT model, we compared the performance of Apindel with pub-
lished metrics from SPROUT (i.e., Kendall tau for 1 bp insertion and deletion probabilities
and Pearson’s correlation for deletion frequency). For the Lindel test set, we applied
Apindel and CROTON to this dataset, for model comparison.

We selected Mean Square Error (mse), Area Under Curve (AUC), the Pearson cor-
relation coefficient, and Kendall tau to evaluate the performance of Apindel. AUC was
calculated by whether the model made accurate predictions above or below the median
value, in each task dataset (see Supplementary Note, for more details).

3. Results
3.1. Apindel Architecture

Based on the previous research findings, that “repair outcomes can be predicted by
the local context of the sequences” [19,21,24], we constructed the Apindel model (Figure 2),
which could accurately predict the outcomes and repair probabilities, based on the se-
quences near the cleavage sites. Considering the efficiency and accuracy of the model, we
truncated 60 bp genomic sequences as model inputs, and we described the mutational
outcomes as model outputs, with a total of 557 labels considered.
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Figure 2. Apindel architecture. (A) Embedding layer, mainly consisting of GloVe model and Positional
Encoding. (B) BiLSTM layer, used to capture the contextual information in the input message.
(C) Attention layer. The feature matrix output from the previous layer calculated the attention vector,
which stored the importance scores of different loci of the sequences on the final prediction outcomes.
(D) Dense layer. The attention vector was combined with the BiLSTM layer output, and the final,
fully connected layer was used to obtain the final results.

The first layer of the model was the embedding layer. The k-mer corpus was obtained,
by setting the sliding window size Kmer to 2 and the sliding step length Kstep to 1, so the
size of the k-mer vocabulary was, thus, N = 42 = 16, and the indexes corresponded to the
set of positive integers Z = [1, 2, · · · 16]. We transformed the input target sequences into
the k-mer sequences of length L = [(60− 2)/1] + 1 = 59, resulting in a location information
vocabulary of size M = 59, with indexes corresponding to the set of positive integers
Z = [1, 2, · · · 59]. The k-mer were combined with the position information, to obtain a
vocabulary of size vocabsize = N ∗M = 944, and the indexes corresponded to the set of
positive integers Z = [1, 2, · · · 944]. The vector-conversion dictionary was trained through
the GloVe model and Positional Encoding, respectively, the corresponding GloVe word
vector and the positional vector were added according to the index, and, subsequently, the
individual k-mer was transformed into a vector, so the whole k-mer sequence was converted
into the matrix, as the input to the deep learning model. We called the Python extension
package mittens to train the GloVe model, based on our own code implementation of the
GloVe cooccurrence matrix. Regarding the hyperparameters of the GloVe word-vector-
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generation model, the dimension of the embedding vector was set to 150, the size of the
window diameter for calculating the cooccurrence matrix was set to 5, the truncation value
in the auxiliary function was set to 10,000, and the maximum number of iterations was set
to 20,000. We called the torch to build the PE model, and the dimension of the embedding
vector was set, as the same as the GloVe model: dropout parameter (p = 0).

The second layer was the BiLSTM network, which was, mainly, used to extract the
contextual features of the input information. The number of neurons (units) was set to 50,
the activation function was ReLU, and L1 regularization

(
λ = 10−4) was added to this

layer. The output of the layer was used for the computation of the next layer and the
final result.

The third layer was the Attention layer, and the computational process of this layer
was divided into three steps. First, we calculated the weight matrix, multiplied it with
the feature matrix output from the previous layer, and chose the activation function as
tanh. Then, we calculated the weight vector, multiplied it with the matrix output by the
previous step, selected the activation function as SoftMax, and obtained the attention vector
a. Finally, the attention vector was multiplied by the feature-matrix input from this layer,
and, then, the result was fed into a multilayer perception (MLP) network, followed by the
SoftMax activation function. We added L1 regularization

(
λ = 10−4) to this layer. The

prediction results of the model were obtained.
During the training process, we used the Adam optimizer [25] with a learning rate

of 0.0001, to optimize the loss function. In order to avoid the occurrence of overfitting,
we set the batch size to 64 and used the categorical cross-entropy loss. The factor of the
callback function ReduceLROnPlateau was set to 0.2, training proceeded for a maximum
of 100 epochs, with a “patience” of 1 and a “patience” of 3, meaning that training shrunk
the learning rate after one epoch and stopped after three epochs, with no improvement
in validation-set performance. The detailed description of the model structure is in the
Supplementary Material.

3.2. Model Selection

We evaluated the predictive performance of Apindel against other pre-selected models
(Table 2). The structure of the benchmark model Apindel was described in the “Apindel
architecture” section. Apindel_NoPE was obtained, by removing the Positional Encoding
part from the data encoding of the Apindel model; Apindel_Noattention was the Apindel
model, encoded without the Attention mechanism. First, all models were trained on the
Lindel dataset and were evaluated on the test set using Mean Square Error (MSE). Second,
all models were trained on the FORECasT dataset and were evaluated on the test set
using Area Under Curve (AUC) and Pearson correlation coefficients; the relevant data
descriptions are described in the “Data Sources” section.

Table 2. Initial selection of the model-network framework.

Model Name Model Description

Apindel Final model, including all units we mentioned
Apindel_NoPE Remove Positional Encoding from the model base

Apindel_Noattention Remove the attention layer from the model base

Compared with the Apindel_NoPE model and the Apindel_Noattention model (Table 3),
we can clearly see that Apindel achieved better prediction performance, on the Lindel
test set.

Table 3. Performance evaluation of pre-selected models, on the Lindel dataset.

Model Apindel Apindel_NoPE Apindel_Noattention

MSE 0.000164 0.000189 0.000172
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Compared with the benchmark model, we can see that the Apindel model predicted
the six prediction tasks used for model comparison, with much better accuracy than the
Apindel_NoPE model and the Apindel_Noattention model (Figure 3), The AUC values for
predicting Deletion frequency and 1 bp Insertion frequency were both greater than 90%
(Table S2). In summary, the position information was very important to our model, and
assigning different weights to different sequence loci, through the Attention mechanism,
was helpful to improve the prediction of the model.
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3.3. Model Comparison

Recently, five machine-learning models have been developed to predict the outcome of
DNA sequence repair, namely SPROUT [16], inDelphi [15], CROTON [17], FORECasT [14],
and Lindel [18]. SPROUT was a Gradient Boosting Decision Tree model that predicted nine
repair types, including average deletion length, and provided an independent dataset of
CRISPR/Cas9 editing results. CROTON utilized NAS, to automatically create a multi-task
deep Convolutional Neural Network framework, for prediction of CRISPR/Cas9 editing
outcomes, which can predict six repair types, including deletion frequencies. inDelphi
built three interconnected modules, based on neural networks and k-Nearest Neighbors,
aiming to predict microhomology (MH) deletions, MH-less deletions, and 1 bp insertions.
FORECasT built a multi-class Logistic Regression model, capable of predicting all possible
unique repair outcomes, and it provided one of the largest datasets of CRISPR/Cas9 editing
results, relative to inDelphi, SPROUT, and Lindel, for the establishment of Apindel. Lindel
was a Logistic Regression model; unlike the above models, it provided an exact category
criterion for predicting repair outcomes, including insertion and deletion sites, insertion
nucleotide types, and deletion length.

For a more comprehensive comparison with the five models mentioned above, we
applied the Apindel model, trained on the Lindel dataset, to the Lindel test set and the
FORECasT test set, and evaluated the predictive performance of the model using the mean
squared error (mse). The Apindel model trained on the FORECasT dataset was applied
to the randomly selected FORECasT test set, the SPROUT test set, and the Lindel test
set, and the predictive performance of the models was evaluated using the Kendall’s tau
rank correlation coefficient, Pearson correlation coefficient, or AUC between predicted and
observed values (Table S3).

3.3.1. Evaluation of Predictive Performance on 557 Predictive Labels

First, since Lindel was the only model in the published papers, so far, that predicted
557 repair outcomes, we compared the Apindel model trained on the Lindel data with
Lindel. We trained on the Lindel dataset and predicted the frequency of 557 classes of
indels. Comparing the results of our model and Lindel on the test set, our model worked
better (MSE = 0.000164 and 0.000172 for our model and Lindel, respectively). The above
results illustrated that our model had better performance, in predicting 557 repair outcomes.
To validate the generalization ability of Apindel, we analyzed the prediction performance



Cells 2022, 11, 1847 11 of 15

of Apindel on the independent FORECasT dataset. Predicting 557 classes of indels on the
FORECasT dataset did not work as well as on the Lindel test set (MSE = 0.000197). Based
on the previous research findings, that “the overall distribution of repair outcome types
was not the same across the different cell lines” [14], we speculated that this problem may
be caused by differences in repair outcomes between different cell lines.

3.3.2. Evaluation of Predictive Performance on Six Classes of Prediction Tasks

In the next step, Apindel was compared with other models on the CROTON test
set (described in detail in the “Data sources” section). First of all, since CROTON was
built based on the FORECasT dataset, we considered a comparison of the predicted edit
outcomes, with the CROTON model on the FORECasT data. Apindel achieved AUCs
greater than 90%, for both the deletion frequency and 1 bp insertion-frequency tasks, and
AUCs of 91%,94%, and 83% for the deletion frequency,1 bp Insertion frequency, and 1 bp
deletion frequency, respectively, which were the same as those of CROTON, and slightly
inferior to the other models, in terms of frameshift frequency prediction (Figure 4A).
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Figure 4. Performance comparison. The horizontal coordinates indicated the prediction tasks and
the vertical coordinates indicated the prediction performance of the models on the corresponding
datasets, characterized by the corresponding evaluation metrics. Different colors indicated different
models. (A) Shows the AUC values of Apindel and CROTON on the FORECasT test set. (B) Indicates
the comparison of the prediction performance of Apindel and SPROUT on the SPROUT test set.
(C,D) Denotes the AUC values and Pearson correlation coefficients of Apindel, inDelphi, CROTON,
FORECasT, and Lindel on the SPROUT test set. (E,F) Represents the comparison of Apindel and
CROTON on the Lindel test set.

Next, in order to test the accuracy and generalization ability of Apindel in predicting
DNA repair outcomes, we applied Apindel to the SPROUT dataset and the Lindel dataset,
which was compared with existing machine-learning-based predictors of CRISPR/Cas9
editing results: SPROUT, inDelphi, CROTON, FORECasT, and Lindel. Given that the
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inDelphi, FORECasT, and Lindel models predicted more detailed repair labels, while the
CROTON model predicted only six repair outcomes, including deletion frequency, we
would compare model performance from the following two aspects.

On the one hand, the repair outcomes predicted by Apindel, inDelphi, FORECasT,
and Lindel were organized into six repair tasks, for comparison (Figure 4C,D). Apindel out-
performed other models, for most of the prediction tasks (inferior to inDelphi, FORECasT,
and Lindel, for frameshift frequency). Especially in deletion frequency and 1 bp insertion
frequency, Apindel achieved AUC values greater than 90% and a Pearson correlation of
80% for 1 bp insertion frequency, indicating that Apindel achieved better prediction ability.

On the other hand, for CROTON, we could, intuitively, see that on the SPROUT
dataset, the prediction performance of Apindel was slightly inferior to CROTON. However,
on the Lindel test set, Apindel was better than CROTON (Figure 4E,F), indicating that the
prediction performance of Apindel was comparable to CROTON. It was worth noting that
Apindel could predict 557 repair labels, while CROTON could predict only 6 repair labels,
including deletion frequency. Apindel was more practical because it could predict the
repair outcomes in a more detailed and comprehensive way. For SPROUT, the performance
of Apindel was similar to or even better than SPROUT, for the three metrics (Figure 4B)
thatwere trained on the SPROUT dataset. In conclusion, Apindel ran robustly on different
experimental datasets, with high accuracy and generalization ability.

3.4. Apindel Reveals Important Sequence Loci Associated with Repair Outcomes

An important advantage of Apindel over other deep-learning-based frameworks was
that Apindel further incorporated an attention mechanism, thus allowing one to capture
important sequence loci affecting predicted DNA repair, by detecting the attention vectors
of samples. Here, we examined the distribution of the attention scores, by averaging the
attention vector α = (α1, · · · , α59)

T over all samples in the test dataset. In the FORECasT
test set (Figure 5A), the High-attention regions (HAR) [26] appeared near the cut site (i.e.,
the 25th Kmer to the 35st Kmer), and a similar finding was shown in the SPROUT test set
(Figure 5B). The above observations suggested that contextual sequences, around the 10 bp
window on either side of the cleavage sites, were critical for predicting repair outcomes, and
sequences farther away, relative to the cleavage sites (such as the 10th site near the 5′ end),
had a weaker effect on repair outcomes, which was consistent with previous findings [14].
Therefore, our study confirmed that nucleotides at different locations had different degrees
of effect on CRISPR/Cas9 editing outcomes, and the nucleotides near the cleavage sites
had the greatest influence.
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4. Discussion

As a simple and programmable nuclease-based genome editing tool, the CRISPR/Cas9
system has greatly improved the ability to perform precise editing in the human genome [27].
In recent years, the rapid development of CRISPR-based technology has expanded its ap-
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plication scope, and CRISPR technology has been applied to human diseases, cancer,
plant biology [28–30], etc. It can be seen that the CRISPR/Cas9 system has great appli-
cation prospects. Experiments demonstrated that the cellular-repair outcomes generated
by CRISPR/Cas9 were determined by local-sequence features. An attention-based deep
learning model was proposed, to accurately predict DNA-repair outcomes. Compared with
previous models, Apindel considered more comprehensive repair labels. It can predict
repair outcomes in more detail, contains a higher amount of information, and was more
practical. By fully taking advantage of the superior predictive capacity of deep learning
models [31] and the interpretability of the Attention mechanism [32], Apindel can, accu-
rately, predict DNA mutational outcomes and capture the important sequence sites that
affect the repair outcomes.

According to previous research [14], we knew that bases at different positions had
different effects on repair outcomes. Therefore, we considered adding Positional Encoding,
to represent the location information in the process of sequences encoding. In the “Model
Selection” section, it can be seen that Positional Encoding had a great influence on the
repair outcomes, and the Apindel model with Positional Encoding had better performance
than the Apindel_NoPE model, in predicting repair outcomes, indicating the necessity of
including Positional Encoding in the model.

In order to study the impact of location information on the prediction model more
intuitively, we added an attention mechanism to the model. By averaging the attention
vectors, we got a set of weights. Through weighting the output feature matrix, the predic-
tion performance of Apindel was improved. By observation, we found that bases near the
cleavage sites were the most important for the prediction of template-free CRISPR/Cas9
editing outcomes. It was consistent with the previous conclusion [14] and would suggest
researchers should pay more attention to the impact of sequences near the cleavage sites on
the repair outcomes.

Frameshift mutation refers to the deletion or addition of non-three multiples of bases
in the normal DNA molecule, which causes a series of coding errors to occur after this
position. Since frameshift mutation can lead to some serious consequences, we introduced
the prediction task of frameshift-mutation frequency, when testing the model performance.
However, to our surprise, the method based on deep learning is not doing well in pre-
dicting frameshift (e.g., Apindel and CROTON), which will become the focus of our later
research work.

5. Conclusions

In this paper, a novel DNA-repair-outcomes prediction model, Apindel was con-
structed. With introduction of the GloVe model and Positional Encoding, Apindel at-
tempted new feature representation methods, to embed sequence information into the
deep learning model; the BiLSTM model was used to extract contextual sequence features,
and the Attention mechanism was calculated to assign weights to the output matrix, to
characterize the different influence of different loci nucleotides on the repair outcomes.
The superior performance of Apindel was, further, confirmed by comparison with ex-
isting models. Our model used deep learning to comprehend the automatic learning
of sequence features between DNA and corresponding repair outcomes, avoiding the
unknown influence of the manual-feature-construction process on the model-prediction
outcomes. Thus, it is able to predict more comprehensive and detailed repair labels, with
higher accuracy and better utility. It is a new attempt of deep learning, in the direction of
DNA-repair-outcome prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11111847/s1, Supplementary Note; Table S1: Structure of
the Apindel prediction model; Table S2: Performance comparison of pre-selected models; Table S3:
Performance comparison of different models.
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