Skip to main content
. 2022 May 30;11(11):1609. doi: 10.3390/foods11111609

Table 4.

The classification of the accuracy of the logistic regression (LR), support vector machine (SVM), random forest (RF), convolution neural network (CNN), and residual neural network (ResNet).

Models Categ Parameter Vis-NIR (%) Parameter NIR (%)
Train a Val b Test c Train Val Test
SVM 0 2.0, 0.1, poly 95.9 94.8 91.4 6.6, 1.0, linear 99.4 100.0 96.6
1 1.2, 0.1, poly 98.4 96.3 92.7 1.0, 1.0, poly 100.0 100.0 96.3
2 1.0, 1.0, poly 1.00 88.0 93.2 1.0, 1.0, poly 100.0 100.0 95.9
LR 0 1 × 105, liblinear 100.0 89.7 93.1 100, lbfgs 99.4 93.1 98.3
1 1 × 105, liblinear 100.0 98.8 93.9 1 × 105, liblinear 100.0 100.0 100.0
2 1 × 104, liblinear 100.0 92.0 95.9 100, newton-cg 100.0 98.7 97.3
RF 0 8, 450 100.0 77.6 79.3 6, 750 100.0 74.1 81.0
1 7, 500 99.6 72.3 73.2 5, 550 98.8 86.7 87.8
2 8, 200 100.0 66.7 75.7 4, 250 99.1 98.7 93.2
CNN 0 500, 32, 0.001 99.4 98.3 93.1 500, 32, 0.001 100.0 100.0 98.3
1 500, 32, 0.001 97.6 97.6 92.7 500, 32, 0.001 100.0 100.0 98.8
2 500, 32, 0.001 100.0 98.7 93.2 500, 32, 0.001 99.5 100.0 98.6
ResNet 0 1000, 32, 0.005 100.0 94.8 93.1 600, 32, 0.005 100.0 93.1 86.2
1 1000, 32, 0.005 100.0 100.0 98.8 1000, 32, 0.005 100.0 100.0 97.6
2 1000, 32, 0.005 100.0 97.3 94.6 600, 32, 0.005 97.7 100.0 97.3

a,b,c represent training, validation, and test sets for the model; 0,1,2 represent Cabernet, Red grape and Munage, respectively, Categ mean Category of the grape. Parameters of the SVM, LR, RF, and CNN ResNet are shown. The parameters of the SVM, are (C, gamma, kernel); those of the LR are (C, solver); those of the RF are (n_estimator, max_depth); those of the CNN and ResNet are (epoch, batchsize, learning rate).