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Abstract

We discuss tradeoffs and errors associated with approaches to modeling health economic 

decisions. Through an application in pharmacogenomic (PGx) testing to guide drug selection for 

individuals with a genetic variant, we assessed model accuracy, optimal decisions and computation 

time for an identical decision scenario modeled four ways: using (1) coupled-time differential 

equations [DEQ]; (2) a cohort-based discrete-time state transition model [MARKOV]; (3) an 

individual discrete-time state transition microsimulation model [MICROSIM]; and (4) discrete 

event simulation [DES]. Relative to DEQ, the Net Monetary Benefit for PGx testing (vs. a 

reference strategy of no testing) based on MARKOV with rate-to-probability conversions using 

commonly used formulas resulted in different optimal decisions. MARKOV was nearly identical 

to DEQ when transition probabilities were embedded using a transition intensity matrix. Among 

stochastic models, DES model outputs converged to DEQ with substantially fewer simulated 

patients (1 million) vs. MICROSIM (1 billion). Overall, properly embedded Markov models 

provided the most favorable mix of accuracy and run-time, but introduced additional complexity 

for calculating cost and quality-adjusted life year outcomes due to the inclusion of “jumpover” 

states after proper embedding of transition probabilities. Among stochastic models, DES offered 

the most favorable mix of accuracy, reliability, and speed.
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Introduction

Decision analytic assessments of health policies and technologies play an important role 

in determining the pricing and reimbursement of health care services worldwide. These 

assessments draw on a range of modeling methods to inform policy and clinical decision 

making. Commonly used methods include decision trees, cohort and individual state 

transition (Markov) models, discrete event simulation, stochastic process theory models 

based on differential equations, and hybrid models that blend elements across approaches 

(e.g., Discretely Integrated Condition Event models).1–6

For a given health technology assessment or research question, best practice recommends 

model choice based on consultation with clinical, methodological, and policy experts.5,7 

This ensures that the model represents essential elements of the underlying disease or 

therapeutic processes, as well as the alternative strategies under consideration.

Our objective for this study was to compare alternative approaches to modeling health 

economic decisions. Specifically, we assessed model outputs, optimal decisions and model 

computation time for an identical decision problem modeled four ways: using a discrete 

time cohort state transition (MARKOV) model, an individual discrete time state transition 

microsimulation (MICROSIM) model, discrete event simulation (DES), and a stochastic 

theory-based model based on time delay differential equations (DEQ). Importantly, these 

models drew on an identical set of underlying parameters that should, we hypothesized, 

lead to equivalent (in expectation) cost and quality-adjusted life year (QALY) estimates 

and decision outcomes. Our results demonstrate that using commonly-applied discrete time 

model structure and adjustment methods, they do not.

An important contribution of our study is the exposition of key sources of modeling 

error and how they can affect the accuracy, reliability and resolution of model outputs. 

We demonstrate through an application how these errors can play out in practice. In 

particular, we show that adjustments must be made to discrete time individual and 

cohort state transition models to produce equivalent estimates as DES and DEQ models. 

These adjustments are necessary due to an interaction between competing events and the 

coarsening of continuous time into discrete time cycles—and are important in (common) 

situations where literature-based parameters are embedded within transition probability 

matrices in discrete-time Markov models. Finally, we also show that to achieve a given 

degree of output reliability, discrete time microsimulation models require considerably more 

Monte Carlo draws than a DES model. We include replication code (for the R statistical 

programming language) and simulation functions for all model types considered.

Background

Modeling Types

The following section provides basic information on the model types we consider. This 

information is not intended to be exhaustive of the details and assumptions of each method; 

we leave such comprehensive treatment to the literature.1,8,9 Rather, we highlight specific 
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aspects of each modeling approach that are germane to issues of output scope, resolution, 

variance/bias, and computational efficiency that we highlight in our results.

Discrete Time Cohort and Individual State Transition Models—State transition 

models (STM) are the most widely used modeling framework in health economic 

evaluation.3 STMs are conceptualized around a set of mutually exclusive and collectively 

exhaustive states (e.g., healthy, sick, dead). Models are further defined by an initial 

occupancy vector (i.e., a count or fraction of patients in each state at baseline) and a set of 

state transition rates (for a continuous time model) or probabilities at a specified cycle length 

(for a discrete time model). The vast majority of health economic modeling applications are 

based on the discrete time case,6 so we focus on that model type here.

In a discrete-time STM, an initial occupancy vector is modeled forward using a transition 

probability matrix for a defined time horizon or until all individuals enter an absorbing 

state (e.g., death). Values, such as health-related quality of life and costs, are assigned to 

each state. These state values, along with information on the amount of person-time spent 

in each state, are summarized (often with discounting) to produce outcome estimates on 

various quantities of interest (e.g., expected life expectancy, expected quality-adjusted life 

expectancy, and expected costs).

A key decision when considering a STM is whether to jointly simulate the collective 

experience of a cohort, or to simulate individual patient trajectories via first order Monte 

Carlo microsimulation. Advantages of cohort STMs (often referred to as Markov models) 

include their simplicity, computational efficiency, and ease of use. A disadvantage is that 

the Markovian “memoryless” assumption complicates applications in which patient history 

affects transition probabilities.10 While tunnel states provide a workaround, they can result 

in models with large numbers of states (i.e., “state explosion”).10

Microsimulation models are useful in applications where state transition probabilities 

depend on a patient’s history (e.g., time since disease onset, the occurrence of previous 

events, or time-varying response to treatment).4 More broadly, microsimulation models 

facilitate transition probabilities that are a function of any number of attributes. 

Microsimulation also affords the flexibility to capture a greater scope of outputs since the 

model can return estimates of the entire distribution of events, rather than just expected 

values. This level of detail could be important for informing multi-criteria decision analyses 

that base decisions on a wider array of criteria beyond expected quality-adjusted life 

expectancy and costs.11–14

The flexibility afforded by microsimulation comes at a cost, however, since the 

computational burden is large. As described below, these computational demands derive 

from three primary sources: first-order (stochastic) error; the need to simulate all time cycles 

for each individual, even if there is no event; and an additional increase in model output 

variance and bias that occurs when the precise timing of events are truncated to occur at 

cycle boundary points.
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Discrete Event Simulation—Discrete Event Simulation (DES) can also incorporate the 

timing and interdependency of events.7,15,16 Though its origins are in industrial engineering 

and operations research, DES is increasingly used in health technology assessments.3,5,15–17

DES models are similar to microsimulation models in that they simulate individual patient 

trajectories. As such, they can also be computationally demanding. One advantage, however, 

is that DES extends the flexibilities of microsimulation. For example, a DES model can 

allow the probability of some future event to depend on the time spent in a given state. 

In addition, DES models can more easily incorporate interdependencies in the timing of 

events and/or restrictions on available resources based on queuing or other constraints. An 

additional advantage is that DES models the timing of events and, unlike microsimulation, 

does not cycle through time periods when no events occur. These advantages afford DES 

more modeling flexibility and computational efficiency.

Differential Equations Modeling—Many decision and disease processes can be 

represented using stochastic process theory to deterministically solve for key outcomes.6 

These processes can be represented in terms of differential equations (DEQs), the solution 

to which provides the occupancy of an underlying process at any time t. Expected values 

of key outcomes (e.g., average discounted QALYs and costs) are obtained by integrating 

this solution from baseline (i.e., t=0) to some specified time T. Solutions to this integration 

problem exist for health economic applications in which transition rates are constant over 

time and/or evolve as a piecewise function of age.6 Standard differential equation models 

conform to the Markovian “memoryless” property, while coupled time delay differential 

equations can model processes in which the solution at any time depends on previous values 

of the function.18

Estimates derived from the numerical solution to a DEQ deterministically solve for expected 

outcomes, and thus eliminate stochastic uncertainty inherent to DES and microsimulation. 

A downside, however, is that the scope of modeled outputs is limited: DEQ solves for 

average outcomes but does not provide insights into higher order moments (e.g., variance). 

Moreover, model specification is challenging—making even minor changes to model 

structure is a nontrivial task. DES and microsimulation methods, by comparison, return 

information on the entire distribution of events and can be constructed and modified without 

advanced mathematical training.

A Taxonomy of Errors in Health Economic Modeling

As discussed above, modeling choices affect computational demands and the range of 

analyzable outputs. Model structure also determines the types of error—that is, differences 

between quantities of interest based on the underlying event generation process and the 

model’s output—that must be accounted for. Some errors are well-known and are shared 

across modeling approaches. Others are more nuanced, less widely acknowledged, and 

specific to certain modeling strategies. Finally, depending on their size, errors may nor may 

not affect optimal decisions—though ex ante it is difficult to know which errors could affect 

decision-making for any given application.
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This section, as well as Table 1, outlines a taxonomy of modeling error. We focus on errors 

that can affect estimates and decisions, and further distinguish between errors of reliability 
and uncertainty (i.e., error that can be addressed by increasing the number of simulated 

patients or through further research) and errors in expectation (i.e., errors that, even with 

an infinite number of simulated patients or with parameters with little-to-no uncertainty, 

would yield biased estimates and, possibly, different optimal decisions). We discuss ways 

to adapt model specification and execution to reduce and/or eliminate sources of error, and 

cover specific details on their implementation in the methods section and appendix.

To understand our error taxonomy it is useful to conceptualize the modeled process (e.g., 

the progression of a disease) occurring in continuous time. Ideally, one has data on the 

precise timing of all events experienced by the population of interest. In that case, one can 

estimate all competing event rates directly (e.g., using a multi-state model of event duration 

outcomes). Transitions among discrete states, moreover, can be summarized in terms of 

transition intensities in continuous time.

In practice, models must deviate from this ideal in meaningful ways. Researchers often do 

not have access to comprehensive data on the population of interest. Model parameters must 

therefore be curated from the published literature, or may be estimated via calibration with 

aggregate data on disease prevalence, incidence, etc.19 Literature-based parameters can take 

on any number of “flavors” (e.g., estimated event rates, odds ratios, probabilities, etc.) and 

there is no guarantee that what is published maps directly into the preferred model structure. 

Therefore, parameters are often transformed (e.g., rates are converted into probabilities for 

the selected cycle length) before embedding them within the model.

Even when the underlying data or parameters are available, assumptions are often made over 

whether model parameters are fixed or evolve differentially over time and/or with specific 

patient attributes (e.g., race, age, gender, etc.). These questions are particularly germane 

to models that draw on literature-based parameters because the population data underlying 

these parameters often do not align with the population of interest.

We define structural error as attributes of models and model parameters (e.g., time-

dependency of transition rates/probabilities, the number of overall states in the model) that 

result in model estimates that deviate from the “true” underlying event generation process. 

It is worth differentiating structural errors from parameter heterogeneity, or differences in 

model parameters across relevant population sub-groups. With heterogeneity, the overall 

structure of the model could accurately represent the event generation process. However, 

decisions could be improved by estimating model outputs and making separate decisions for 

each sub-population.20

Model parameters are also often subject to sampling and estimation uncertainty. Estimation 
errors are inherent to all model types discussed here. Understanding the role of estimation 

uncertainty is the focus of a growing body of research on VOI.21–24 However, for the 

purposes of this study we sidestep structural and estimation errors because we specify an 

underlying event generation process in which the structure and values of the parameters are 

pre-specified.
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Even when a parameter’s “true” value is known, the realization and timing of events among 

otherwise identical patients may vary. This stochastic (first-order) variation is inherent to 

modeling types that utilize Monte Carlo methods to simulate individual patient trajectories. 

For these methods, a series of simulations, each with fixed simulated patient size M, 

will produce varying estimates of model outputs. Absent any other errors, this series of 

simulations will yield a set of estimates that center around the outcome’s expected value—

and as M increases this set of estimates will converge towards this value. But as long as M 
is finite, any given model simulation result will deviate from the expected value. Mirroring 

the literature, we classify this type of error as stochastic error.20 Cohort STMs and DEQ 

modeling do not suffer from stochastic error because expected values of model outcomes are 

deterministic solutions from the model.

Stochastic error can never be eliminated (doing so would require simulating an infinite 

population) but it can be reduced. Best practice recommends a sufficient number of Monte 

Carlo draws to reduce stochastic error to within an acceptable tolerance level20—though as 

we show below, the number of simulated patients needed to achieve a fixed tolerance level is 

significantly higher with microsimulation than with DES.

Models that coarsen the timing of events into discrete cycles (e.g., cohort-based Markov 

models and discrete-time microsimulation models) can create additional errors. Integration 
error occurs when the model accumulates events at time cycle boundaries (either at the 

beginning or the end) rather than at any point in continuous time. Applications in health 

economics and health technology assessment frequently rely on half-cycle corrections or the 

life-table method, but other methods (e.g., those based on Simpson’s rule) can achieve an 

even greater degree of accuracy.25

Discrete time models (e.g., MARKOV, MICROSIM) exhibit embedding error if transition 

probabilities are not specified to align with the underlying continuous time process. These 

errors are most likely to occur in models that rely on literature-based parameters that are 

transformed and embedded using widely-used conversion formulas (e.g., conversion of event 

rates to probabilities using P = 1 − e−rt, where r is the rate and t is the time cycle). These 

errors are also more likely to occur in circumstances where events are clustered near each 

other (e.g., time-varying probabilities of complications or events after a procedure, drug 

initiation, etc.).

Embedding errors arise because if not applied properly, standard conversion formulas do not 

separately accommodate more than one competing event.6,26–29 This observation is relevant 

because in many applications, the modeled process is conceptualized around multiple 

competing events or sequences of events occurring in continuous time (e.g., progression 

to or among various disease states or to an absorbing death state).

If probabilities are not embedded properly, standard rate-to-probability conversion processes 

effectively rule out the possibility of two or more events occurring in the same cycle. 

Suppose that the underlying process progresses along three states: A→B→C. In our 

application below, for example, healthy (A) individuals can develop a chronic disease (B) 

requiring a daily maintenance drug that can result in an adverse event (C). When specified to 
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approximate the underlying continuous time process, the probabilities in a transition matrix 

should reflect the possibility of both B and C occurring in the same cycle. That is, from state 

A there are two event sequences that can happen within a single cycle: (1) A→B; and (2) 

A→B→C.

Accounting for these event sequences requires an embedded transition matrix that includes a 

non-zero A→C transition probability—that is, a transition that is seemingly inconsistent 

with the underlying disease progression process. This need arises because the simple 

conversion of the rate of B (rB to the probability of B (i.e., P B = 1 − e−rBt) returns the 

marginal probability of event B occurring within the cycle. This marginal probability is 

the sum or union of all the probabilities of experiencing the event, i.e., P(B) = P(A→B) 

+ P(A→B→C).i Thus, embedding the marginal probability as the probability of A→B 

transitions in a cycle will both overstate the correct A→B transition probability and rule out 

any A→B→C transitions within a cycle.

This implicit assumption (i.e., that there are no A→B→C transitions within the time cycle) 

means that an improperly embedded transition matrix no longer approximates a continuous 

time process. More technically, it means that the process may no longer be expressed in 

terms of an underlying generator matrix of continuous transition intensities.30 Specifying a 

transition matrix consistent with an underlying generator matrix is important not only for 

accurate modeling of the underlying continuous time process, but also for changing Markov 

cycle lengths.26,31 Otherwise, matrix transformation routines (e.g., based on unit roots from 

eigendecomposition of a specified transition probability matrix) can result in transformed 

transition matrices with negative probabilities and/or without unique solutions.26,31

Approaches to addressing embedding error complicate the structure and execution of 

discrete time cohort and microsimulation models.ii If transitions can first be specified 

(or estimated) as rates and summarized in a transition intensity matrix, then properly 

embedding a transition probability matrix is straightforward: one simply takes the matrix 

exponential of the transition intensity matrix scaled by the time cycle duration. The result 

is the solution to Kolmogorov’s forward equation, and this matrix can be used as the 

transition probability matrix for the model.27,29 Note, however, that this transformation 

process requires the inclusion of non-Markovian event “accumulators” in the transition 

matrix. These accumulators ensure that model outputs (e.g., average QALYs and costs) 

account for events that occur during “jump-over” states that arise from the embedding 

process (i.e., the model must be structured to account for any cost or utility implications 

of event B for the A→C transitions in the example above). The appendix and replication 

code to this study demonstrates how to incorporate non-Markovian accumulators within a 

transition probability matrix.

iThe same logic still holds if events B and C were simply competing and not sequential events, in which case the marginal probability 
of event B reflects P(A→B) and P(A→B & A→C).
iiOne tempting solution for embedding error is to reduce the cycle length so that the likelihood of multiple transitions within a single 
cycle approaches zero. Shortening the cycle length carries additional computational costs. More importantly, a unique solution to a 
time step transformation still requires a generator matrix of continuous transition intensities as specified above. Otherwise, converting 
(marginal) literature-based probabilities to rates, and then using these rates to change the time step (e.g., using eigendecompositions) 
can result in nonunique solutions and/or even negative probabilities.31 Thus, when starting from a transition probability matrix (as 
opposed to a transition intensity matrix), shortening the time step does not fundamentally address embedding error issues.
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Finally, microsimulation models also suffer from truncation error, which introduces 

variance and a small amount of bias to the modeled estimates. This error occurs because 

information on the precise timing of an event occurring in continuous time is lost when 

events times are “rounded up” or “rounded down” to the boundary point in the cycle. These 

rounding errors, when aggregated across individual simulated patients in a microsimulation, 

distort both the mean and the variance of outcome estimates relative to what would be 

estimated in a continuous time model (e.g., DES) that can specify each individual’s event 

timing to any degree of precision.32iii

Recall from the discussion above that relative to DES, microsimulation models require a 

greater number of simulated patients to achieve the same tolerance level. This requirement 

derives, in part, from the increase in variance from truncation error.iv To reduce the 

influence of truncation error, modelers can increase the number of simulated patients or 

can reduce the cycle length (e.g., from 1 year to 1 day) to allow for more precise timing of 

events. Both of these strategies carry additional computational demands, however.

Methods

Application: Pharmacogenomics

Our modeling application draws on ongoing work in pharmacogenomics (PGx). PGx 

involves the use of genetic testing to guide drug selection and/or dosing based on 

associations between genetic phenotypes and drug metabolism. All model parameters 

(shown in Table 2) were selected to both approximate a common PGx scenario and to 

produce results that highlight differences across modeling approaches.

We focus on a common PGx decision problem: whether to utilize testing to guide drug 

selection for individuals with a genetic variant that can affect metabolism of a chronic 

disease medication. Specifically, we consider a population of healthy 40-year-old women at 

risk of developing an indication (10% incidence rate over 10 years) for a health condition 

with a standard maintenance medication therapy, but where there is a more expensive and 

more effective pharmacogenomic alternative available to individuals with a variant.

We assume all who develop the chronic condition incur a one-time treatment cost of 

$10,000, a transient (one-year) 0.05 utility decrement, and are placed on daily maintenance 

medication ($0.25 per day) for life. Individuals on this medication are at risk of an adverse 

event that affects 25% of individuals in the first year they are on the drug. The adverse event 

has a 10% case fatality rate, carries a one-time $20,000 cost among decedents and, among 

the survivors, a one-time $25,000 cost and 0.1 utility decrement for life.

iiiIntuitively, integration error occurs when events are moved from their precise time to the beginning or end of the cycle. Truncation 
error arises because information on the precise timing of events is lost when all events in the cycle are truncated to the cycle boundary 
point.
ivIn the Appendix, we demonstrate how truncation error can affect model output variance by constructing a straw-man DES model 
that truncates DES event times at a time interval (year). Because DES models model the precise timing of events, a comparison 
of a standard DES to a truncated DES model (holding all other parameters and random seeds fixed) can isolate the contribution of 
truncation error. The plot of model estimate convergence shows clearly that the variance of model outputs is considerably greater with 
the truncated DES model.
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We compare the above reference case (“no testing”) scenario to an alternative scenario 

(“PGx”) in which all individuals who develop the condition receive a ($200) genetic test 

as part of their initial diagnosis. Patients who test positive for the variant (20% population 

prevalence) are placed on a more expensive ($3/day) alternative maintenance medication for 

the remainder of their life. This medication lowers the risk of the adverse event (relative 

risk 0.8). Individuals without the variant do not benefit from taking the pharmacogenomic 

alternative (relative risk 1.0), so remain on the standard ($0.25/day) therapy.

We model a 40-year time horizon with background mortality based on age- and gender-

based mortality as summarized using a Gompertz model fit to U.S. life-table data.18 We 

assumed that all events were not recurrent. All costs are provided in $2019. We also 

assume a standard discount rate of 3%. Key model outputs included average discounted 

QALYs and costs, the incremental cost-effectiveness ratio (ICER) comparing the PGx vs. no 

testing strategies, and Net Monetary Benefit (NMB) based on a willingness-to-pay (WTP) of 

$100,000 per QALY.

Simulation Models

We developed four models: (1) a differential equations [DEQ] model, which we used as 

the reference model for comparison with other models since it deterministically solved 

for average cost and QALY outcomes; (2) a cohort-based discrete-time state transition 

model [MARKOV]; (3) an individual discrete time state transition model [MICROSIM]; 

and (4) a discrete event simulation model [DES]. For our primary results the MARKOV 

and MICROSIM models utilized 10 million simulated patients. For the MARKOV and 

MICROSIM models we also produced results based on three cycle lengths: a one-year cycle 

(1Y), a monthly (1M) cycle, and (where feasible) a daily cycle (1D).

For MICROSIM and MARKOV, we modeled each model-cycle-length combination using 

two approaches: (1) by converting rates to probabilities using a standard conversion formula, 

i.e., P t = 1 − e−rt, where r is the rate and t is the time cycle; and (2) by embedding 

transition probabilities by taking the matrix exponential of the transition intensity matrix 

(G) as defined by the rates as summarized above and in Table 2, i.e., P t = etG. We 

augmented the embedded models with non-Markovian accumulators to ensure that utility 

and cost estimates accounted for competing within-cycle events. We label results based on 

this embedded transition intensity matrix using -EMB in the model output.

Stochastic Convergence and Model Run Time

We investigated stochastic convergence of estimates of the NMB for the DES and 

MICROSIM with deterministic NMB estimates from the DEQ and MARKOV-based models. 

We did so by varying the number of Monte Carlo draws from one thousand to 1 billion 

patients, though we also considered simulation sizes up to 100 billion patients using a 

bootstrapping (with replacement) procedure.

We assessed model run time by re-estimating each model 100 times using different random 

seeds. From these results we measured key moments (mean, variance) in the run-time 

distribution. For this benchmarking procedure we simulated ten million patients for the DES 
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and MICROSIM models. To ensure fair comparison, runtime benchmarking was run on a 

high-performance computing cluster requesting 1 CPU and 120G memory. All models were 

run using the R statistical software program (version 4.0.2).

Results

Baseline Results

Based on the DEQ model, PGx testing yielded an ICER of $103,212/QALY vs. a 

reference no-testing strategy (Table 3). A Markov model with an annual cycle duration 

and transition probabilities converted using P t = 1 − e−rt resulted in an ICER of $91,929/

QALY. Therefore, at a willingness-to-pay threshold of $100,000/QALY, different decisions 

on the optimal treatment strategy would be made depending on the choice of a Markov vs. 

DEQ model. Only at successively shorter cycle durations (e.g., 1 month and 1 day with 

standard probability conversion) did Markov model results resemble those obtained using 

DEQ. For example, a Markov model with a daily time cycle yielded an ICER of $103,173/

QALY.

Markov models embedded by exponentiating the transition intensity matrix yielded ICERs 

comparable to the DEQ for all time cycle durations (Table 3). For example, with a yearly 

time cycle MARKOV-EMB produced an ICER of $103,181 vs. $103,212 using DEQ.

Among stochastic models with 10 million simulated patients, only DES yielded ICER and 

NMB results similar to the DEQ and MARKOV-EMB models. The DES produced an 

ICER of $103,345 while the microsimulation models—including those that used embedded 

transition probability matrices—yielded ICERs ranging from -$15,925 (i.e., PGx strategy 

dominated) to $28,199.

The Appendix further investigates our primary results by constructing a cost-effectiveness 

acceptability frontier based on a probabilistic sensitivity analysis (PSA). This PSA is based 

on attaching uncertainty distributions to each model parameter, and re-estimating each 

model type on a K=1,000 sized PSA sample.

Stochastic Model Convergence

Among the Monte Carlo-based models considered, convergence with deterministic outcomes 

from the DEQ was achieved with considerably fewer simulated patients for DES as 

compared with MICROSIM (Figure 1). Only with short (1-day) cycle durations and/or 

embedding corrections and 1 billion or more simulated patients did the MICROSIM models 

consistently estimate similar outcomes as the DEQ or MARKOV-EMB models. By contrast, 

DES models with 1 million patients or more reliably produced average NMB outcomes 

similar to the DEQ and MARKOV-EMB models.

Computation Time

Computation time differed across approaches. Deterministic solutions based on DEQ 

(median runtime 3.6sec) and MARKOV with a yearly cycle (median=0.01sec using standard 

conversion formulas and 1.1sec for the embedded model based on the transition intensity 

matrix) had the fastest runtimes. By comparison, MARKOV with a daily cycle had a median 
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runtime of 8.7 minutes. Among Monte-Carlo-based models, the DES had a median run time 

of 48.2 seconds for 10 million patients, while MICROSIM with an annual cycle duration 

had a median run-time of 19.0 minutes. Due to computational constraints we did not test 

run-time for a MICROSIM with a daily cycle length.v

Discussion

Modeling choices affect the scope, accuracy and reliability of decision outcomes in health 

economic assessments. By comparing outputs and optimal decisions across four commonly 

used modeling approaches, we show that care must be taken when structuring and executing 

models.

Given the predominance of discrete time cohort state transition (Markov) models in health 

technology assessments,3 one noteworthy observation from our study is that embedding 

transition matrices using commonly-used rate-to-probability conversion formulas can de-

couple a Markov model from the continuous time process it aims to represent. In essence, 

an improperly-embedded discrete time model will rule out events and event sequences from 

occurring within a time step that would, with some probability, occur in continuous time. 

While this is certainly not a new observation,6,26–29 our results demonstrate that improper 

embedding can meaningfully affect decision outcomes.

Our results also highlight a telltale sign of embedding problems: outcomes change as shorter 

time cycles are used. While it may be tempting to simply adopt a shorter time cycle to 

reduce the likelihood of two competing events occurring within the time step, it is worth 

emphasizing that a unique solution to time-step transformations requires that the transition 

matrix be expressible in terms of a generator matrix of transition intensities—precisely the 

matrix needed to properly embed the original transition matrix in the first place.31 In other 

words, simple transformations of rates to probabilities for a shorter time cycle does not 

guarantee a unique or even correct solution.

Our study was also the first to run a “horse-race” between Monte Carlo-based 

modeling approaches. In this case, DES demonstrated clear advantages. DES was both 

computationally more efficient and resulted in decision outcomes that were nearly identical 

(with a sufficient number of simulated patients) to DEQ and embedded Markov models. 

By contrast, microsimulation required substantially more simulated patients to yield reliable 

results and, when it did converge, resulted in slightly different average outcomes (though 

no difference in optimal decisions) even when using embedded transition matrices; we 

explore several reasons why in the Appendix. It is worth noting, however, that our 

application employed standard Monte-Carlo-based sampling methods. Depending on a 

study’s objectives, outcome variance for estimates of the incremental NMB for one strategy 

vs. another can be further reduced using additional variance reduction techniques.32,33

vTo provide context for how long a daily MICROSIM would take to complete, a cohort-based Markov model with a daily cycle had a 
median 522sec of runtime, as compared with 0.00697sec for the same model with an annual cycle length—nearly 75,000 times longer. 
Using this ratio to scale the yearly MICROSIM result (19.0 minutes) implies a model run time of 23,758 hours.
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To conclude, it is worth offering guidance based on our study that can aid future 

modeling decisions for other researchers. For standard health economic assessments, 

Markov models offer good balance between speed and accuracy. However, if competing 

events or event sequences are clustered near each other (e.g., complications after a procedure 

or prescription), modelers should take great care to ensure that embedding biases do not 

materially affect decision outcomes. Proper embedding complicates model structure since 

non-Markovian accumulators must be included to capture the cost and utility changes from 

sojourns implied by “jumpover” states. However, a correctly embedded transition matrix 

also means that model results will not change if longer time cycles are used. This could 

be important in applications that aim to utilize computationally intensive PSAs and VOI 

methods to understand model sensitivity and guide future work. That is, rather than a 

(computationally demanding) monthly cycle, a yearly cycle could be used to conduct VOI 

analyses based on a properly embedded Markov model. Finally, our results make clear 

that if the modeling scenario calls for the use of a Monte-Carlo model, DES models avoid 

many of the pitfalls that complicate microsimulation and yield a favorable mix of accuracy, 

reliability, and speed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Convergence of net monetary benefit outcome for stochastic models to deterministic model 

outputs. Embedded microsimulation with monthly and daily time cycles not simulated 

due to computational constraints (i.e., for some simulated patient sizes, model runtimes 

of > 1 year in high-performance computing environment). DEQ, differential equations 

model; DES, discrete event simulation; MARKOV, discrete-time (1-year cycle) Markov 

model with rate-to-probability adjustment based on P(t) = 1 – e−rt, where r is the rate 

and t is the time step; MARKOV-EMB, embedded discrete-time (1-year cycle) Markov 

model with probability matrix based on P(t) = etG, where t is the time step and G is a 

transition intensity matrix; MICROSIM-[D/M/Y], discrete-time (daily/monthly/yearly time 

cycle) microsimulation model with rate-to-probability adjustment based on P(t) = 1 – e−rt, 

where r is the rate and t is the time step; MICROSIM-EMB-[M/Y), embedded discrete-time 

[monthly/yearly time cycle) microsimulation model with probability matrix based on P(t) 
= etG, where t is the time step and G is a transition intensity matrix; NMB, net monetary 

benefit (willingness to pay $100,000 per quality-adjusted life year).
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Figure 2. 
Model runtime comparison. Each whisker plot shows the distribution of runtime based 

on 100 model runs using the same random seed (for stochastic models). For Monte Carlo-

based models, number of simulated patients is provided in parentheses. DEQ, differential 

equations model; DES, discrete event simulation; MARKOV, discrete-time (1-year cycle) 

Markov model with rate-to-probability adjustment based on P(t) = 1 – e−rt”, where r is the 

rate and t is the time step; MARKOV-EMB, embedded discrete-time (1-year cycle) Markov 

model with probability matrix based on P(t) = etG, where t is the time step and G is a 

transition intensity matrix; MICROSIM-[D/M/Y], discrete-time (daily/monthly/yearly time 

cycle) microsimulation model with rate-to-probability adjustment based on P(t) = 1 – e−rt, 

where r is the rate and t is the time step; MICROSIM-EMB-M/Y), embedded discrete-time 

[monthly/yearly time cycle) microsimulation model with probability matrix based on P(t) 
= etG, where t is the time step and G is a transition intensity matrix; NMB, net monetary 

benefit (willingness to pay $100,000 per qualityadjusted life year).
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Table 2

Model Parameters

Description Parameter Name Parameter Value

Discount rate disc 0.03

DES simulations to perform (1000s) n 1000

Diff Eq Time step for DEQ approach resolution 0.019

Time horizon (years) of simulation horizon 40

Willingness to pay threshold used for NMB ($1000s / QALY) wtp 100

Shape Parameter from Gompertz model of secular death for 40yr female fit using 2012 U.S. Social 
Security mortality data. shape 0.101

Rate Parameter from Gompertz model of secular death for 40yr female fit using 2012 U.S. Social 
Security mortality data. rate 0.001

Population prevalence of genetic variant. p_g 0.2

Condition indication percentage r_a_pct 10

Condition indication time period (years) r_a_dur 10

Probability of ordering the genetic test. p_o 1

Probability of death from adverse drug event. p_bd 0.1

Adverse drug event percentage r_b_pct 25

Adverse drug event time period (years) r_b_dur 1

Relative risk of adverse drug event among patients with genetic variant present and alternative 
therapy prescribed. rr_b 0.8

Initial cost at indication ($1000s). c_a 10

Cost of standard drug therapy. c_tx 0.25

Cost of pharmacogenomic alternative drug therapy. c_alt 3

Cost of adverse drug event survival ($1000s). c_bs 25

Cost of adverse drug event case fatality ($1000s). c_bd 20

Cost of genetic test. c_t 200

Disutility of developing condition. d_a 0.05

Disutility duration (years) after developing condition. d_at 1

Lifetime disutility of adverse drug event among survivors. d_b 0.15

DES = Discrete Event Simulation

NMB = Net Monetary Benefit

QALY = Quality-adjusted life years
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Table 3

Outcomes by Model Type

ICER:
PGx Testing vs.

No Testing

NMB:
PGx Testing

vs.
No Testing

$100k/QALY

Deterministic Models

 Differential Equations 103,212 −18.4

 Markov Cohort - Basic Rate-to-Probability Adjustment
1

  Daily Cycle 103,173 −18.2

  Monthly Cycle 102,175 −12.6

  Yearly Cycle 91,929 51.9

 Markov Cohort - Embedded
2

  Daily Cycle 103,206 −18.3

  Monthly Cycle 103,158 −18.1

  Yearly Cycle 103,181 −18.2

Stochastic Models (M = 10 million simulated patients)

 Discrete Event Simulation 103,345 −19.1

 Microsimulation - Yearly Cycle (15,925) −84.0

 Microsimulation - Daily Cycle 2,286 25.0

 Embedded Microsimulation - Yearly Cycle (4,880) −296.0

 Embedded Microsimulation - Monthly Cycle  28199  −158

Notes:

1
Basic rate-to-probability adjustment based on P(t) = 1 - e-rt, where r is the rate and t is the time step.

2
Embedded probability matrix based on P(t) = etG, where t is the time step and G is a transition intensity matrix.

ICER = Incremental Cost-Effectiveness Ratio

NMB = Net Monetary Benefit

Negative ICERs indicate the PGx strategy is dominated but are shown to demonstrate magnitude of differences across modeling approaches.

ICER and NMB values will not match those constructed manually due to rounding in the reported average costs and QALY estimates.
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