Skip to main content
. Author manuscript; available in PMC: 2022 Jun 9.
Published in final edited form as: Multimed Tools Appl. 2019 Jul 23;78(22):31581–31603. doi: 10.1007/s11042-019-07959-6

Table 1.

Proposed CNN architecture layer information. CNN-1,2,3 have 3-channel inputs. CNN-4 has 1,3, and 4-channel inputs. To simplify the table, dropout, pooling, ReLU layers are not listed

Architecture Layer Kernel Filter Output
CNN-1,2,3 (Facial Component Segmentation Input: 16 × 16 blocks) conv1 5 × 5 16 16×16×16
conv2 5 × 5 16 8×8×16
conv3 5 × 5 32 4×4×32
conv4 4 × 4 32 1×1×32
CNN-4 (Facial Expr. Recognition Input: 64 × 64 full image) conv1 5 × 5 64 64×64×64
conv2 5 × 5 32 32×32×32
conv3 5 × 5 32 16×16×32
conv4 5 × 5 64 8×8×64
conv5 4 × 4 64 1×1×64