Table 7.
Methods | Database | #Expression | Accuracy (%) |
---|---|---|---|
HoG + NNE [6] | RaFD, TFEID, JAFFE | 5 | 93.75 |
Facial Components Detection + KNN [36] | RaFD | 6 | 75.61 |
Viola & Jones + AAM +ANN [13] | RaFD | 7 | 89.55 |
Surf Boosting [61] | RaFD | 6 | 90.64 |
Facial Components Detection + Fuzzy [36] | RaFD | 6 | 93.96 |
CNN [26] | RaFD | 6 | 94.16 |
Cascade CNN [81] | RaFD | 6 | 93.43 |
LBP + SVM [2] | MUG | 7 | 77.14 |
LBP + Geometric Features + SVM [28] | MUG | 6 | 83.12 |
CNN [26] | MUG | 6 | 87.68 |
Gabor + NN [19] | MUG | 6 | 89.29 |
PCA + SRC [5] | MUG | 7 | 91.27 |
Landmark points + SVM [3] | MUG | 6 | 92.76 |
Proposed method | RaFD(3-channel raw image) | 6 | 89.44 |
RaFD (1-channel final-iconize) | 6 | 90.55 | |
MUG (4-channel combine) | 6 | 93.33 | |
RaFD (4-channel combine) | 6 | 94.44 |