Skip to main content
. Author manuscript; available in PMC: 2022 Jun 9.
Published in final edited form as: Multimed Tools Appl. 2019 Jul 23;78(22):31581–31603. doi: 10.1007/s11042-019-07959-6

Table 7.

Performance comparison of the proposed cascaded CNN structure with different studies

Methods Database #Expression Accuracy (%)
HoG + NNE [6] RaFD, TFEID, JAFFE 5 93.75
Facial Components Detection + KNN [36] RaFD 6 75.61
Viola & Jones + AAM +ANN [13] RaFD 7 89.55
Surf Boosting [61] RaFD 6 90.64
Facial Components Detection + Fuzzy [36] RaFD 6 93.96
CNN [26] RaFD 6 94.16
Cascade CNN [81] RaFD 6 93.43
LBP + SVM [2] MUG 7 77.14
LBP + Geometric Features + SVM [28] MUG 6 83.12
CNN [26] MUG 6 87.68
Gabor + NN [19] MUG 6 89.29
PCA + SRC [5] MUG 7 91.27
Landmark points + SVM [3] MUG 6 92.76
Proposed method RaFD(3-channel raw image) 6 89.44
RaFD (1-channel final-iconize) 6 90.55
MUG (4-channel combine) 6 93.33
RaFD (4-channel combine) 6 94.44