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a b s t r a c t

Despite a growing literature on the impacts of the COVID-19 pandemic, scant evidence
currently exists on its impacts on air quality. We offer an early assessment with cross-
national evidence on the causal impacts of COVID-19 on air pollution. We assemble a
rich database consisting of daily, sub-national level data of air quality for 164 countries
before and after the COVID-19 lockdowns and we analyze it using a Regression Disconti-
nuity Design approach. We find the global concentration of NO2 and PM2.5 to decrease by 5
percent and 4 percent, respectively, using data-driven optimal bandwidth selection. These
results are consistent across measures of air quality and data sources and robust to various
model specifications and placebo tests. We also find that mobility restrictions following
the lockdowns are a possible explanation for improved air quality.

© 2020 Published by Elsevier Inc.
1. Introduction

It has by now become clear that the COVID-19 pandemic is not only a global health emergency but has also led to a major
global economic downturn. An emerging body of economic literature has examined the negative impacts of COVID-19 on a
range of outcomes, but scant evidence currently exists on the impacts of the COVID-19 crisis on air quality.1 Given the linkage
of air pollution to heart and lung damage and other diseases (Brunekreef and Holgate, 2002; Liu et al., 2019), understanding
howair quality is affected during the COVID-19 pandemic provides important empirical evidence for health policies, as well as
post-pandemic economic policies that involve trade-offs between economic gains and environmental losses.
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The few existing studies focus on country-specific case studies rather than investigate the impacts of the pandemic on the
global scale and have yet to offer conclusive evidence. Employing a difference-in-difference model that compares Chinese
cities with andwithout the pandemic-induced lockdownpolicies, He et al. (2020) find that city lockdowns led to considerable
improvement in air quality as measured by Air Quality Index (AQI) and PM2.5. This result is consistent with Brodeur et al.
(2020) findings for the United States that ‘safer-at-home’ policies decreased PM2.5 emissions. However, using a similar
difference-in-difference approach, Almond et al. (2020) show that COVID-19 had ambiguous impacts and might even
decrease air quality in Hubei, the province at the center of the outbreak in China. To our knowledge, Lenzen et al. (2020) and
Venter et al. (2020) are the only exceptions that examine the pandemic impacts on global air quality. Using an input-output
model for 38 regions around the word, Lenzen et al. (2020) find the pandemic to reduce greenhouse gas, PM2.5, and air
pollutants by 4.6 percent, 3.8 percent and 2.9 percent of the global annual totals, respectively. Comparing air quality during
the pandemic with that in previous years, Venter et al. (2020) analyze station-based air quality data in 34 countries and find
concentration of NO2 and PM2.5 to decrease by approximately 60 percent and 31 percent.2

We add several new contributions to the emerging literature on the pandemic impacts on air pollution. We offer global
estimates for the causal impacts of COVID-19 on air quality in 164 countries using a Regression Discontinuity Design (RDD)
approach in a short window of time before and after each country implemented its lockdown policies. Since the lockdown
policydas most society-wide regulationsdcannot be randomized across countries, the RDD offers us the most rigorous
evaluation model that is available. We also provide estimates for several different measures of air quality, including NO2 and
PM2.5 (for our main analysis) and O3, PM10, and SO2 (for robustness checks). These various indicators help strengthen the
estimation results.

Finally, we combine a variety of real-time data sources for richer analysis. We obtain daily data on air pollution at the more
disaggregated, sub-national level from satellite data and station-based data. We combine these data with the Oxford COVID-
19 Government Response Tracker, a unique database on government policy responsiveness to COVID-19. We supplement our
analysis with data from other sources including the National Oceanic and Atmospheric Administration, Google Community
Mobility Reports, World Bank World Development Indicators, WHO Global Ambient Air Quality Database, and Economist
Intelligence Unit.

The rich database that we assemble allows us to address a key challenge in cross-country analysis, which is to construct
comparable lockdown dates for different countries. Indeed, the term ‘lockdown’ can refer to anything from mandatory
quarantines to bans on events and gatherings, businesses closures, or non-mandatory stay-at-home recommendations. Some
governments immediately respond to the outbreak by implementing a complete (regional or national) lockdown (e.g., China,
Italy), while some implement a gradual lockdown in a staggering manner for different locations (e.g., the United States).

We find strong evidence for reduced air pollution after the lockdowns, with more reduction for a larger window of time
around the lockdown dates. In particular, the global decreases in NO2 and PM2.5 hover around 5 percent and 4 percent using
the optimal bandwidths of 62 and 88 days after the lockdowns, respectively. We performvarious placebo tests and robustness
tests using falsified lockdown dates, different indicators of air quality and government policy indexes, alternative bandwidth
specifications, functional forms, and inclusion of different covariates.3 Our findings suggest that mobility restrictions
following the lockdowns can be a channel that explains the improvement in air quality.
2. Data

To examine the relationship between COVID-19 and air quality, we use two measures of air pollution, namely fine par-
ticulate matter PM2.5 (mass concentration of particles with diameters�2.5 mm) and nitrogen dioxide NO2. PM2.5 is a common
cause for adverse health outcomes such as chronic obstructive pulmonary disease and lower respiratory infection causing
death of nearly three million people globally (Gakidou et al., 2017). At the same time, NO2 is the leading source of childhood
asthma in urban areas (Achakulwisut et al., 2019).

We obtain high-resolution global NO2 data from the Sentinel-5P/TROPOMI (S5P) instrument of the European Union’s
Copernicus programme. As an alternative air-quality measure, we use daily station-based air quality index (AQI) from the
World Air Quality Index (WAQI) project. However, given certain limitations with station-based data (such as slower reporting
and likely non-random locations), the satellite data are our preferred data for analysis. Finally, we obtain sub-national data on
daily rainfall and temperature from the National Center for Environmental Prediction (NCEP) at the National Oceanic and
Atmospheric Administration (NOAA).

We subsequently merge the air pollution data with the government stringency data from the Oxford University’s COVID-
19 Government Response Tracker (OxCGRT), which contains information on various lockdown measures, such as school and
2 A recent study applies time series analysis to historical data to predict the impacts of pandemic on air pollution (Smith et al., 2020). Other studies
examine instead the related impacts on health outcomes caused by the pandemic-induced changes in air quality (Cicala et al., 2020; Cole et al., 2020;
Isphording and Pes,tel, 2020).

3 We also find some limited evidence that countries with a higher share of trade and manufacturing in the economy have more reduced air pollution
after the lockdowns, as do countries with an initially lower level of air pollution. But the opposite result holds for countries near the equator (see Appendix
C).
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workplace closings, travel restrictions, bans on public gatherings, and stay-at-home requirements (Hale et al., 2020). The
OxCGRT data measure government stringency responses on a scale of 0e100.

To explore a potential channel through which COVID-19 affects air quality, we collect data on global mobility from Google
Community Mobility Reports (GCMR). The GCMR provide daily mobility data in different categories on Google Maps users
across 132 countries. We provide a more detailed description of the data sources and the summary statistics of the main
variables in Appendix B, Table B1.

3. Empirical model

We first employ for analysis the following fixed-effects panel data model

Ait ¼ bSit þ gXit þ ai þ tt þ εit (1)
The coefficient of interest in Equation (1) is b, which measures how the air quality (Ait) in country i and date t changes in
response to the stringency of government COVID-19 policies (Sit). Because Sit varies by country and date, this fixed-effects
model allows for the inclusion of country fixed effects (ai) and time fixed effects (tt) to absorb the effects of unobservable
time-invariant country or time characteristics. Xit is a vector of observed time-varying control variables such as daily tem-
perature and rainfall.

Yet, Equation (1) yields an inconsistent estimate of b if omitted variables exist that correlate with both air quality and
government policies. Since Sit is positive only after the lockdown date, Equation (1) does not address the fact that unobserved
pre-COVID-19 time-varying country characteristics, such as governance quality and public preferences for protecting the
environment, can differ. Another challenge in this context is that air pollution is positively associated with the number of
COVID-19 cases (Cicala et al., 2020; Cole et al., 2020; Isphording and Pestel, 2020), which can lead to governments imple-
menting more stringent lockdown. Failure to control for possible reverse causality would result in biased estimates of the
effects of the lockdown.

We propose two strategies in this paper to identify the causal effects of COVID-19 on air quality. First, we use a flexible
event study framework to help mitigate concerns about the common trends. Specifically, we decompose the estimated effects
of lockdown (Sit) into coefficients up to 100 days prior to and following the lockdown date. This will provide a descriptive test
for whether the lockdowns are correlated with differential trends before and after the lockdowns. Second, we apply a more
rigorous econometric technique by taking advantage of the pandemic-induced lockdowns as an exogenous policy shock and
applying a Regression Discontinuity Design in Time (RDiT) approach. In this approach, the observations immediately before
the lockdown dates provide the counterfactual outcomes for those observations immediately after the lockdown dates
because the lockdown (treatment) status is randomized in a small neighborhood of the lockdowns. This approach is built on
the standard Regression Discontinuity Design (RDD) (see, e.g., Hahn et al. (2001)) but the running variable is the days from the
lockdown dates. It has been widely used in the literature to study changes in air quality caused by a specific event (Davis,
2008; Auffhammer and Kellogg, 2011; Chen and Whalley, 2012). We estimate the following reduced form

Ait ¼ dLit þ f ðditÞ þ qXit þ mi þ pt þ εit (2)

where Lit (treatment variable) is a dummy variable that equals 1 after the lockdowns and 0 otherwise, and d is the parameter
of interest. f ðditÞ denotes a function of the running variable dit (number of days from the lockdown dates). Similar to Equation
(1), mi and pt respectively denote the country fixed effects and the time fixed effects, and εit denotes the error term. For
comparison and robustness checks, we use different functional forms of the running variable dit to estimate Equation (2).
These include (i) the linear model (dit), (ii) the linear model with the interaction term of the running variable and the
treatment variable (Lit*dit), (iii) the quadratic model (d2itÞ, and (iv) the quadratic model with the interaction term of the

running variable and the treatment variable (Lit*d2it).
4 Since our estimates might be sensitive to bandwidth choices, we

employ Imbens and Kalyanaraman (2012)’s data-driven selection procedures to obtain the optimal bandwidths.
As discussed earlier, a key challenge with estimating Equation (2) is to identify lockdown dates that are comparable across

different countries, which likely implement lockdownswith various degrees of strictness. For example, business activities and
travels can continue to varying extents after the lockdown dates, or while all schools are shut down, universities operate on a
different schedule for different countries. Furthermore, there can be multiple lockdown dates even within the same country
where regions/states impose different lockdown dates (with different levels of intensity). To address this issue, the OxCGRT
provides a unique composite measure which combines indicators on different aspects of lockdown policies regarding school,
workplace, public transportation, and public events into a general index (Appendix B, Table B2). By using a range of different
indicators, this stringency index accounts for any indicator that may be over- or mis-interpreted, thus allows for a better and
more systematic comparison across countries (Hale et al., 2020).
4 We offer additional results using high-order polynomial terms in Table A6 (Appendix A); however, controlling for high-order polynomials in RDD
analysis may lead to noisy estimates (Gelman and Imbens, 2019).
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For each country, we define the lockdown date as the first day onwhich the stringency index becomes positive. Using our
constructed measure, Figure A1 (Appendix A) shows that most countries introduced lockdowns somewhere between the last
week of January and the first week of February 2020, and countries that implemented lockdown policies later tend to have
more stringent responses.5

To validate the RDD identifying assumptions, we present two types of tests. First, we conduct a discontinuity test in the
covariates, namely temperature and precipitation, around the lockdown dates. The results, presented in Table A1 (Appendix
A), show no discontinuity at the cut-off date. This finding is further confirmed by Figure A2 (Appendix A). Second, another
concern with the RD-in-time approach is serial correlation (Hausman and Rapson, 2018). To address this issue, we follow
previous studies and cluster the standard errors on both the location and time dimensions (Auffhammer and Kellogg, 2011;
Anderson, 2014). Furthermore, we conduct a robustness check by including the lagged dependent variable in the regressions
and find consistent results with our main findings (see Table A2, Appendix A).
4. Results

4.1. Main findings

We present in Table 1 the estimation results for Equation (1) using data at the sub-national level (columns 1 and 2) and the
country level (columns 3 and 4). Our preferred results are columns (2) and (4), which control for daily temperature and
precipitation (humidity for station-based data).6 But we also show the estimates without these control variables in columns
(1) and (3) for comparison and robustness checks. The estimation results are strongly statistically significant in our preferred
models (columns 2 and 4) and point to reduced air pollution where government policies are more stringent. Overall, our
findings suggest that global air quality improved in response to COVID-19-induced lockdown policies.

Column (2) indicates that a one-point increase in the stringency index is associatedwith a 0.012mol/km2 (mole per square
kilometer) decrease in NO2 (Panel A). The corresponding figure for station-based data is a 0.129 mg/m3 (micogram per cubic
meter) decrease in PM2.5 (Panel B). Estimates at the country level (column 4) are similar to those at the sub-national level
(column 2). However, as discussed earlier, the estimates based on Equation (1) are likely biased since they do not properly
account for the unobservables that may correlate with both the stringency index and air quality.

To address this issue, we conduct time-event analysis by regressing air quality on a full set of control variables and location
and time fixed effects, and a series of “event time” indicators. These indicator variables are in groups of 10 days for days
Table 1
Government response to COVID-19 and air pollution.

ADM1/City level Country level

(1) (2) (3) (4)

Panel A: Air quality is measured by NO2 (satellite data)
Stringency index �0.032***

(0.003)
�0.012***
(0.003)

�0.040***
(0.004)

�0.033***
(0.004)

Controls No Yes No Yes
Country and time FE Yes Yes Yes Yes
Observations 250,838 248,120 14,850 14,712
Panel B: Air quality is measured by PM2.5 (station-based data)
Stringency index �0.164***

(0.016)
�0.129***
(0.016)

�0.175***
(0.011)

�0.148***
(0.011)

Controls No Yes No Yes
Country and time FE Yes Yes Yes Yes
Observations 81,478 75,048 12,784 11,986

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of panel model. Clustered standard errors in parentheses are robust to within-day and within-country serial
correlation. Control variables are daily temperature and rainfall (humidity for station-based data).

5 Although the OxCGRT data provides a systematic comparison across different countries, it is still possible that not all business activities and travel cease
exactly by the time of our constructed lockdown dates. In that case, a better approach is to employ the fuzzy RDD model rather than the sharp RDD model
where the treatment variable Lit can assume the value of 0 for Sit >0 for some countries. However, we do not have such additional information for Lit in our
case and have to uniformly define Lit as 1 after the lockdown date for each country. But we offer a multi-layered approach to ensure that estimation results
are robust. First, the estimates using Equation (1) above provide the first set of evidence over the (correlational) relationship between air quality and the
government stringency index. Second, examining the outcomes over several different time bandwidths helps average out any lingering impacts after the
lockdowns and provides comparisons. The subsequent estimates remain (qualitatively) similar, indicating that they are robust to this concern. Third, es-
timates also remain robust to different ways to aggregate data (such as using weekly air quality data instead of daily air quality data) and different versions
of the stringency index (such as probing more deeply into its different components). Finally, we also offer a battery of other additional robustness tests in
Section 4.2.

6 Precipitation from the station-based data is not used due to its low frequency.

4



Fig. 1. Event study analysis. Notes: Figure reports effects of lockdowns and confidence intervals from time-event analysis, with location and time fixed effects. In
Panel A, air pollution is measured by concentrations of NO2 from satellite data. In Panel B, air pollution is measured by concentrations of PM2.5 from station-based
data. Control variables are daily temperature and rainfall (humidity for station-based data). The reference group is 10 days after the lockdown date.
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ranging from�100 toþ100 before and after the lockdown dates. Fig. 1 plots these results, which confirm our previous finding
that concentrations of air pollution are significantly lower after the lockdown dates (Panels A and B), and the impacts are
more pronounced for satellite data (Panel A).

We subsequently present the main estimation results using our preferred identification e the RD-in-time model. We start
first with showing in Fig. 2 the prima facie evidence of the impacts of lockdowns on air quality. The figure plots the residuals
from a data-driven RDD regression of air pollution, measured by NO2 (Panel A) and PM2.5 (Panel B), on daily temperature and
rainfall against the days before and after the lockdown dates. A negative jump at the lockdown (cut-off) dates suggests
reduced air pollution after the lockdowns. The downward sloping trend for air pollution in Fig. 2 also suggests that the
reduction in air pollution becomes stronger as the lockdowns go into effect for a longer period. This is understandable, since a
short period of time may not be sufficient to detect the changes in air quality.7

We report the estimation results for Equation (2) in Table 2, which shows estimates using two data samples: the satellite
data (Panel A) and the station-based data (Panel B). Our preferredmodels are, again, those that control for weather conditions
7 We replicate the graphical analysis in Fig. 2 for several countries from different regions. The results (Appendix A; Figure A3) confirm our expectation
that the lockdowns result in significant reduction of air pollution.
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Fig. 2. COVID-19 lockdowns and air pollution. Notes: In Panel A, air pollution is measured by concentrations of NO2 from satellite data. In Panel B, air pollution is
measured by concentrations of PM2.5 from station-based data. The continuous line is the predicted outcomes from the RDD regression using the optimal
bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths are shown in dash lines.
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(columns 2, 4, and 6). We use the optimal data-driven bandwidth selection procedures proposed by Imbens and
Kalyanaraman (2012).8 The estimation results using the satellite data, our main data for analysis, show that air quality
8 We also plot the estimated impacts of lockdowns for other bandwidths that range from 0 to 100 days. The estimation results, shown in Figure A4
(Appendix A), indicate that the lockdown impacts become much weaker for bandwidths of up to 50 and 80 days for satellite and station-based data,
respectively.
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Table 2
COVID-19 lockdowns and air pollution.

Panel A: Satellite air pollution
Air quality: Optimal bandwidth Optimal bandwidth þ10 days Optimal bandwidth �10 days

NO2 (1) (2) (3) (4) (5) (6)

Model 1: Linear model
Lockdown ¼ 1 �1.251***

(0.326)
�1.260***
(0.321)

�1.482***
(0.314)

�1.512***
(0.310)

�0.898**
(0.354)

�0.918***
(0.348)

Model 2: Linear interaction model
Lockdown ¼ 1 �1.227***

(0.324)
�1.230***
(0.319)

�1.462***
(0.312)

�1.494***
(0.307)

�0.865**
(0.352)

�0.871**
(0.346)

Model 3: Quadratic model
Lockdown ¼ 1 �1.242***

(0.325)
�1.251***
(0.320)

�1.480***
(0.313)

�1.520***
(0.307)

�0.877**
(0.353)

�0.888**
(0.346)

Model 4: Quadratic interaction model
Lockdown ¼ 1 �1.227***

(0.326)
�1.235***
(0.321)

�1.470***
(0.314)

�1.508***
(0.309)

�0.863**
(0.353)

�0.874**
(0.347)

Means before lockdowns 23.281 23.281 23.281 23.281 23.281 23.281
Controls No Yes No Yes No Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations 260,007 257,339 303,316 300,266 216,917 214,775

Panel B: Station-based air pollution
Air quality: Optimal bandwidth Optimal bandwidth þ10 days Optimal bandwidth �10 days

PM2.5 (1) (2) (3) (4) (5) (6)

Model 1: Linear model
Lockdown ¼ 1 �4.406***

(1.107)
�2.525**
(1.257)

�4.790***
(1.105)

�2.713**
(1.235)

�3.954***
(1.181)

�1.998
(1.314)

Model 2: Linear interaction model
Lockdown ¼ 1 �3.830***

(1.067)
�2.049*
(1.225)

�4.149***
(1.049)

�2.284*
(1.196)

�3.433***
(1.136)

�1.584
(1.280)

Model 3: Quadratic model
Lockdown ¼ 1 �3.976***

(1.078)
�2.133*
(1.240)

�4.303***
(1.063)

�2.396**
(1.211)

�3.568***
(1.148)

�1.662
(1.297)

Model 4: Quadratic interaction model
Lockdown ¼ 1 �3.805***

(1.059)
�2.035*
(1.217)

�4.143***
(1.047)

�2.231*
(1.188)

�3.375***
(1.128)

�1.599
(1.269)

Means before lockdowns 64.824 64.824 64.824 64.824 64.824 64.824
Controls No Yes No Yes No Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations 90,938 79,200 100,869 89,117 80,962 69,238

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Model 1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 includes
quadratic term of running variable, Model 4 includes interactions of running variable (linear and quadratic terms) with treatment variable. Control variables
are daily temperature and rainfall (humidity for station-based data).
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improves after the lockdowns, and the results are strongly statistically significant at the 5 percent level or less (Panel A). The
estimates are qualitatively similar whether we include the control variables.

Specifically, the estimated coefficient on the lockdown variable is negative and statistically significant at the 1 percent
level using the linear model (Panel A, column 2), indicating that the lockdown leads to a 1.260-mol/km2 decrease in the global
concentration of NO2 using the optimal bandwidth of 62 days. This translates into a 5.4-percent decrease compared to an
average value of NO2 of 23.281 mol/km2 before the lockdowns. Using different functional forms (models 2 to 4) results in
similar estimates. Finally, we present the results using different bandwidth lengths (±10 days from the optimal bandwidth)
and find consistent impacts of the lockdowns on NO2. The decreases in concentration of NO2 are roughly 6.5 percent for 72
days (Panel A, column 4) and 3.9 percent for 52 days (Panel A, column 6) after the lockdowns.

We turn next to the alternative station-based data. Using the optimal bandwidth of 88 days, we find that the global
decrease in PM2.5 hovers around 3.1 to 3.9 percent depending on the functional form that we employ (Panel B, column 2).
These results are consistent with the global reduction of 4 percent in PM2.5 estimated by Lenzen et al. (2020). But estimates
become statistically insignificant for the narrower bandwidth of 78 days.9

We now perform a set of placebo tests to check the robustness of our results, as reported in Table 3. First, we falsely assume
the cut-off date to be 5, 10, 15, 30, and 45 days prior to the lockdown dates. Regardless of measures of air pollution, the
9 Using different measures of air pollution available from the station-based data yields a similar conclusion (Table A3, Appendix A). An exception is the
indicator O3 which is found to be positively associated with the lockdowns. A possible explanation for the increase in concentration of O3 is warmer
weather during this period (Tobías et al., 2020).
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Table 3
Placebo test.

Dependent variable: NO2 PM2.5

(1) (2)

Panel A: 5 days prior to lockdown date
Lockdown ¼ 1 �1.193*

(0.656)
�1.257
(2.479)

Observations 256,246 79,098
Panel B: 10 days prior to lockdown date
Lockdown ¼ 1 �0.894

(0.593)
0.517
(2.442)

Observations 255,785 78,918
Panel C: 15 days prior to lockdown date
Lockdown ¼ 1 �0.300

(0.555)
2.714
(2.505)

Observations 254,805 78,415
Panel D: 30 days prior to lockdown date
Lockdown ¼ 1 0.043

(0.449)
2.719
(3.603)

Observations 253,870 76,384
Panel E: 45 days prior to lockdown date
Lockdown ¼ 1 0.533

(0.763)
�0.751
(1.798)

Observations 252,852 71,773
Panel F: China lockdown date
Lockdown ¼ 1 0.489

(0.623)
�1.429
(1.474)

Observations 252,003 78,463
Panel G: India lockdown date
Lockdown ¼ 1 �0.049

(0.450)
�1.811
(1.107)

Observations 252,306 78,594

Means before lockdowns 23.281 64.824
Controls Yes Yes
Country and time FE Yes Yes

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens
and Kalyanaraman (2012). The optimal bandwidths are 62 and 88 days for satellite and station-based
data, respectively. Clustered standard errors in parentheses are robust to within-day and within-
country serial correlation. Control variables are daily temperature and rainfall (humidity for
station-based data).
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treatment effects are not statistically significant (Panels A to E). Second, we use the lockdown dates of several countries as
placebo tests, which is motivated by the fact that the shutdown of a large trading economy partner may have spill-over effects
on local industrial activity, and thereby affecting air pollution. We select China and India given their large economies and
trade resources. Again, the statistically insignificant results lend support to our main specification (Panels F to G). Finally,
following Barreca et al. (2011), we also conduct a “donut” RDD by systematically removing observations 5 and 10 days near
the lockdown dates. This approach allows us to address potential anticipation effects around the lockdown dates (i.e., there is
non-random sorting around the threshold). The results, presented in Table A4 (Appendix A), rule out this concern.
4.2. Further robustness tests and heterogeneity analysis

We conduct a battery of robustness tests on the estimation results. These include employing different procedures for
selecting the optimal bandwidth, higher-degree polynomials of the running variable, adding different covariates to the re-
gressions (i.e. such as GDP per capita in constant 2010 USD, population density, log of energy consumption per capita, the
number of motor vehicles per 1000 inhabitants, and the share of electricity generated by coal power), using wider time
bandwidths (i.e., weekly indicators) and different versions of the stringency index, controlling for potentially differential time
8



Table 4
Stringency index and mobility restriction.

Mobility changes Retail and recreation Grocery and pharmacy Park Transit Workplaces Residential

(1) (2) (3) (4) (5) (6)

Panel A: Sub-national level
Stringency index �0.820***

(0.014)
�0.392***
(0.020)

�0.587***
(0.012)

�0.772***
(0.012)

�0.624***
(0.013)

0.292***
(0.004)

Controls Yes Yes Yes Yes Yes Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations 377,883 364,427 225,097 258,844 471,734 267,863
Panel B: Country level
Stringency index �0.766***

(0.005)
�0.481***
(0.005)

�0.539***
(0.007)

�0.789***
(0.004)

�0.596***
(0.005)

0.285***
(0.002)

Controls Yes Yes Yes Yes Yes Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations 13,284 13,284 13,284 13,284 13,284 13,238

Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of panel model. Clustered standard errors in parentheses are robust to within-day and within-country serial
correlation. Control variables are daily temperature and rainfall.
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trends across countries, and converting the air quality variables into the logarithmic form. The estimation results, which are
presented in Appendix A, Tables A6 to A13 and discussed in detail in Appendix C, remain robust.

We further examinewhether the impacts of lockdowns differ by country characteristics. Estimation results, shown in Table
A14 (Appendix A), suggest that after the lockdowns i) countries near the equator have a higher concentration of NO2, ii)
countries with strong institutions do not perform better in terms of air quality, iii) countries with a larger share of trade or
manufacturing have more reduced air pollution, and iv) countries with an initially lower level of air pollution (i.e., the 1st
quintile) havemore reduced air pollution compared to thosewith initially higher levels of air pollution. Several countries with
a large population size that recorded higher air quality stand out, including China, Iraq, Norway, Russia, South Korea, and the
United States (see Figure A5; Appendix A).
4.3. Stringent policies and mobility restriction

Once we established the causal impacts of COVID-19 on air pollution, we shift our attention to the role of mobility re-
strictions as a potential mechanism. Since one main source of air pollution comes from traffic mobility (Viard and Fu, 2015),
more stringent policies can result in less mobility, thereby improving air quality. We directly test this hypothesis, using data
from the Google Community Mobility Reports. Since mobility data were not available before the lockdown date, we are
unable to apply the more rigorous RDD approach. We thus present in Table 4 the estimation results using the fixed-effects
model in Equation (1), which show that human mobility has declined significantly where government policies are more
stringent.10 In particular, a higher stringency index is associated with less mobility in both ‘essential services’ (e.g., grocery
and pharma, workplace) and ‘non-essential services’ (retail and recreation, parks), but more mobility in the ‘residential’
category.
5. Conclusion

We offer an early study that provides cross-national evidence on the causal impacts of COVID-19 on air pollution. We
assemble a rich database from various sources, which we analyze with RDD and panel data models. We find the COVID-19-
induced lockdowns to result in significant decreases in global air pollution. Results of placebo tests reassure that our findings
are not driven by confounding factors. We also find heterogeneous impacts for different country characteristics, and we
identify reduced mobility, especially nonessential individual movements, as a potential channel that can help improve air
quality on a global scale. A promising direction for future research is to identify ways to maintain these beneficial impacts on
air quality (e.g., through reduced mobility) when the economy returns to pre-COVID-19 conditions.
10 The Google Community Mobility Reports starts collecting data on mobility data from February 15th, 2020. We estimate that about 109 countries (out of
164) have already implemented lockdowns based on the stringency index. The estimation results obtained by the panel data model (Table 1) are quali-
tatively similar to those obtained by the RDD approach (Table 2), suggesting that applying this model can provide some qualitative evidence on the
mechanism of impacts.
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Appendix A. Additional Figures and Tables

Fig. A1. Number of countries that introduced lockdowns and average policy stringency index.

Fig. A2. COVID-19 lockdowns and temperature/precipitation.
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Fig. A3. COVID-19 lockdowns and air pollution e Country-specific case studies.
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Fig. A4. COVID-19 lockdowns and air pollution e Alternative bandwidths.
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Fig. A5. Air pollution reduction by country.

Table A1
Lockdown impacts on weather conditions.
Dependent variable:
1

Temperature
3

Rainfall
(1)
 (2)
Lockdown ¼ 1
 0.752
(0.742)
�0.002
(0.014)
Controls
 Yes
 Yes

Country and time FE
 Yes
 Yes

Observations
 425,624
 425,624
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD. Clustered standard errors in parentheses are robust to within-day and within-country serial cor-
relation. The optimal bandwidths are calculated based on Imbens and Kalyanaraman (2012). Control variable in columns (1) and (2) is daily rainfall and
temperature, respectively.
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Table A2
COVID-19 lockdowns and air pollution e Lagged dependent variable estimation.
Bandwidth A
ir pollution: NO2 A
14
ir pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days

O
�

ptimal bandwidth
10 days

O
b

ptimal
andwidth

O
þ

ptimal bandwidth
10 days

O
�

ptimal bandwidth
10 days
Lockdown ¼ 1 �
0.421***
(0.125)

�
(

0.552***
0.121)

�
(

0.208*
0.115)

�
(

0.639**
0.311)

�
(

0.586**
0.286)

�
(

0.520
0.332)
Lagged dependent
variable

0
(

.646***
0.026)

0
(

.648***
0.025)

0
(

.628***
0.027)

0
(

.707***
0.013)

0
(

.719***
0.013)

0
(

.696***
0.014)
Means before
lockdowns

2
3.281 2
3.281 2
3.281 6
4.824 6
4.824 6
4.824
Controls Y
es Y
es Y
es Y
es Y
es Y
es

Country and time FE Y
es Y
es Y
es Y
es Y
es Y
es

Observations 2
09,825 2
45,188 1
74,500 7
6,939 8
6,714 6
7,043
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors
in parentheses are robust to within-day and within-country serial correlation. Control variables are daily temperature and rainfall (humidity for station-
based data).

Table A3
COVID-19 lockdowns and air pollution e Other parameters of pollution.
Bandwidths
 (1)
 (2)
 (3)
Optimal bandwidth
 Optimal bandwidth þ10 days
 Optimal bandwidth �10 days
Panel A: Air quality is measured by PM10
Lockdown ¼ 1
 �1.644**
(0.739)
�1.958***
(0.676)
�1.621**
(0.722)
Means before lockdowns
 30.655
 30.655
 30.655

Observations
 83,886
 92,890
 74,209

Panel B: Air quality is measured by NO2
Lockdown ¼ 1
 �1.062***
(0.349)
�1.387***
(0.326)
�0.706*
(0.374)
Means before lockdowns
 12.880
 12.880
 12.880

Observations
 65,473
 75,076
 55,942

Panel C: Air quality is measured by O3
Lockdown ¼ 1
 1.182***
(0.360)
1.554***
(0.337)
1.084***
(0.356)
Means before lockdowns
 14.543
 14.543
 14.543

Observations
 51,809
 60,682
 42,850

Panel D: Air quality is measured by SO2
Lockdown ¼ 1
 �0.364*
(0.209)
�0.453**
(0.189)
�0.355
(0.230)
Means before lockdowns
 4.643
 4.643
 4.643

Observations
 49,795
 57,880
 41,729
Controls
 Yes
 Yes
 Yes

Country and time FE
 Yes
 Yes
 Yes
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 95, 76, 66 and 69 days for PM10, NO2, O3, and SO2, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Control variables are daily temperature and humidity.
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Table A4
COVID-19 lockdowns and air pollution e “Donut” RDD.
Bandwidth
 Air pollution: NO2
15
Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Panel A: Excluding observations 5 days near the lockdown date

Lockdown ¼ 1
 �1.641***

(0.393)
�
(

1.955***
0.367)
�1.215***
(0.434)
�3.781***
(1.211)

�
(

3.841***
1.167)
�3.486***
(1.298)
Observations
 234,913 2
77,840
 192,349
 73,810 8
3,727
 63,848

Panel B: Excluding observations 10 days near the lockdown date

Lockdown ¼ 1
 �2.120***

(0.489)
�
(

2.408***
0.436)
�1.554***
(0.557)
�3.948**
(1.620)

�
(

4.079***
1.487)
�3.615**
(1.605)
Observations
 214,381 2
57,308
 171,817
 69,467 7
9,384
 59,505
Means before
lockdowns
23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Controls
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Country and time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes
Notes: ***p< 0.01, **p< 0.05, *p< 0.1. Results of “Donut” RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard
errors in parentheses are robust to within-day and within-country serial correlation. Control variables are daily temperature and rainfall (humidity for
station-based data).

Table A5
COVID-19 lockdowns and air pollution e Alternative Optimal bandwidths.
Optimal bandwidth calculation
method

S
atellite NO2 S
tation-based PM2.5
CCT (Calonico, Cattaneo, and
Titiunik)

C
L

ross-valid (Lee and
emieux)

C
T

CT (Calonico, Cattaneo, and
itiunik)

C
L

ross-valid (Lee and
emieux)
Lockdown ¼ 1 �
1.125***
(0.305)

�
(

1.224***
0.325)

�
(

0.558
1.010)

�
(

3.827***
1.191)
Optimal bandwidth [
-58, 76] [
-60, 60] [
-74, 109] [
-77, 77]

Means before lockdowns 2
3.281 2
3.281 6
4.824 6
4.824

Controls Y
es Y
es Y
es Y
es

Country and time FE Y
es Y
es Y
es Y
es

Observations 2
85,467 2
55,628 9
4,784 7
9,963
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Calonico et al. (2014) and Lee and Lemieux (2010). Clustered
standard errors in parentheses are robust to within-day and within-country serial correlation. Control variables are daily temperature and rainfall (humidity
for station-based data).
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Table A6
COVID-19 lockdowns and air pollution e Alternative functional forms.

Panel A: Satellite air pollution

Air quality:
 Optimal bandwidth
16
Optimal bandwidth þ10 days
 Optimal bandwidth �10 days
NO2
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
Model 1: Cubic interaction model

Lockdown ¼ 1
 �0.487**

(0.241)

0.377
(0.305)
�0.631***
(0.220)
�0.571***
(0.221)
�0.338
(0.264)
�0.294
(0.264)
Model 2: Quartic interaction model

Lockdown ¼ 1
 �1.058***

(0.184)

�1.242***
(0.233)
�1.193***
(0.173)
�1.032***
(0.173)
�0.939***
(0.200)
�0.832***
(0.200)
Model 3: Quintic interaction model

Lockdown ¼ 1
 �0.710***

(0.217)

�0.191
(0.275)
�0.851***
(0.199)
�0.754***
(0.199)
�0.534**
(0.239)
�0.469**
(0.239)
Means before lockdowns
 23.281
 23.281
 23.281
 23.281
 23.281
 23.281

Controls
 No
 Yes
 No
 Yes
 No
 Yes

Country and time FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

Observations
 260,007
 257,339
 303,316
 300,266
 216,917
 214,775
Panel B: Station-based air pollution

Air quality:
 Optimal bandwidth
 Optimal bandwidth þ10 days
 Optimal bandwidth �10 days
PM2.5
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
Model 1: Cubic interaction model

Lockdown ¼ 1
 �1.155**

(0.579)

�0.427
(0.621)
�1.883***
(0.548)
�1.001*
(0.592)
0.320
(0.620)
0.869
(0.659)
Model 2: Quartic interaction model

Lockdown ¼ 1
 �3.819***

(0.436)

�2.021***
(0.479)
�4.156***
(0.411)
�2.233***
(0.452)
�3.386***
(0.463)
�1.573***
(0.506)
Model 3: Quintic interaction model

Lockdown ¼ 1
 �2.236***

(0.521)

�1.056*
(0.565)
�2.875***
(0.493)
�1.605***
(0.538)
�0.695
(0.557)
0.451
(0.600)
Means before lockdowns
 64.824
 64.824
 64.824
 64.824
 64.824
 64.824

Controls
 No
 Yes
 No
 Yes
 No
 Yes

Country and time FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

Observations
 90,938
 79,200
 100,869
 89,117
 80,962
 69,238
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Control variables are daily temperature and rainfall (humidity for station-based data).

Table A7
COVID-19 lockdowns and air pollution e RDD with additional covariates.
Bandwidth
 Air pollution: NO2
 Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Panel A: Controlling for pre-pandemic characteristics

Lockdown ¼ 1
 �2.017***

(0.599)
�
(

2.418***
0.502)
�1.427**
(0.609)
�3.190**
(1.524)

�
(

3.249**
1.437)
�2.589*
(1.565)
Country FE
 No N
o
 No
 No N
o
 No

Time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Means before

lockdowns

23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Observations
 185,307 2
15,912
 154,577
 73,693 8
2,986
 64,434

Panel B: Controlling for country fixed-effects

Lockdown ¼ 1
 �1.235***

(0.321)
�
(

1.508***
0.309)
�0.874**
(0.347)
�2.035*
(1.217)

�
(

2.231*
1.188)
�1.599
(1.269)
Country FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes
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Table A7 (continued )
Bandwidth
 Air pollution: NO2
17
Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Means before

lockdowns

23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Observations
 257,339 3
00,266
 214,775
 79,200 8
9,117
 69,238
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Control variables in Panel A are daily temperature and rainfall (humidity for station-based data), log of GDP per capita (constant 2010 USD),
population density, log of energy consumption per capita, motor vehicles per 1000 inhabitants, and share of electricity generated by coal power. Control
variables in Panel B are daily temperature and rainfall (humidity for station-based data).

Table A8
COVID-19 lockdowns and air pollution - Weekly data.

Panel A: Satellite air pollution

Air quality:
 Optimal bandwidth
 Optimal bandwidth þ2 weeks
 Optimal bandwidth �2

weeks
NO2
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
Model 1: Linear model

Lockdown ¼ 1
 �1.033***

(0.354)

�1.004***
(0.348)
�1.549***
(0.236)
�1.559***
(0.322)
�0.629
(0.413)
�0.617
(0.406)
Model 2: Linear interaction model

Lockdown ¼ 1
 �0.986***

(0.352)

�0.938***
(0.346)
�1.507***
(0.324)
�1.513***
(0.319)
�0.567
(0.410)
�0.525
(0.403)
Model 3: Quadratic model

Lockdown ¼ 1
 �1.018***

(0.352)

�0.985***
(0.347)
�1.550***
(0.325)
�1.573***
(0.320)
�0.599
(0.411)
�0.571
(0.404)
Model 4: Quadratic interaction model

Lockdown ¼ 1
 �0.989***

(0.358)

�0.950***
(0.352)
�1.541***
(0.329)
�1.561***
(0.323)
�0.584
(0.420)
�0.566
(0.412)
Means before lockdowns
 23.281
 23.281
 23.281
 23.281
 23.281
 23.281

Controls
 No
 Yes
 No
 Yes
 No
 Yes

Country and time FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

Observations
 260,007
 257,339
 320,328
 317,121
 199,439
 197,492
Panel B: Station-based air pollution

Air quality:
 Optimal bandwidth
 Optimal bandwidth þ2 weeks
 Optimal bandwidth �2

weeks
PM2.5
 (1)
 (2)
 (3)
 (4)
 (5)
 (6)
Model 1: Linear model

Lockdown ¼ 1
 �4.145***

(1.158)

�2.445*
(1.339)
�4.677***
(1.120)
�2.833**
(1.265)
�3.027**
(1.292)
�1.295
(1.443)
Model 2: Linear interaction model

Lockdown ¼ 1
 �3.387***

(1.117)

�1.842
(1.302)
�3.945***
(1.063)
�2.302*
(1.217)
�2.314*
(1.244)
�0.806
(1.402)
Model 3: Quadratic model

Lockdown ¼ 1
 �3.663***

(1.127)

�2.006
(1.317)
�4.261***
(1.078)
�2.513**
(1.233)
�2.572**
(1.254)
�0.964
(1.418)
Model 4: Quadratic interaction model

Lockdown ¼ 1
 �3.320***

(1.104)

�1.726
(1.287)
�3.936***
(1.058)
�2.172*
(1.209)
�2.141*
(1.238)
�0.623
(1.381)
Means before lockdowns
 64.824
 64.824
 64.824
 64.824
 64.824
 64.824

Controls
 No
 Yes
 No
 Yes
 No
 Yes

Country and time FE
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

Observations
 90,938
 79,200
 104,531
 92,778
 76,962
 65,308
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors
in parentheses are robust to within-day and within-country serial correlation. Model 1 uses running variable in linear form, Model 2 includes interaction of
running variable and treatment variable, Model 3 includes quadratic term of running variable, Model 4 includes interactions of running variable (linear and
quadratic terms) with treatment variable. Control variables are daily temperature and rainfall (humidity for station-based data).
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Table A9
COVID-19 lockdowns and air pollution e ‘Regular’ stringency index.
Bandwidth
 Air pollution: NO2
18
Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Lockdown ¼ 1
 �1.260***
(0.321)

�
(

1.512***
0.310)
�0.918***
(0.348)
�2.525**
(1.257)

�
(

2.713**
1.235)
�1.998
(1.314)
Means before
lockdowns
23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Controls
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Country and time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Observations
 257,339 3
00,266
 214,775
 79,200 8
9,117
 69,238
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors
in parentheses are robust to within-day and within-country serial correlation. Control variables are daily temperature and rainfall (humidity for station-
based data). The ‘regular’ index returns null values if there are insufficient data to calculate the index while the ‘display’ version extrapolates to smooth
over the last seven days of the index based on the most recent complete data. Our main analysis uses the ‘display’ version.

Table A10
Stringency index and air pollution e Principal Component Analysis.
Bandwidth
 Air pollution: NO2
 Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Lockdown ¼ 1
 �0.331**
(0.160)

�
(

0.601***
0.146)
�0.088
(0.178)
�2.570***
(0.462)

�
(

3.115***
0.429)
�1.401***
(0.486)
Means before
lockdowns
23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Controls
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Country and time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Observations
 260,241 3
00,811
 218,404
 79,623 8
9,384
 69,921
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors
in parentheses are robust to within-day and within-country serial correlation. Control variables are daily temperature and rainfall (humidity for station-
based data). Stringency index is constructed using Principal Component Analysis. For all dimensions of stringency index, see Table B2 (Appendix B).

Table A11
Stringency index and air pollution e Alternative stringency indexes.
Bandwidth
 Air pollution: NO2
Optimal bandwidth
 Optimal bandwidth þ10 days
 Optimal bandwidth �10 days
Panel A: Government response index

Lockdown ¼ 1
 �1.360***

(0.328)

�1.850***
(0.316)
�1.237***
(0.356)
Observations
 256,082
 299,211
 213,210

Panel B: Containment and health index

Lockdown ¼ 1
 �1.444***

(0.328)

�1.943***
(0.316)
�1.334***
(0.356)
Observations
 256,078
 299,181
 213,353

Panel C: Economic support index

Lockdown ¼ 1
 0.499*

(0.255)

0.558**
(0.245)
0.342
(0.285)
Observations
 249,421
 281,210
 213,744
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Table A11 (continued )
Bandwidth
 Air pollution: NO2
Optimal bandwidth
1

Optimal bandwidth þ10 days
9

Optimal bandwidth �10 days
Means before lockdowns
 23.281
 23.281
 23.281

Controls
 Yes
 Yes
 Yes

Country and time FE
 Yes
 Yes
 Yes
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors
in parentheses are robust to within-day andwithin-country serial correlation. All indexed are taken from “display” version of OxCGRTwhichwill extrapolate
to smooth over the last seven days of the index based on the most recent complete data. All regressions include country dummies and week dummies.
Control variables are daily temperature and rainfall.

Table A12
COVID-19 lockdowns and air pollution e Country linear time trend.
Bandwidth
 Air pollution: NO2 A
ir pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days

O
b

ptimal
andwidth
Optimal bandwidth
þ10 days

O
�

ptimal bandwidth
10 days
Model 1: Linear model

Lockdown ¼ 1
 �1.176***

(0.330)
�
(

1.510***
0.313)
�0.953***
(0.352)

�
(

2.877**
1.244)
�2.941**
(1.242)

�
(

2.357*
1.301)
Model 2: Linear interaction model

Lockdown ¼ 1
 �1.133***

(0.328)
�
(

1.488***
0.310)
�0.901**
(0.350)

�
(

2.386*
1.218)
�2.515**
(1.203)

�
(

1.941
1.271)
Model 3: Linear interaction model

Lockdown ¼ 1
 �1.158***

(0.329)
�
(

1.516***
0.310)
�0.919***
(0.350)

�
(

2.469**
1.231)
�2.629**
(1.216)

�
(

2.018
1.286)
Model 4: Quadratic interaction model

Lockdown ¼ 1
 �1.137***

(0.330)
�
(

1.501***
0.312)
�0.903**
(0.351)

�
(

2.376*
1.212)
�2.465**
(1.196)

�
(

1.963
1.262)
Means before
lockdowns
23.281 2
3.281
 23.281 6
4.824
 64.824 6
4.824
Controls
 Yes Y
es
 Yes Y
es
 Yes Y
es

Country and time FE
 Yes Y
es
 Yes Y
es
 Yes Y
es

Country linear time

trend

Yes Y
es
 Yes Y
es
 Yes Y
es
Observations
 257,339 3
00,266
 214,775 7
9,200
 89,117 6
9,238
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Model 1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 includes
quadratic term of running variable, Model 4 includes interactions of running variable (linear and quadratic terms) with treatment variable. Control variables
are daily temperature and rainfall (humidity for station-based data).

Table A13
COVID-19 lockdowns and air pollution e Air pollution in log form.
Bandwidth
 Air pollution: NO2
 Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Model 1: Linear model

Lockdown ¼ 1
 �0.035***

(0.011)
�
(

0.044***
0.010)
�0.026**
(0.012)
�0.054***
(0.019)

�
(

0.042**
0.018)
�0.051***
(0.019)
Model 2: Linear interaction model

Lockdown ¼ 1
 �0.034***

(0.011)
�
(

0.043***
0.010)
�0.023**
(0.012)
�0.050***
(0.019)

�
(

0.038**
0.018)
�0.048**
(0.019)
Model 3: Linear interaction model

Lockdown ¼ 1
 �0.035***

(0.011)
�
(

0.044***
0.010)
�0.024**
(0.012)
�0.051***
(0.019)

�
(

0.039**
0.018)
�0.049**
(0.019)
(continued on next page)



H.-A.H. Dang, T.-A. Trinh Journal of Environmental Economics and Management 105 (2021) 102401
Table A13 (continued )
Bandwidth
 Air pollution: NO2
20
Air pollution: PM2.5
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Optimal
bandwidth

O
þ

ptimal bandwidth
10 days
Optimal bandwidth
�10 days
Model 4: Quadratic interaction model

Lockdown ¼ 1
 �0.033***

(0.011)
�
(

0.043***
0.010)
�0.023**
(0.012)
�0.050***
(0.019)

�
(

0.037**
0.018)
�0.048**
(0.019)
Means before
lockdowns
23.281 2
3.281
 23.281
 64.824 6
4.824
 64.824
Controls
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Country and time FE
 Yes Y
es
 Yes
 Yes Y
es
 Yes

Observations
 254,477 2
97,076
 212,387
 79,200 8
9,117
 69,238
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Model 1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 includes
quadratic term of running variable, Model 4 includes interactions of running variable (linear and quadratic terms) with treatment variable. Control variables
are daily temperature and rainfall (humidity for station-based data).

Table A14
Heterogeneity analysis.
Air quality: NO2
 Optimal bandwidth
 Optimal bandwidth þ10 days
 Optimal bandwidth �10 days
(1)
 (2)
 (3)
Panel A: Location

Lockdown*Countries near equator
 3.543***

(0.308)

3.785***
(0.279)
3.106***
(0.327)
Observations
 257,339
 300,266
 214,775

Panel B: Democracy

Reference: Authoritarian

Lockdown*Hybrid regime
 1.432**

(0.572)

1.328**
(0.546)
1.284**
(0.589)
Lockdown*Partial democracy
 1.197**
(0.557)
1.513***
(0.518)
0.877
(0.589)
Lockdown*Full democracy
 0.469
(0.855)
�0.015
(0.851)
�0.264
(0.916)
Observations
 233,029
 271,501
 194,642

Panel C: Share of trade

Lockdown*Trade
 �0.034***

(0.012)

�0.033***
(0.010)
�0.039***
(0.014)
Observations
 199,787
 232,666
 167,163

Panel D: Share of manufacturing

Lockdown*Manufacturing
 �0.439***

(0.052)

�0.454***
(0.050)
�0.482***
(0.056)
Observations
 172,872
 201,016
 144,775

Panel E: Air pollution index

Reference: 1st quintile

Lockdown*2nd quintile
 1.005**

(0.511)

0.978*
(0.510)
0.772
(0.567)
Lockdown*3rd quintile
 1.602***
(0.476)
1.826***
(0.466)
1.575***
(0.538)
Lockdown*4th quintile
 �0.716
(0.619)
�1.134*
(0.606)
�0.811
(0.666)
Lockdown*5th quintile
 �0.577
(0.663)
�0.643
(0.636)
�0.755
(0.726)
Observations
 254,146
 296,573
 212,140

Means before lockdowns
 23.281
 23.281
 23.281

Controls
 Yes
 Yes
 Yes

Country and time FE
 Yes
 Yes
 Yes
Notes: ***p < 0.01, **p < 0.05, *p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). The optimal bandwidths
are 62 and 88 days for satellite and station-based data, respectively. Clustered standard errors in parentheses are robust to within-day and within-country
serial correlation. Control variables are daily temperature and rainfall (humidity for station-based data).
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Appendix B. Data Sources

To examine the relationship between COVID-19 and air quality, we use two measures of air pollution, namely fine par-
ticulate matter PM2.5 (mass concentration of particles with diameters �2.5 mm) and nitrogen dioxide NO2. While other
pollutants are available in our dataset, we select the PM2.5 and NO2 given their direct link to human health. PM2.5 is a common
cause for adverse health outcomes such as chronic obstructive pulmonary disease (COPD) and lower respiratory infection
(LRI) causing death of nearly threemillion people globally (Gakidou et al., 2017). At the same time, NO2 is the leading source of
childhood asthma in urban areas globally (Achakulwisut et al., 2019). In this study, we collect data on these measures from
October 1st, 2019 to June 1st, 2020. We also use other pollutants, such as PM10, SO2 and O3, for robustness checks.

The NO2 data are derived from images of pollution-monitoring satellites released by the National Aeronautics and Space
Administration (NASA) and European Space Agency (ESA). In particular, we use data from the Sentinel-5P/TROPOMI (S5P)
instrument of the European Union’s Copernicus programme. The Copernicus S5P provides daily global coverage of atmo-
spheric parameters at high resolution (i.e., a pixel size of about 5.5 km� 3.5 km after August 6th, 2019).11 We then use Google
Earth Engine to process and average air quality data at the sub-national level using administrative areas from Database of
Global Administrative Areas (GADM). In particular, we measure air pollution at the first-order administrative division
(ADM1).12 While the Copernicus S5P records a wide range of pollutants including NO2 and others (O3, SO2, CO, CH4, and
aerosols), we focus on NO2 because this is a noxious gas emitted bymotor vehicles, power plants, and industrial facilities (see,
e.g., Dutheil et al. (2020)). Among other pollutants, NO2 is also a particularly well-suited data to analysis of emission because it
has a short lifetime; this implies that molecules of NO2 stay fairly close to their sources and thus offer an appropriate measure
of changes in emissions.

A potential concern of using satellite air quality, however, is cloud cover. This can bias results by obscuring the sensor’s
view of the lower atmosphere. Concentrations of NO2 in the atmosphere are also highly variable in space and time due to
factors such as varying traffic flows on weekdays versus weekends and changes in weather conditions. Therefore, we follow
suggestions from the Copernicus program and perform a cloud masking which excludes results from pixels with >10 percent
cloud fraction.13 We also average data over weekly periods as a robustness test. Finally, we include data on daily rainfall and
temperature to control for weather conditions, which are derived from the National Center for Environmental Prediction
(NCEP) at the National Oceanic and Atmospheric Administration (NOAA). The global dataset provides four 6-h daily records of
temperature and precipitation at the resolution of approximately 25 km. We extract the weather data at the sub-national
level using a similar process as with the air pollution data.

As an alternativemeasure of air quality, we use daily station-based air quality index (AQI) from theWorld Air Quality Index
(WAQI) project. The AQI provides accurate and reliable information on different air pollutant species from more than 12,000
ground-based air quality monitoring stations (primarily located at/near the US embassies and consulates) situated in 1000
major cities in more than 100 countries from 2014 to present. However, there are certain limitations with station-based data.
One is that station-based data are often reported more slowly, and not in a ‘real-time’ fashion as satellite data. Another
limitation is the locations of air qualitymonitoring stations are likely not random, so theymay not provide representative data
on an area’s air quality. Consequently, the satellite data are our preferred data for analysis.

We subsequently match the air pollution data with the government stringency data from the Oxford COVID-19 Gov-
ernment Response Tracker (OxCGRT). The OxCGRT is a novel country-level dataset published by the Blavatnik School of
Government at the University of Oxford, which contains information on various lockdown measures, such as school and
workplace closings, travel restrictions, bans on public gatherings, and stay-at-home requirements (Hale et al., 2020). It
measures government stringency responses on a scale of 0e100. We provide a description of the index components in Table
B2 (Appendix B).

To explore a potential channel through which COVID-19 affects air quality, we collect data on mobility from Google
Community Mobility Reports. The Google Community Mobility Reports provide daily data on Google Maps users who have
opted-in to the ‘location history’ in their Google accounts settings across 132 countries. The reports calculate changes in
movement compared to a baseline, which is the median value for the corresponding day of the week from January to present.
The purpose of travel has been assigned to one of the following categories: retail and recreation, groceries and pharmacies,
parks, transit stations, workplaces, and residential. In our analysis, we expect that the lockdownswill lead to reducedmobility
of all categories, except for the residential category. We also examine data from several additional sources for robustness
checks. The data sources are listed in Table B1 (Appendix B).
11 The data have recently been used to study changes in air quality caused by COVID-19 in some health and environmental studies (see, e.g., Chen et al.
(2020) and Zambrano-Monserrate et al. (2020)).
12 In some countries, the ADM1 refers to province level while for others, it refers to state/region level. The administrative data are available at https://
gadm.org/about.html.
13 For more details, see: https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?
q¼flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations.

21

https://gadm.org/about.html
https://gadm.org/about.html
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
https://atmosphere.copernicus.eu/flawed-estimates-effects-lockdown-measures-air-quality-derived-satellite-observations?q=flawed-estimates-effects-lockdown-measures-air-quality-satellite-observations
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Table B1
Data sources and summary statistics.
Variable D
escriptions
22
Mean
 Standard
deviation
Min M
ax
Oxford COVID-19 Government Response Tracker (OxCGRT)

Source: Blavatnik School of Government at the University of Oxford (https://covidtracker.bsg.ox.ac.uk/)

Stringency index G
overnment responses to COVID-19 (Score between 0 and 100)
 44.751
 35.254
 0 1
00

Government response index
 41.404
 31.499
 0 9
6.15

Containment and health index
 44.148
 33.202
 0 1
00

Economic support

index

26.331
 32.501
 0 1
00
Satellite air quality (daily)

Source: European Union’s Copernicus programme (https://sentinels.copernicus.eu/web/sentinel/missions/

sentinel-5p)

NO2 N
itrogen dioxide
 20.458
 26.334
 �43.400 8
86

Satellite weather data (daily)

Source: National Oceanic and Atmospheric Administration (NOAA) (https://www.ncep.noaa.gov)

Rainfall A
verage rainfall (m)
 0.0002
 0.0003
 0.000 0
.015

Temperature A
verage temperature (K)
 289.715
 10.399
 232.625 3
13.183

Station-based data (daily)

Source: World Air Quality Index (WAQI) project (https://waqi.info/)

PM2.5 P
articles with a diameter of 2.5 mm or less
 56.291
 43.799
 1 9
99

PM10 P
articles with a diameter of 10 mm or less
 27.338
 25.403
 1 9
99

NO2 N
itrogen dioxide
 10.118
 8.442
 0 5
00

SO2 S
ulfur dioxide
 4.126
 7.895
 0 5
00

O3 O
zone
 19.459
 12.670
 0 5
00

Humidity A
verage humidity (percent)
 69.084
 19.276
 0 1
22

Temperature A
verage temperature (�C)
 14.393
 9.200
 �67.7 9
3.3

Mobility rates

Source: Google Community Mobility Reports (https://www.google.com/covid19/mobility/)

Retail & Recreation C
hanges in people’s mobility (percent) in different categories
 �22.801
 28.661
 �100 3
13

Grocery & pharmacy
 �6.118
 21.645
 �100 3
45

Park
 �2.925
 51.956
 �100 6
16

Transit
 �27.151
 30.046
 �100 4
97

Workplaces
 �23.812
 21.033
 �94 2
58

Residential
 10.669
 9.177
 �25 5
6

Other control variables (Table A7)

Source: World Bank World Development Indicators (https://databank.worldbank.org/source/world-

development-indicators)

Energy consumption E
nergy consumption per capita (kWh)
 24,620
 25,452
 706.246 2
15,883

Vehicles N
umber of motor vehicles per 1000 inhabitants
 200.713
 217.914
 1.000 7
97

GDP G
DP per capita (in constant 2010 USD)
 13,260
 17,763
 208.075 1
11062

Population density P
eople per sq. km of land area
 164.668
 586.711
 0.137 2
0480

CO2 emissions C
O2 emissions (kg per 2010 US$ of GDP)
 0.516
 0.374
 0.056 2
.004

Electricity E
lectricity production from coal sources (percent of total)
 19.917
 24.166
 0.000 9
6.360

Other control variables (Table A14)

Democracy index 2
019 Economist Intelligence Unit Report (https://www.eiu.com/topic/democracy-

index)

54.714
 20.579
 13.200 9
8.700
Air index 2
018 WHO Global Ambient Air Quality Database (https://www.who.int/
airpollution/data)
36.234
 31.953
 4.071 2
03.744
Manufacturing S
hare of manufacturing in GDP (2019 World Development Indicators database)
 12.937
 5.892
 1.686 3
0.838

Trade S
hare of trade in GDP (2019 World Development Indicators database)
 90.162
 54.906
 26.722 3
81.517

https://covidtracker.bsg.ox.ac.uk/
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p
https://www.ncep.noaa.gov/
https://waqi.info/
https://www.google.com/covid19/mobility/
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
https://www.eiu.com/topic/democracy-index
https://www.eiu.com/topic/democracy-index
https://www.who.int/airpollution/data
https://www.who.int/airpollution/data
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Table B2
Stringency index components.
1

b

Number
4 We apply the user-writt
andwidths.
Components
en program “rdbwselect” provided by Calonico et al.

23
Description
1
 School closing
 Record closings of schools and universities

2
 Workplace closing
 Record closings of workplaces

3
 Cancel public events
 Record cancelling public events

4
 Restrictions on gatherings
 Record the cut-off size for bans on private gatherings

5
 Close public transport
 Record closing of public transport

6
 Stay at home requirements
 Record orders to “shelter-in- place” and otherwise confine to home

7
 Restrictions on internal movement
 Record restrictions on internal movement

8
 International travel controls
 Record restrictions on international travel

9
 Public info campaigns
 Record presence of public info campaigns
Notes: Each component is measured by an ordinal scale. The stringency index is measured by the OxCGRT team as simple averages of the individual
component indicators. Each component is measured by an ordinal scale (e.g. 0 e no measures, 1 e recommended closing, 2 e require partial closing, 3 e

require closing all levels). It is then rescaled by maximum value to create a score between 0 and 100. These scores are then averaged to get the stringency
index.
Appendix C. Further robustness checks and heterogeneity analysis

Further robustness checks

To further check the robustness of our findings, we conduct a battery of tests on the estimation results. These include
employing different methods of calculating the optimal bandwidth, higher-degree polynomials of the running variable,
adding different covariates to the regressions, using wider time bandwidths and different thresholds and versions of the
stringency index, controlling for potentially differential time trends across countries, and converting the air quality variables
into logarithmic form.

First, our main analysis applies the optimal bandwidth choice rule of Imbens and Kalyanaraman (2012) to select the
optimal bandwidth to minimize mean-squared error. In Table A5 (Appendix A), we report the results using alternative
methods including CCT (Calonico et al., 2014) and Cross-valid (Lee and Lemieux, 2010).14 We find consistent impacts of the
lockdowns on NO2 using the satellite data and PM2.5 using the alternative station-based data. We also check the robustness of
our results by using high-order polynomial of the running variable. Our results are generally consistent, as presented in Table
A6 (Appendix A). Still, we note that controlling for high-order polynomials in regression discontinuity analysis may lead to
noisy estimates of the impact of lockdown (Gelman and Imbens, 2019).

Second, our estimation results are rather similar whether we control for weather conditions in our RDD regressions. For
further checks, we include additional covariates to control for the pre-pandemic country characteristics, namely country’s log
of GDP per capita (in constant 2010 USD), population density, log of energy consumption per capita, the number of motor
vehicles per 1000 inhabitants, and the share of electricity generated by coal power. These country characteristics come from
theWorld Development Indicators (WDI) database in the latest year when data is available. We present the estimation results
in panel A of Table A7 (Appendix A) and we also provide the main results with country fixed effects in Panel B for comparison
purpose. Our main findings remain robust to the inclusion of additional covariates.

Third, a potential issue with daily air pollution data is that these data can substantially vary from one day to another
because of variations in emission and changes in weather conditions. Therefore, we replicate our RDD approach using a
weekly indicator. We employ the optimal bandwidths selection and find that the results are generally consistent with the
main findings in Table 2 (see Table A8, Appendix A).

Fourth, we use alternative measures of stringency index taken from the OxCGRT dataset. There are two versions of the
stringency index: (i) a “regular” versionwhich returns null values if there are insufficient data to calculate the index, and (ii) a
“display” versionwhich extrapolates to smooth over the last seven days of the index based on the most recent complete data.
We use the latter indicator for our main analysis, but we also find consistent results using the “regular” version (Appendix A,
Table A9).

Fifth, the stringency index in the OxCGRT dataset is calculated using a simple additive unweighted approach. It is thus
possible that some dimensions with higher weights will be underestimated in the index. To address this issue, we create a
new index based on the Principal Component Analysis (PCA) method for all the dimensions of stringency index. Table A10 in
Appendix A shows rather similar estimation results for our own index, except for the optimal bandwidth �10 days (column
3).
(2014) to estimate the cross-validation functions that determine our
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Sixth, we further explore other indexes that are available from the OxCGRT dataset. They include: (i) Government response
index, (ii) Containment and health index, and (iii) Economic support index.15 Compared to ourmainmeasure, the government
response index and the containment and health index include two additional dimensions: testing policy and contact tracing.
Still, we find a consistent impact of the lockdowns on air pollutionwhen using these indexes, except for the economic support
index (Appendix A, Table A11). However, the economic support index only includes income support programs and debt relief
programs, so it does not fully capture the overall responsiveness of the government.

We also check whether our results are driven by differential time trends across countries. We include in the regressions
the interaction terms of country dummies with linear time trends. The results, presented in Table A12 (Appendix A), are
generally consistent with our main findings. Finally, our findings also remain consistent whenwe use the logarithmic form of
the air quality variable (Appendix A, Table A13).

Heterogeneity analysis

Having shown that changes in air quality are driven by COVID-19, it is useful to understand whether the impacts of
lockdowns differ by certain country characteristics. In particular, the impacts of lockdowns can vary according to a country’s
geographic location. For example, cities near the deserts are often affected by sand and dust storms, which can strongly
impact air quality. We thus interact a dummy variable indicating whether a country is near the equator with the treatment
variable. The results presented in panel A of Table A14 (Appendix A) show that countries near the equator have a higher
concentration of NO2 after the lockdowns.

A country’s institution may also affect the impacts of lockdowns. A large body of economic literature has shown the
important role of institutions and culture in shaping economic development (e.g. Gorodnichenko and Roland, 2017;
Acemoglu et al., 2019). Consequently, we use the democracy index from the 2019 report of the Economist Intelligence Unit.
We expect that countries with strong institutions likely implement stringent policies during the time of COVID-19, and
therefore have a better performance in terms of air quality. The results in panel B of Table A14 (Appendix A), however, provide
little support for this argument. In contrast, partial democratic countries and countries with hybrid regime appear to have less
reduced air pollution after the lockdowns than authoritarian countries.

Another useful heterogeneity analysis is whether countries with a high level of openness have more reduced air pollution
after the lockdowns. Whether trade is good or bad for the environment has been a topic of debate in the literature. While
evidence exists on the beneficial effects of trade on the environment (e.g. Antweiler et al., 2001; Frankel and Rose, 2005),
other studies show that trade openness could in fact lead to higher emissions (Managi et al., 2009; Li et al., 2015). To answer
this question, we interact a country’s share of manufacturing and share of trade in its GDP (from the 2019World Development
Indicators (WDI) database) with the treatment variable. The estimation results, presented in panels C and D of Table A14
(Appendix A), show that countries with a larger share of trade or manufacturing have more reduced air pollution after the
lockdowns.

Finally, we examine whether countries with existing lower levels of air pollution may reduce air pollution more. We use
the WHO Global Ambient Air Quality Database that summarizes concentration of PM2.5 at the country level in 2018. We then
split our sample into five quintiles and interact each with our treatment variable. The results in panel E indicate that countries
with an initially lower level of air pollution (i.e., the 1st quintile) have more reduced air pollution compared to those with
initially higher levels of air pollution. For further illustration, we interact our treatment variable with the country dummies
and plot the estimated interaction terms against countries’ initial level of air quality in Figure A5 (Appendix A). We highlight a
country’s population size by drawing a bubble graph, where the size of a country’s circle is proportionate to its population
size. Figure A5 shows countries bunching to the left of the graph and below the zero (no change) line, confirming that
countries with better air quality before the pandemic tend to have higher reduction of NO2. Several countries with a large
population size that improved air quality stand out, including China, Iraq, Norway, Russia, South Korea, and the United States.
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