Skip to main content
. 2020 Dec 10;105:102401. doi: 10.1016/j.jeem.2020.102401

Table A8.

COVID-19 lockdowns and air pollution - Weekly data.

Panel A: Satellite air pollution
Air quality:
Optimal bandwidth
Optimal bandwidth +2 weeks
Optimal bandwidth −2 weeks
NO2
(1)
(2)
(3)
(4)
(5)
(6)
Model 1: Linear model
Lockdown = 1 −1.033∗∗∗
(0.354)
−1.004∗∗∗
(0.348)
−1.549∗∗∗
(0.236)
−1.559∗∗∗
(0.322)
−0.629
(0.413)
−0.617
(0.406)
Model 2: Linear interaction model
Lockdown = 1 −0.986∗∗∗
(0.352)
−0.938∗∗∗
(0.346)
−1.507∗∗∗
(0.324)
−1.513∗∗∗
(0.319)
−0.567
(0.410)
−0.525
(0.403)
Model 3: Quadratic model
Lockdown = 1 −1.018∗∗∗
(0.352)
−0.985∗∗∗
(0.347)
−1.550∗∗∗
(0.325)
−1.573∗∗∗
(0.320)
−0.599
(0.411)
−0.571
(0.404)
Model 4: Quadratic interaction model
Lockdown = 1
−0.989∗∗∗
(0.358)
−0.950∗∗∗
(0.352)
−1.541∗∗∗
(0.329)
−1.561∗∗∗
(0.323)
−0.584
(0.420)
−0.566
(0.412)
Means before lockdowns 23.281 23.281 23.281 23.281 23.281 23.281
Controls No Yes No Yes No Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations
260,007
257,339
320,328
317,121
199,439
197,492
Panel B: Station-based air pollution
Air quality:
Optimal bandwidth
Optimal bandwidth +2 weeks
Optimal bandwidth −2 weeks
PM2.5
(1)
(2)
(3)
(4)
(5)
(6)
Model 1: Linear model
Lockdown = 1 −4.145∗∗∗
(1.158)
−2.445∗
(1.339)
−4.677∗∗∗
(1.120)
−2.833∗∗
(1.265)
−3.027∗∗
(1.292)
−1.295
(1.443)
Model 2: Linear interaction model
Lockdown = 1 −3.387∗∗∗
(1.117)
−1.842
(1.302)
−3.945∗∗∗
(1.063)
−2.302∗
(1.217)
−2.314∗
(1.244)
−0.806
(1.402)
Model 3: Quadratic model
Lockdown = 1 −3.663∗∗∗
(1.127)
−2.006
(1.317)
−4.261∗∗∗
(1.078)
−2.513∗∗
(1.233)
−2.572∗∗
(1.254)
−0.964
(1.418)
Model 4: Quadratic interaction model
Lockdown = 1
−3.320∗∗∗
(1.104)
−1.726
(1.287)
−3.936∗∗∗
(1.058)
−2.172∗
(1.209)
−2.141∗
(1.238)
−0.623
(1.381)
Means before lockdowns 64.824 64.824 64.824 64.824 64.824 64.824
Controls No Yes No Yes No Yes
Country and time FE Yes Yes Yes Yes Yes Yes
Observations 90,938 79,200 104,531 92,778 76,962 65,308

Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Results of RDD using the optimal bandwidths based on Imbens and Kalyanaraman (2012). Clustered standard errors in parentheses are robust to within-day and within-country serial correlation. Model 1 uses running variable in linear form, Model 2 includes interaction of running variable and treatment variable, Model 3 includes quadratic term of running variable, Model 4 includes interactions of running variable (linear and quadratic terms) with treatment variable. Control variables are daily temperature and rainfall (humidity for station-based data).