Skip to main content
. 2022 Jun 2;2022:8303856. doi: 10.1155/2022/8303856

Table 12.

Performance evaluation metrics on the Milan dataset with activities balancing using leave-one-day-out cross-validation.

Dataset Cross-validation Clustering method Classification method Precision (%) Recall (%) F score [0, 1] Accuracy (%)
Milan Leave one day out Fuzzy C-means [35] ANN [45] 93.40 93.20 0.93 93.30
ET-KNN [47] 89.30 89.40 0.89 89.40
KNN [48] 87.10 87.20 0.87 87.10
SMO [46] 83.30 83.80 0.83 83.80
Hierarchical [42] ANN 90.50 90.40 0.90 90.60
ET-KNN 88.10 88.20 0.88 88.40
KNN 86.20 86.50 0.86 86.70
SMO 83.10 83.70 0.83 83.80
K-mean [36] ANN 87.60 87.10 0.87 87.20
ET-KNN 84.30 85.20 0.85 85.50
KNN 81.10 81.30 0.81 81.10
SMO 78.02 78.20 0.78 78.30
DBSCAN [37] ANN 85.70 85.10 0.85 85.10
ET-KNN 81.20 81.30 0.81 81.30
KNN 79.10 79.10 0.79 79.50
SMO 78.20 78.50 0.78 78.20

The precision, recall, and accuracy are in percentages (%), while the range of F score is between [0-1] with 1 being the highest. The highest values are in bold.