Table 12.
Performance evaluation metrics on the Milan dataset with activities balancing using leave-one-day-out cross-validation.
| Dataset | Cross-validation | Clustering method | Classification method | Precision (%) | Recall (%) | F score [0, 1] | Accuracy (%) |
|---|---|---|---|---|---|---|---|
| Milan | Leave one day out | Fuzzy C-means [35] | ANN [45] | 93.40 | 93.20 | 0.93 | 93.30 |
| ET-KNN [47] | 89.30 | 89.40 | 0.89 | 89.40 | |||
| KNN [48] | 87.10 | 87.20 | 0.87 | 87.10 | |||
| SMO [46] | 83.30 | 83.80 | 0.83 | 83.80 | |||
| Hierarchical [42] | ANN | 90.50 | 90.40 | 0.90 | 90.60 | ||
| ET-KNN | 88.10 | 88.20 | 0.88 | 88.40 | |||
| KNN | 86.20 | 86.50 | 0.86 | 86.70 | |||
| SMO | 83.10 | 83.70 | 0.83 | 83.80 | |||
| K-mean [36] | ANN | 87.60 | 87.10 | 0.87 | 87.20 | ||
| ET-KNN | 84.30 | 85.20 | 0.85 | 85.50 | |||
| KNN | 81.10 | 81.30 | 0.81 | 81.10 | |||
| SMO | 78.02 | 78.20 | 0.78 | 78.30 | |||
| DBSCAN [37] | ANN | 85.70 | 85.10 | 0.85 | 85.10 | ||
| ET-KNN | 81.20 | 81.30 | 0.81 | 81.30 | |||
| KNN | 79.10 | 79.10 | 0.79 | 79.50 | |||
| SMO | 78.20 | 78.50 | 0.78 | 78.20 |
The precision, recall, and accuracy are in percentages (%), while the range of F score is between [0-1] with 1 being the highest. The highest values are in bold.