Skip to main content
. 2022 Jun 2;2022:8303856. doi: 10.1155/2022/8303856

Table 3.

Performance evaluation metrics on the Aruba dataset without activities balancing using threefold cross-validation.

Dataset Cross-validation Clustering method Classification method Precision (%) Recall (%) F score [0,1] Accuracy (%)
Aruba Threefolds Fuzzy C-means [35] ANN [45] 84.50 84.70 0.84 84.70
ET-KNN [47] 80.60 80.80 0.80 80.80
KNN [48] 79.30 78.50 0.79 78.50
SMO [46] 75.37 74.02 0.74 74.02
Hierarchical [42] ANN 82.80 83.80 0.82 83.80
ET-KNN 80.80 80.70 0.80 80.80
KNN 78.20 78.20 0.78 78.20
SMO 76.02 75.01 0.74 76.02
K-mean [36] ANN 81.30 82.80 0.82 82.80
ET-KNN 79.50 79.80 0.79 79.80
KNN 77.50 78.20 0.78 78.20
SMO 74.20 75.01 0.74 75.02
DBSCAN [37] ANN 79.20 80.80 0.80 80.80
ET-KNN 78.30 78.80 0.78 78.80
KNN 76.20 75.10 0.76 76.20
SMO 74.02 74.02 0.74 74.02

The precision, recall, and accuracy are in percentages (%), while the range of F score is between [0-1] with 1 being the highest. The highest values are in bold.