Skip to main content
. Author manuscript; available in PMC: 2022 Jun 9.
Published in final edited form as: Mach Learn Med Imaging. 2021 Sep 21;12966:692–702. doi: 10.1007/978-3-030-87589-3_71

Table 2:

The features extracted by the models trained for image-level classification were helpful for exam-level classification. However, no model performed consistently best for all labels. We report the mean AUC over 10 runs and bold the optimal results for each label.

Labels SeResNext50 Xception SeXception DenseNet121 ResNet18 ResNet50
NegExam PE 0.9137 0.9242 0.9261 0.9168 0.9141 0.9061
Indetermine 0.8802 0.9168 0.8857 0.9233 0.9014 0.9278
Left PE 0.9030 0.9119 0.9100 0.9120 0.9000 0.8965
Right PE 0.9368 0.9419 0.9455 0.9380 0.9303 0.9254
Central PE 0.9543 0.9500 0.9487 0.9549 0.9445 0.9274
RV LV Ratio≥1 0.8902 0.8924 0.8901 0.8804 0.8682 0.8471
RV LV Ratio<1 0.8630 0.8722 0.8771 0.8708 0.8688 0.8719
Chronic PE 0.7254 0.7763 0.7361 0.7460 0.6995 0.6810
Acute&Chronic PE 0.8598 0.8352 0.8473 0.8492 0.8287 0.8398
Mean AUC 0.8807 0.8912 0.8852 0.8879 0.8728 0.8692

The Xception architecture achieved a significant improvement (p = 5.34E-12) against the previous state of the art.