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Learning emergent partial differential equations in a
learned emergent space
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Ioannis G. Kevrekidis1✉

We propose an approach to learn effective evolution equations for large systems of inter-

acting agents. This is demonstrated on two examples, a well-studied system of coupled

normal form oscillators and a biologically motivated example of coupled Hodgkin-Huxley-like

neurons. For such types of systems there is no obvious space coordinate in which to learn

effective evolution laws in the form of partial differential equations. In our approach, we

accomplish this by learning embedding coordinates from the time series data of the system

using manifold learning as a first step. In these emergent coordinates, we then show how one

can learn effective partial differential equations, using neural networks, that do not only

reproduce the dynamics of the oscillator ensemble, but also capture the collective bifurca-

tions when system parameters vary. The proposed approach thus integrates the automatic,

data-driven extraction of emergent space coordinates parametrizing the agent dynamics, with

machine-learning assisted identification of an emergent PDE description of the dynamics in

this parametrization.
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Modeling the dynamic behavior of large systems of
interacting agents remains a challenging problem in
complex systems analysis. Due to the large state space

dimension of such systems, it has historically been an ongoing
research goal to construct useful reduced-order models with
which to collectively describe the coarse-grained dynamics of
agent ensembles. Such coarse-grained, collective descriptions
arise in many contexts, e.g., in thermodynamics, where interact-
ing particles may effectively be described at the macroscopic level
by temperature, pressure and density; or in kinetic theory, where
collisions in the Boltzmann equation can lead to continuum
descriptions, such as the Navier-Stokes equations - but also in
contexts such as chemotaxis or granular flows. One important
issue in this coarse-graining is to find coarse-grained observables
(density fields, momentum fields, concentration fields, void
fraction fields) that describe the evolution of the collective
behavior in physical space. Macroscopic, effective models are then
often approximated as partial differential equations (PDEs) for
these fields: their time derivatives are expressed locally in terms of
the local spatial derivatives of the field(s) at each point. The
closures required to derive predictive models can be obtained
either mathematically (with appropriate assumptions) and/or
semi-empirically through experimental or computational
observations.

When the interacting agents are coupled oscillator systems, their
observed low-dimensional dynamics can sometimes be described as
a lumped system of a few ordinary differential equations (ODEs) in
terms of so-called order parameters1–3. For large heterogeneous
systems of interacting oscillators we observe, at any given moment,
a distribution of oscillator states; being able to usefully describe this
evolution by a few ODEs for appropriate order parameters corre-
sponds, conceptually, to describing the distribution evolution
through a finite, closed set of a few moment equations for the
distribution. The few good order parameters are here provided by
the few leading moments in terms of which a closed set of model
ODEs (or even stochastic differential equations) can be written.
And while in some cases such a reduced description can be quite
successful, there are other cases where a few ODEs will not suffice,
and where one needs to write evolution equations (e.g., PDEs) for
evolving field(s) of instantaneous oscillator behavior(s).

The question then naturally arises: What is a good way of
parametrizing the spatial support of this evolving distribution of
behaviors? Which (and how many) are the few independent,
spatial variables, in the space of which we will attempt to derive
evolutionary PDE models for the collective behavior evolution? In
other words, when the problem does not evolve in physical space
(e.g., when the oscillators are nodes in an interacting network)
does there exist a useful continuum embedding space in which we
can observe the behavior evolving as a spatiotemporal field? And
if so, how can we detect this emergent space and its parametrizing
independent coordinates in a data-driven way, based on obser-
vations of the collection of individual coupled agent dynamics?
Our task thus has two components, both accomplished here in a
data-driven fashion: (a) find emergent spatial coordinates in
which the oscillator behavior can be (embedded and) observed as
smooth spatiotemporal field evolution; and (b) once these
emergent coordinates have been obtained, learn a model of the
evolving dynamics, if possible in the form of a partial differential
equation governing this field; that is, approximate the (pointwise)
time derivative(s) of the field(s) in terms of a few local spatial
derivatives of the field in the emergent independent variables.

The data-driven approximation of such evolution operators for
spatiotemporal dynamics using machine learning tools (neural
networks, Gaussian processes, manifold learning...) is a long-
standing research endeavor - we, among others, have worked on
neural network-based identification of nonlinear distributed

systems4–6; the subject is currently exploding in the machine
learning literature, e.g.,7,8. The twist in our work here is that the
space in which the evolution operator (that is, the PDE) will be
learned (the independent variables in which the spatial derivatives
will be estimated) is not known a priori but will be rather iden-
tified, in a first step, through data mining/manifold learning9,10.
If/when such an approach is successful, it can lead to a dramatic
reduction of the computational cost of simulation/prediction of
the collective, coarse-grained dynamics (compared to the indivi-
dual evolution of every oscillator/agent in the ensemble). This is
the case when the agent ensemble is large but the set of agents can
be parametrized with only a few emergent parameters. This
reduced description also enables tasks (effective stability and
bifurcation analysis, even control and optimization) that would be
difficult or impossible to perform with the fine-scale model. More
importantly, if successful and generalizable enough, this alter-
native description in terms of field PDEs in emergent variables,
assisted by computationally mapping back-and-forth between
fine and coarse descriptions, may guide a new, coarse-grained
interpretation and even understanding of the system dynamics.

There may appear to be a contradiction between having fine-
scale dynamics we know to involve long-range interactions (here,
all-to-all coupling), and learning a model based on local inter-
actions (here, coupling with oscillators that have nearby behavior,
through local behavior derivatives in our emergent space). We
will return to this issue repeatedly in the discussion below, but we
mention that the learned operators are not themselves the true
physics; they are but a particular, parsimonious parametrization
of the long-term dynamics (after initial transients) on a much
lower-dimensional slow manifold on which the collective beha-
vior evolves. It is the low dimensionality of this manifold, and the
power of embedding theorems like those of Whitney11 and
Takens12 that enable data-driven parameterizations (as opposed
to physically meaningful mechanistic interpretations) of the long-
term dynamics. The many coupled local grid points underpinning
a finite-difference discretization of a PDE will here play the role of
the many generic observers parametrizing the relatively low-
dimensional manifold on which the coarse-grained long-term
dynamics and the attractors of the system are expected to live.

This approach is fundamentally different from recent approa-
ches where the dynamics are learned in a latent space of
dependent variables, typically as systems of ODEs (but also PDEs
with known independent variables). Examples of these dependent
variable latent spaces include learning the dynamics of spatial
principal component coefficients on an inertial manifold13 or
learning an ODE in a latent space of an autoencoder using dic-
tionaries and sparsity promoting regularization14. Since early
works (e.g. see15 on the Mackey-Glass equation, also Refs. 5,6,16),
learning dynamical systems from data has regained increased
attention in recent years. Popular examples include (in a vast
literature) sparse identification of nonlinear dynamical systems
using dictionaries17, DeepXDE18, neural ODEs19, LSTM neural
networks20 and PDE-net21. As in the latter, the emergent PDE
will be learned here from discrete time data using an explicit
forward Euler time integration step (in effect, training a ResNet);
many other approaches are also possible (for a ResNet-like
Runge-Kutta recurrent network, see Ref. 6).

To find coordinates in which to learn the PDE description, we
follow the recent work9,22 and use diffusion maps23,24, a non-
linear manifold learning technique. As our agent-based example,
we first illustrate our approach on coupled Stuart-Landau oscil-
lators,

d
dt

Wk ¼ 1þ iωk

� �
Wk � Wk

�� ��2Wk þ
K
N

∑
N

j¼1
Wj �Wk

� �
; ð1Þ
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each oscillator k= 1,…,N is represented by a complex variable
Wk and coupled to all other oscillators through the ensemble
average. The long-range interaction is in fact global, since the
coupling is all-to-all. Each agent, when uncoupled, undergoes
periodic motion with its own intrinsic frequency ωk, different
across agents, making the ensemble heterogeneous.

Suppose we initialize an ensemble of N= 256 oscillators with
values Wk on a regular grid, as shown in Fig. 1(a). The color
coding thereby correlates with the imaginary part of Wk. Inte-
grating this initial condition using Eq. (1) with coupling constant
K= 1.2 and intrinsic frequencies ωk distributed equally spaced
within the interval �1:5; 1:9½ � yields the dynamics in Fig. 1(b):
although the behavior appears quite irregular at the beginning, it
quickly settles onto a cylinder-like structure. Note that the color

coding is still the same. After the transients decay, the agents
appear arranged on this structure in an irregular manner if
colored based on their initialization, see the zoom in of the upper
part as shown in Fig. 1(c). Using manifold learning, we will show
that it is possible to find a parametrization of the agents (a dif-
ferent coloring) in which the dynamics appears more ordered and
regular. This is shown by the new color coding of the last
snapshot in Fig. 1(c), and the recolored attractor in Fig. 1(d).
Indeed, when contrasting the time series of the agents in the
original color coding i (Fig. 1(e)) and the new color coding ϕi
(Fig. 1(f)), we argue that the dynamics appear more regular in a
space parametrized by ϕi, suggesting the possibility that the
solution can be described by a PDE with ϕi and time as the
independent variables.

Fig. 1 Illustration of the emergent PDE approach for coupled oscillator systems. a Initial condition of the Stuart-Landau ensemble, Eq. (1), colored with
ascending imaginary part ofWk. b Trajectories obtained from integrating the initial conditions of (a) with the same color coding as in (a). The last snapshot
is marked by black dots. c Zoom in to the upper part of (b), with the last snapshot marked by black dots. Above it, the last snapshot is color coded based on
the ordering of the oscillators along the curve at that moment. d Zoom in on the top part of (b), but now with the new color coding. e Trajectories of the
real part of theWk, arranged by their initial values ImW. f Trajectories of the real part of theWk, arranged by the new color coding ϕi as in (d). (Finding ϕi is
discussed in the text).
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The remainder of this article is organized as follows: First, we
illustrate our approach through a caricature, where we start with a
known PDE in a predefined spatial variable. We observe the
dynamics at a number of mesh points in this known space, but
then we scramble the time series ourselves, on purpose, con-
cealing the spatial coordinates of where the behavior was
observed. We obtain a predictive PDE description in a learned
emergent spatial or heterogeneity coordinate ~x, discovered
through data mining these scrambled behaviors. We then confirm
that this emergent coordinate is one-to-one with the (discarded)
physical location x of the original mesh points.

Returning to our globally-coupled oscillator ensemble, we show
how to extract an intrinsic space coordinate, and learn a PDE
description in this parametrization and time. We then study
parametric dependencies of this PDE: we sample dynamics at
parameter values bracketing a (collective) Hopf bifurcation. Using
this data, we show that learning a PDE with an additional input
for a parameter can capture the location and nature of bifurca-
tions in this parameter.

We then go beyond a single emergent space dimension: For a
biologically-motivated mathematical model of coupled Hodgkin-
Huxley type neurons, used to describe the dynamics in the pre-
Bötzinger complex of the brain, data mining discovers that the
description of the agent behaviors is now two-dimensional. We
again learn a PDE describing the agent dynamics - now in two
emergent space coordinates and time.

We conclude with a discussion of the approach and its
shortcomings, and what we perceive as open questions and
directions for future research. We also discuss the explainability
of the learned emergent coordinate(s) for such agent-based sys-
tems. Details on the algorithms and numerical methods are
summarized in the Methods section. The code to reproduce the
results is available under https://github.com/fkemeth/emergent_
pdes.

Results
Learning partial differential equations in emergent coordi-
nates. For an illustrative caricature, we use a PDE with a known
independent space variable, before returning to our coupled agent
example. In this case we do have a known independent spatial
coordinate, x, but we will randomly scramble it ourselves, to
validate that our algorithms can, in a meaningful way, recover it.
Consider the 1D complex Ginzburg-Landau equation, a PDE for
the evolution of a complex field W(x, t) in one spatial dimension
x 2 0; L½ �, defined by

∂

∂t
Wðx; tÞ ¼Wðx; tÞ þ 1þ ic1

� � ∂2

∂x2
Wðx; tÞ

� 1� ic2
� �jWðx; tÞj2Wðx; tÞ

ð2Þ

with real parameters c1= 0, c2=−3, L= 80, and, here, periodic
boundary conditions. We integrate this system using a pseudo-
spectral method with exponential time stepping25. This results in
spatiotemporal chaotic dynamics, so called spatiotemporal
intermittency, with the spatiotemproal evolution shown in
Fig. 2(a). See section Methods for an additional example with
c1= 1, c2= 2 and no-flux (Neumann) boundary conditions
showing periodic dynamics.

For integration, the spatial coordinate x is discretized into
N= 256 equidistant points xk. Eq. (2) thus yields N (here
complex) time series Wk(t) at each mesh point xk. We can think
of the behavior at each mesh point as the behavior of an agent in
an ensemble of interacting agents. Assuming the xk label of each
agent is not available (cf. Fig. 2(b), where the agents are
parametrized by a random index i); is it possible to find a
collective description of the dynamics in these time series based

on a data-driven, emergent spatial variable, and in the form of a
partial differential equation, involving partial derivatives in this
variable?

We accomplish this by extracting an intrinsic independent
coordinate from the time series data. As proposed in Ref. 9 we use
diffusion maps (each of the scrambled time series is a data point)
to extract coordinates parametrizing the ensemble of time series,
see Methods. It may be qualitatively helpful (even though we use
a nonlinear manifold learning algorithm) to think of this as
performing principal component analysis (PCA) on the ensemble
of time series (each of them is a data point) and then keeping the
leading PCA component as an emergent spatial coordinate. This
emergent coordinate is used to parametrize a useful embedding
space in which to learn a PDE.

For the time series data in Fig. 2(b), we find two independent
diffusion modes ϕ1 and ϕ2, spanning a circle in diffusion maps
space, which is shown in Fig. 2(c). This circle is one-to-one with
the original periodic domain, however, through the scrambling,
the time seriesWk are located at random position along this circle
(see color coding in Fig. 2(c)). Even without knowledge of the
spatial location of the mesh points, we can still extract a data-
driven coordinate ~x parametrizing the circle (see color coding in
Fig. 2(d)), and set out to learn a PDE with this coordinate as the
spatial dimension. The data parametrized this way is depicted in
Fig. 2(e). Note that ~x is one-to-one with, but not identical, to x. In
particular, it is shifted (see the shifts in Figs. 2(a) and (e)) due to
the non-uniqueness of the parametrization of the periodic
domain. We now set out to learn a PDE description based on
partial derivatives in ~x,

∂

∂t
Wð~x; tÞ ¼ f W;

∂W
∂~x

;
∂2W

∂~x2
;
∂3W

∂~x3

� �
ð3Þ

where f is represented by a fully connected neural network. See
Methods for details on the neural network architecture and the data
sampling. A number of issues arise in learning such a PDE in ~x:

● Since ~x is in general not identical to x, trajectories Wk are
not equally spaced. To calculate a finite difference
approximation of ∂nW=∂ϕn1 , we interpolate the ~x-parame-
trized data using cubic splines and sample W at N= 256
equidistant points on the interval �π; π½ �.

● PDEs define properties of functions in infinite dimensional
spaces; we cannot sample the full state space, and so our
learned surrogate PDE will not know the dynamics in all
state space directions. Various techniques proposed in
recent years (especially in imitation learning) attempt to
regularize surrogate dynamical systems. These include
contraction theory26–29, and convex neural networks30,31.
They rely on the existence of a Lyapunov function; other
approaches include Jacobian regularization32,33. However,
they usually involve additional loss terms or are compu-
tationally expensive.
Here, we sample multiple transients towards the attractor
as training data, and, if necessary, regularize the output of
the learned PDE as follows: Using the simulation data, we
create a truncated singular value decomposition (SVD)
based on all the sampled transients. During inference, we
filter the state obtained by integration of the neural network
output by projecting it back onto this truncated SVD
subspace, thus keeping the predicted trajectories there.

Integrating from an initial snapshot using the learned PDE f in
the emergent variable ~x is shown in Fig. 2(f). Notice the close
correspondence between predicted and actual dynamics, cf.
Fig. 2(e).

In the next Section, we will follow the same approach, but now
for a system where there is no original space coordinate to recover.
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Learning Partial Differential Equations for Coupled Stuart-
Landau Oscillator Dynamics. Recall the original problem, Eq. (1),
of an ensemble of mean-coupled Stuart-Landau oscillators,

d
dt

Wk ¼ 1þ iωk

� �
Wk � Wk

�� ��2Wk þ
K
N
∑
j

Wj �Wk

� �
ð4Þ

with k= 1,…,N and the real coupling constant K. The intrinsic
frequencies ωk are taken linearly spaced in the interval
�γþ ω0; γþ ω0

	 

. Depending on the parameters K and γ, a ple-

thora of different dynamical phenomena are known to arise.
Examples range from frequency locked oscillations and quasiper-
iodic dynamics to chaos and oscillator death. See Ref. 34 for a more
detailed discussion. Here, we fix K= 1.2, γ= 1.7 and ω0= 0.2 -
resulting in periodic, synchronized oscillations: the oscillators in
the ensemble oscillate with a common frequency and maintain a
constant mutual phase difference. The real part of such dynamics is
depicted in Fig. 3(a), parametrized by ϕ1, the first independent
diffusion map mode. As for the complex Ginzburg-Landau equa-
tion, we sample data not only on the attractor, but also on tran-
sients in its neighborhood approaching it. These long-term
dynamics can be thought of as lying on an attracting slowmanifold;
see Methods.

The predictions from an initial condition on the limit cycle
using the learned PDE model are depicted in Fig. 3(b), and closely
resemble the actual dynamics, as depicted in Fig. 3(a). Note here
that due to the deformation of the space coordinate, the boundary

conditions in the transformed variable may no longer be obvious.
We therefore learn f only in the interior of the ϕ1 domain. When
we simulate the learned PDE, we provide (as boundary
conditions) a narrow space-time data corridor as needed. The
imposition of such finite corridor boundary conditions is
particularly important for such agent-based systems as considered
here, where the form of effective boundary condition formulas
(like Dirichlet, Neumann or Robin) in the emergent space is not
known a priori. The model also captures the dynamics
approaching the limit cycle. This can be visualized by integrating
from initial conditions on the slow manifold but off the attracting
limit cycle. We integrated such an initial condition from our test
set using forward Euler and both the full ODE system, Eq. (1), as
well as the learned emergent PDE model. The smallest Euclidean
distance in CN between these transients and the true attractor at
each time step is depicted in Fig. 3(c). Note that both the true and
learned transients converge to the limit cycle at a similar rate, and
the learned PDE trajectory approximates the behavior of the full
ODE system well. In an attempt to obtain a physical meaning of
the emergent coordinate ϕ1, we plot it as a function of the
intrinsic frequency ω of the oscillators in Fig. 3(d). It becomes
obvious that the two quantities are one-to-one, analogous to the
(~x, x) pair in the complex Ginzburg-Landau example above: our
data mining has discovered the heterogeneity of the ensemble,
and uses it to parametrize the dynamics. Knowing the equations
and how ωk enters in them, one could analytically attempt to

Fig. 2 Data-driven PDE for the chaotic dynamics in the complex Ginzburg-Landau equation. a The real part of the complex field W(x, t) obtained from
simulating Eq. (2) with N= 256 mesh points after initial transients have decayed. b Removing the spatial label yields a collection of N time series plotted
here in random sequence. c Using manifold learning (here diffusion maps), one finds that there exists two modes ϕ1 and ϕ2 parametrizing these time series.
Each point corresponds to one of the N time series, and is colored by its scrambled spatial location x. d Having obtained the embedding, we can introduce
an emergent coordinate ~x parametrizing the circle spanned by ϕ1 and ϕ2. e The real parts of the time series parametrized by ~x. f Real part of simulation
predictions for the complex variable W starting from an initial condition in our test set, using the partial differential equation model learned with ~x as the
spatial variable and a periodic domain.
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derive Ott-Antonsen-type equations (for phase oscillators) in ω
space3. We know neither the equations, nor the ωk (and the
oscillators are not phase oscillators to boot); everything here is
data-driven.

Having been successful in capturing the attractor and its
nearby dynamics for a single parameter value, it becomes natural
to explore whether the learned PDE can also capture bifurcations:
qualitative changes in the dynamics when changing system
parameters. In particular, for γ= γH ≈ 1.75, the Stuart-Landau
ensemble undergoes a collective Hopf bifurcation, at which the
amplitude of the oscillations shown in Fig. 3 vanishes. For γ > γH,
a stable fixed point ensues, in which all individual amplitudes of
the respective oscillators are zero, also called oscillator death35.
We now collect data for training at several γ values, linearly
spaced in the interval 1:7; 1:8½ �, on both sides of the Hopf
bifurcation; the γ value was provided as additional input to the
model. We again perturbed along the slow stable eigendirections
of each attractor, see Methods, collecting transients that inform
the model about nearby dynamics. We then learned a PDE of the
form

∂

∂t
Wðϕ1; tÞ ¼ f W;

∂W
∂ϕ1

;
∂2W

∂ϕ21
;
∂3W

∂ϕ31
; γ

� �
: ð5Þ

The learned dynamics, starting from an initial oscillator ensemble
profile, and integrated using the learned model are shown in
Fig. 4 for γ < γH (left inset) and for γ > γH (right inset). We
observe the transient dynamics approaching the fixed point
W= 0 ∀ ω for γ= 1.8.

Validating the approach further, we start at random initial
conditions in the slow eigenspace of the attractor at different γ
values using the Stuart-Landau system, Eq. (1), as well as the
learned PDE model. For both models, we record a snapshot after
T= 10000 dimensionless time units and calculate its average
amplitude 〈∣Wlimit∣〉. An average amplitude equal to zero then
indicates that the initial condition converged to the fixed point
W= 0 ∀ ω under the respective model, whereas a nonzero

amplitude indicates convergence to the (collective/spatiotem-
poral) limit cycle. The resulting 〈∣Wlimit∣〉 values for different γ
are shown in Fig. 4, with blue circles for the original dynamics
and orange crosses for the learned dynamics. The Hopf
bifurcation manifests itself in the sudden increase in amplitude
when γ is varied. Note the close correspondence between the
learned model and the original oscillator system: both converge to

Fig. 3 Emergent PDE for an ensemble of Stuart-Landau oscillators. a Real part of the complex variable W for a system of N= 512 oscillators,
parametrized by the first emergent diffusion mode ϕ1. b Dynamics obtained from the learned model by integrating starting from the same initial snapshot
as in (a). c Smallest Euclidean distance d inCN at each time step between the transients and the true attractor for the true PDE (blue) and the learned PDE
(orange). d The first diffusion mode ϕ1 as a function of the intrinsic frequencies ω of the oscillator ensemble.

Fig. 4 Computational bifurcation diagram by plotting the mean amplitude
〈∣Wlimit∣〉 averaged over the ensemble at the limit set. In particular, we
integrate from random initial conditions close to the limit set for T= 10000
dimensionless time units for the Stuart-Landau ensemble (blue circles) and
the learned PDE (orange crosses). A mean amplitude near zero indicates
convergence to the fixed-point W= 0 ∀ω, whereas a non-zero 〈∣Wlimit∣〉
indicates oscillations with finite amplitude. The color codings of the insets
show the real part of the complex variable W obtained from integrating an
initial condition close to the fixed pointWk= 0 with γ= 1.8 (right inset) and
close to the limit cycle with γ= 1.7 (left inset) using the learned model and
employing explicit forward Euler for γ= 1.8 > γH.
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a fixed point for γ > γH ≈ 1.75, and to the limit cycle for
γ < γH ≈ 1.75.

Two emergent spatial coordinates. The approach can easily be
extended to situations with more than one emergent spatial
dimension, that is, to problems in which more than one diffusion
map component become necessary to parametrize the inherent
heterogeneity of agent behaviors. As an example, we consider a
system of coupled Hodgkin-Huxley type neurons, a caricature for
modeling the dynamics in the pre-Bötzinger complex36–38. The
state of the k-th neuron (out of 1024 total neurons) is specified by a
channel variable hk and a voltage variable Vk. In addition, the
neurons are coupled such that they form a random Chung-Lu type
network. This means that the number of connections of each
neuron varies from neuron to neuron. Furthermore, the neurons
differ in the value of the kinetic parameter Ikapp in the equations.
Thus, the model has two heterogeneous parameters: a structural
heterogeneity resulting from the network topology and an intrinsic
heterogeneity through the applied current Ikapp. See the Methods
section for details on the dynamical equations of the model.

Fig. 5 (a) depicts the dynamics of the model for N= 1024
neurons. The black lines indicate trajectories of a subset of these

neurons, whereas the colored dots mark snapshots. Note that the
system is periodic in time but the neurons are spread out at each
time step.

In Fig. 5(b), the emergent coordinates for such a dynamics are
shown, obtained by performing diffusion maps on the collection
of simulated time series. Note that there are two independent
directions, ϕ1 and ϕ2, parametrizing the neurons. By coloring ϕ1
and ϕ2 with the intrinsic heterogeneity Ikapp, one can observe that
one emergent space direction correlates with this parameter. One
can furthermore show that the second direction approximately
corresponds to the connectivity degree of each neuron in the
network, the number of other neurons it is directly connected to9.

Our contribution in this paper is to learn an effective PDE in a
rectangular interval in emergent space, as indicated by the grid
shown in Fig. 5(b). This is achieved by fitting polynomials to the
data and interpolating on the regular grid points, see Methods.
One snapshot of V at t= 10 is depicted in Fig. 5(c). Using the
interpolated data along the attractor and of a few transients, we
learn a PDE as described in the previous sections. However, the
input to the neural network now consists of partial derivatives of
the h and V fields with respect to ϕ1 and ϕ2, obtained using finite
differences. One can then use the model to predict the dynamics
of a so far unseen initial snapshot. A snapshot of V at t= 10

Fig. 5 Emergent PDE for a network of Hodgkin-Huxley like neurons in the pre-Bötzinger complex. a Trajectories of the ensemble and five snapshots
(colored points) in the V, h plane of an ensemble of 1024 neurons. For better visability, only 64 trajectories are shown. b The two emergent coordinates ϕ1

and ϕ2. Through the color coding with the intrinsic heterogeneity Ikapp, one can observe that Ikapp is a function of the emergent space coordinates. The
rectangular grid indicates the space in which we chose to learn an effective PDE. c Snapshot of V at t= 10 obtained by fitting the simulation data on the grid
shown in (b). d Snapshot of V at t= 10 predicted by the learned PDE model. e Space-time plot of the evolution of V at the cut ϕ1= 0, as indicated in (c).
f Predictions V̂ of the space-time evolution of V at ϕ1= 0. The white lines indicate the borders of the boundary conditions.
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obtained by integrating the same initial condition as in Fig. 5(c)
using the learned PDE and forward Euler is shown in Fig. 5(d).
The white lines thereby indicate the extent of the thin boundary
corridors provided in lieu of boundary conditions during
integration. In Fig. 5(e), the space-time dynamics of V along
the one-dimensional cut ϕ1= 0, as indicated by the dashed line in
Fig. 5(c), is shown. The predicted dynamics of V, V̂ , along
the same cut in emergent space is depicted in Fig. 5(f). Notice the
close correspondence between the actual dynamics and the
predictions of the learned model.

Discussion
We have seen that it is possible to learn a predictive model for
the dynamics of coupled agents based on local partial deriva-
tives with respect to one (or more) emergent, data-driven
spatial variable(s) and time, that is, in the form of a partial
differential equation. As an example, we investigated an
ensemble of mean-coupled Stuart-Landau oscillators, where
each oscillator has an intrinsic frequency ωk. Using manifold
learning (here, diffusion maps), we were able to extract an
intrinsic coordinate ϕ1 from time series segments of these
oscillators. Starting with just a single parameter value
γ= 1.7 < γH, our results indicate that a model based on a few
partial derivatives with respect to ϕ1 is able to accurately cap-
ture the collective dynamics in the slow manifold and on the
final attracting limit cycle. These results extend to the case in
which data is sampled for different γ values on both sides of the
Hopf bifurcation point γH. The learned PDE then modeled
successfully the slow transients towards either the stable limit
cycle or the stable fixed point, depending on the parameter. We
then extended our analysis to a biologically-motivated example
where the agents are Hodgkin-Huxley type neurons. There, we
found a two-dimensional embedding of the time series, and
subsequently learned a PDE in this two-dimensional
emergent space.

For a successful implementation of our approach we employed
a systematic way of sampling training data: From a given limit set,
we perturb along the slow stable manifold, and sample transients
approaching the attractor. This sampling strategy is assisted by
estimates of the slow stable directions (and their time scales)
through the linearized system Jacobian, that help produce
informative initial conditions. Because of the fast-slow nature of
the dynamics, we found that starting practically anywhere and
integrating for a short time will bring the dynamics close to this
slow manifold.

This ought to also be the case when collecting experimental
data (discarding short initial transients to the slow manifold).
Clearly, the model cannot be expected to learn the right
asymptotic behavior in dimensions in which it has seen no data.
This can lead to instabilities when attempting to predict the
long term dynamics of the system. We addressed this problem
through filtering, in particular through a truncated SVD reg-
ularization. An SVD basis was constructed from the training
data, and, during inference, we filtered by projecting the pre-
dictions on this basis; the predicted dynamics cannot leave the
space spanned by the truncated SVD. This introduces an
additional hyperparameter to the model: the dimension after
which to truncate the SVD used for filtering. Too many
dimensions may allow for instability in the predictions (lack of
training data); too few leads to poor representations and dis-
torted dynamics. Our threshold was empirically chosen by trial
and error; the subject is worthy of a more detailed study. Other
approaches may be employed as well, such as hyperviscosity in
the learned PDE model39–41, effectively damping higher fre-
quency components.

An important question in deciding which PDE model to learn,
is how many emergent spatial derivatives one has to include in
the PDE right hand side. In other words, how can one decide
when ∂W/∂t is well approximated by W and its derivatives with
respect to ϕ1? For Gaussian process regression, recent work using
Automatic Relevance Determination helps tackle this problem42.
In our case we again decided empirically, by trial and error; a
more thorough study must clearly follow. In addition, the issue of
boundary conditions in emergent space (here we used narrow
boundary corridors), as well as what constitutes a well posed
problem for an operator identified in a data-driven way constitute
important (and challenging) questions to pursue; we mention
here the possibility of using the approach of the baby-bathwater
scheme in43.

Fig. 4(b) indicates that the learned model captures qualitative
changes in the dynamics when changing a system parameter, here
a Hopf bifurcation from a fixed point for γ > γH to collective
oscillations for γ < γH. More quantitatively, we reported the
leading spectrum of the linearization of the model evaluated at
the fixed point. This was obtained using automatic differentiation
of the neural network model with respect to its inputs. Such
computations can shed more light on the similarities and dif-
ferences of agent-based simulations and their emergent PDE
descriptions. In this paper, we focused on a particular regime in
parameter space. However, our approach can easily be extended
to more intricate dynamics that are known in such a Stuart-
Landau ensemble; informative examples are included in the
videos SI1 and SI2.

Historically, it is known that physical phenomena modeled at
the fine scale through atomistic/stochastic/agent-based simula-
tions are often well approximated using closed partial differential
equations in terms of a few of their collective observables (e.g.,
moments of the particle distribution, such as the agent density).
Our approach will be useful when we believe that such effective,
collective PDE models in principle exist, but the closures required
to write them down are not known. It can also provide useful
results in regimes where the strong mathematical assumptions
required to provably obtain explicit closures can be relaxed. This
is an area where equation-free multiscale numerics has been used
to solve the equations without writing them down, and where
manifold learning has been used to even perform this solution
(dependent) variable free, that is, in terms of dependent variables
not known a priori, but revealed through data mining of detailed
simulations (see, for example, the discussion in44). All scientific
computation in latent space (e.g., see45 and46) falls in this class.

What is different and exciting in the present study is the
extension of this approach to problems where there are no
obvious independent spatial variables - dynamics of coupled
oscillators, dynamics on and of networks, dynamics of systems of
interacting systems, where the right space for modeling the
problem is not known a priori. Writing models in such an
emergent activity space, with emergent space and even emergent
time9 coordinates may become a useful method for the modeler: a
tool that extends the toolkit for linking domain science knowl-
edge at the detailed level with machine/manifold learning to build
useful, predictive models.

Here, we chose a model based on local descriptors, local in the
emergent space. One can speculate about contexts in which such
a local description might be beneficial. It certainly is more
humanly parsimonious/compact to write down than the detailed
list of all units and all interactions. It may also be convenient if
one needs to make predictions with limited memory (limited fast
cpu memory so to speak). We do not need to know what every
unit is doing - we look at the activity of similar units (that are
already embedded nearby in emergent space) and make predic-
tions based on smoothness (mathematically expressed through

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30628-6

8 NATURE COMMUNICATIONS |         (2022) 13:3318 | https://doi.org/10.1038/s41467-022-30628-6 | www.nature.com/naturecommunications

https://github.com/fkemeth/Emergent_PDE_Videos/blob/master/emergent_pde1.avi
https://github.com/fkemeth/Emergent_PDE_Videos/blob/master/emergent_pde2.avi
www.nature.com/naturecommunications


Taylor series) and the behavior of the neighbors. Our emergent
space can then be thought of as a space where nearby (observa-
tions of) behaviors come already usefully clustered. Alternatively,
we can think of this space as embodying a useful attention geo-
metry - the behaviors we need to pay attention to (because of
their similarity) in order to make a prediction, are already our
neighbors in this space. Geometric proximity in the emergent
space saves us then from having to search for comparable
behavior histories across all interacting units in physical space-
time. This enables us to exploit smoothness across behavior
histories in order to make local predictions with only a few
nearby data. In our Stuart-Landau example, the oscillators are
globally coupled, while we find a local PDE (without integral
terms) that successfully describes their behavior. This apparent
disconnect of local PDE description versus global coupling can be
explained through infinite propagation speed of information for
certain parabolic PDE, such as the heat equation. Modeling
globally coupled oscillators with a PDE that only allows finite
propagation speed, such as the wave equation, would not lead to
the correct behavior. In our case, the network automatically
learned that infinite propagation speed is necessary, and we are
still investigating how such qualitative behavior can be learned
more effectively.

We touched briefly upon the explainability of our emergent
spatial coordinates by showing that our ϕ1 was one-to-one with,
and thus calibratable to, the oscillator intrinsic frequencies - the
agent heterogeneity of the Stuart-Landau ensemble. In the
Hodgkin-Huxley neuron example the emergent coordinates were
again seen to be one-to-one with a parametrization of the oscil-
lator heterogeneity; one corresponded approximately to the
kinetic heterogeneity, while the second corresponded to the
structural (connectivity) heterogeneity. The suggested approach
then is to (a) decide how many emergent independent variables
are necessary; (b) ask a domain scientist for physical quantities
that may explain them and then (c) to test whether the
explainable and the data-driven parametrizations are one-to-one
on the data (the determinant of the Jacobian of the transforma-
tion is bi-Lipschitz, bounded away from zero and from infinity,
on the data, e.g.,47–49).

Clearly, the explainability of predictive, generative equations in
terms of data-driven dependent and independent variables, and
operators approximated through machine learning is a crucial
endeavor - when and why will we decide we trust results when we
understand the algorithms, but do not understand the mechan-
istic, physical steps underlying the observations of what we
model? Will a different understanding arise in latent/emergent
space - analogous, say, to describing operators in Fourier space
rather than physical space, or studying control in Laplace space
rather than state space? From flocking starlings to interacting
UAV swarms, this promises to be an exciting playing field for
contemporary modelers.

Methods
Diffusion maps. Diffusion maps use a kernel function to weigh pairwise distances
between data points 23,24, typically the Gaussian kernel

kðx; yÞ ¼ exp �k x � yk2
ϵ

� �
ð6Þ

with a predefined kernel scale ϵ and a Euclidean distance metric, which we adopt
here. The data points x, y are, in our case, the N time series, resulting in a
K 2 RN ´N kernel matrix. Row-normalizing this kernel matrix yields a Markov
transition matrix, also called diffusion matrix, and its leading independent eigen-
vectors corresponding to the largest eigenvalues can be used to parametrize the
data50.

Note that the eigenvectors of the diffusion matrix correspond to the
eigenfunctions of the Laplace operator on the data manifold. As such, eigenvectors
that can be written as functions of other eigenvectors with larger eigenvalue appear
in the eigendecomposition of the diffusion matrix. An important task when using

diffusion maps is to extract the independent eigenvectors that parametrize new
directions in the data. A prominent tool for this task was developed in Ref. 50 and is
based on performing local linear regression on the set eigenvectors. Here, we
perform visual inspection of the first ten eigendirections to investigate which
eigenvectors are harmonics and which eigenvectors represent new directions in the
data. These independent diffusion eigenvectors are then scaled to the interval
�1; 1½ � for better comparison.

Complex Ginzburg-Landau equation with spatiotemporal chaotic dynamics.
Consider the complex Ginzburg-Landau equation

∂

∂t
Wðx; tÞ ¼ Wðx; tÞ þ 1þ ic1

� � ∂2

∂x2
Wðx; tÞ � 1� ic2

� �jWðx; tÞj2Wðx; tÞ ð7Þ

in one spatial dimension x, in a domain of length L. We solve this equation using
random initial condition with periodic boundary conditions and parameter values
c1= 0, c2=− 3 and L= 80 using a pseudospectral method with exponential time
stepping25. We sample data after initial transients have decayed, i.e., after 1000
dimensionless time units. The subsequent spatiotemporal evolution is depicted in
Fig. 2(a).

Data for training our model is sampled as described in the following: For the
number of training examples, we set ntrain= 20 and for the number of test
examples ntest= 2, yielding ntotal= 22. We thus integrate from random initial
conditions ntotal= 22 times for 1000 dimensionless time units. We subsequently
perturb the resulting snapshot by adding again noise to the solution. In this way,
we perturb off the attractor a bit, allowing our model to learn the stability of the
attracting manifold. We then integrate each perturbed snapshot for another 20
dimensionless time units, and sample data every dt= 0.02 time steps. This means,
in total there are 20000 snapshot data pairs for training, and 2000 for validation. In
order to find a parametrization for the discretization points of the PDE, we
concatenate the training time series of the N= 256 points, resulting in 20,000 × 20
long trajectories. Then, we use diffusion maps with an Euclidean distance and a
Gaussian kernel, and take the kernel scale ϵ= 100 such that only close time series
effectively influence the diffusion maps calculation. This results in the two
independent modes ϕ1 and ϕ2, as shown in Fig. 2(c). We then parametrize the
circle by using the angle ~x 2 �π; π½ ½. We resample data on a regular grid in the
interval �π; π½ ½ using a cubic spline. We estimate the time derivative at each point
using finite differences in time,

∂

∂t
Wð~x; tjÞ ¼ ∂tWð~x; tjÞ � ðWð~x; tj þ dtÞ �Wð~x; tjÞÞ=dt: ð8Þ

Using the ðWð~x; tjÞ; ∂tWð~x; tjÞÞ pairs, we train a neural network f in a supervised
manner as follows: We take N= 256 discretization points on each snapshot. At
these points we calculate the first nderivs= 2 spatial derivatives using a finite
difference stencil of length l= 5 and the respective finite difference kernel for each
spatial derivative of the highest accuracy order that fits into l= 5. The model thus
takes the form

∂tWð~xi; tjÞ � f ðWð~xi; tjÞ; ∂~xWð~xi; tjÞ; ∂~x~xWð~xi; tjÞÞ ð9Þ
with the derivatives calculated in the emergent space coordinate ~x as described
above. Note that Wð~x; tÞ is complex, which means at each ð~xi; tjÞ the input to the
neural network is 6-dimensional for nderivs= 2. The network itself is composed of 4
fully connected hidden layers with 96 neurons each and Swish activation function
(resulting in ≈28 ⋅ 103 trainable parameters). The output layer contains two
neurons with no activation function, one neuron for the real and imaginary part of
∂tW, respectively. The network weights are initialized uniformly using PyTorch’s
default weight initialization51, and are optimized using the Adam optimizer52 with
initial learning rate of 2 ⋅ 10−3 and batch size of 128. Mean-squared error between
the predicted and actual ∂tWð~xi; tjÞ, Eq. (8), is taken as the loss. The model is
trained for 400 epochs, and the learning rate reduced by a factor of 2 if the
validation loss does not decrease for 10 epochs. Needless to say, other general
purpose approaches to learning the right-hand-side of the operator (Gaussian
Processes42, Geometric Harmonics53, etc.) can also be used.

Inference is done by taking an initial perturbed snapshot of the validation data
and integrating it forward in time using the learned model by using Scipy’s Runge-
Kutta-4(5) method and again periodic boundary conditions. The results are
depicted in Fig. 2(f).

Complex Ginzburg-Landau equation with periodic dynamics. Consider the
complex Ginzburg-Landau equation

∂

∂t
Wðx; tÞ ¼ Wðx; tÞ þ 1þ ic1

� � ∂2

∂x2
Wðx; tÞ � 1� ic2

� �jWðx; tÞj2Wðx; tÞ ð10Þ

in one spatial dimension x, in a domain of length L. We integrate starting with
initial condition

Wðx; 0Þ ¼ 1þ cos xπL
2

ð11Þ

using a finite-difference method in space and an implicit Adams method for
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integration, and sample data after initial transients have decayed, i.e., after 4000
dimensionless time units. This spatiotemporal evolution is depicted in Fig. 6(a).

We solve this equation using the initial condition

Wðx; 0Þ ¼ 1þ cos
πx
L

� �
=2; ð12Þ

with zero-flux boundary conditions and parameter values c1= 1, c2= 2 and
L= 200. It is worth noting that there is a slight left-right asymmetry in the solution
shown in Fig. 6(a). Due to the symmetry of the space domain, there exist two stable
solutions for this set of parameters; one has a slightly larger amplitude for large x,
the other, reflected version, has a larger amplitude for small x. Choosing the initial
condition defined above leads to a convergence to the same solution at every run.
However, all initial conditions will eventually come down to a periodic solution.

Numerically, we integrate using a three point stencil for the finite difference
approximation of the second derivative ∂2/∂x2 with Nint= 256 discretization points
and an implicit Adams method with dt= 10−3 for the temporal evolution. The
resulting behavior is depicted in Fig. 6(a). Data for training our model is sampled as
described in the following: For the number of training examples, we set ntrain= 20
and for the number of test examples ntest= 1, yielding ntotal= 21. At ntotal= 21
points along the limit cycle shown in Fig. 6(a), we sample data as follows: At
ti ¼ tmin ¼ 2000þ idτ with i∈ {0,…, ntotal− 1}, with dτ= 100, we perturb the
limit cycle by scaling the respective snapshot at ti as 0.9 ⋅W(x, ti) and 1.1 ⋅W(x, ti).
We integrate both of these snapshots forward in time for T= 20 time units, and
sample data after each dt= 10−3. This results in two transients, each comprised of
20,001 snapshots at each ti. This means, in total there are 2 × 20,000 × 20= 8 ⋅ 105
snapshot data pairs for training, and 2 × 20,000 for validation. We subsequently
downsample the data to N= 128 points per snapshot. In order to find a
parametrization for the discretization points of the PDE, we concatenate the
training time series of the N= 128 points, resulting in 2 × 20000 × 20 long
trajectories. Then, we use diffusion maps with an Euclidean distance and a
Gaussian kernel, and take the kernel scale ϵ as the median of all squared distances.
This results in the one-dimensional parametrization ϕ1, as shown in Fig. 6(c). We
resample data on a regular grid in the interval �1; 1½ � using a cubic spline. We

estimate the time derivative at each point using finite differences in time,

∂

∂t
Wðx; tjÞ ¼ ∂tWðx; tjÞ � ðWðx; tj þ dtÞ �Wðx; tjÞÞ=dt; ð13Þ

yielding 20000 (W(x, tj), ∂tW(x, tj)) pairs per transient and ti.
Using the (W(x, tj), ∂tW(x, tj)) pairs, we train a neural network f such that

∂tWðx; tjÞ � f ðWðx; tjÞÞ ð14Þ
in a supervised manner as follows: We take N= 128 discretization points on each
snapshot. At these points we calculate the first nderivs= 3 spatial derivatives using a
finite difference stencil of length l= 9 and the respective finite difference kernel for
each spatial derivative of the highest accuracy order that fits into l= 9. The model
thus takes the form

∂tWðxi; tjÞ � f ðWðxi; tjÞ; ∂xWðxi; tjÞ; ∂xxWðxi; tjÞ; ∂xxxWðxi; tjÞÞ ð15Þ
with the derivatives calculated as described above. Note thatW(x, t) is complex, which
means at each (xi, tj) the input to the neural network is 8-dimensional for nderivs= 3.
The network itself is composed of 4 fully connected hidden layers with 96 neurons
each and tanh activation function (resulting in ≈28 ⋅ 103 trainable parameters). The
output layer contains two neurons with no activation function, one neuron for the
real and imaginary part of ∂tW, respectively. The network weights are initialized
uniformly using PyTorch’s default weight initialization51, and are optimized using the
Adam optimizer52 with initial learning rate of 10−3 and batch size of 1024. Mean-
squared error between the predicted and actual ∂tW(xi, tj), Eq. (13), is taken as the
loss. The model is trained for 60 epochs, and the learning rate reduced by a factor of 2
if the validation loss does not decrease for 7 epochs. Needless to say, other general
purpose approaches to learning the right-hand-side of the operator (Gaussian
Processes42, Geometric Harmonics53, etc.) can also be used.

Inference is done by taking an initial snapshot of the validation data near or on
the limit cycle and integrating it forward in time using the learned model and an
integration scheme such as forward Euler. At each time step, the boundary
conditions (in the form of narrow boundary corridors) are taken from the ground-

Fig. 6 Data-driven discovery of the complex Ginzburg-Landau equation. a The real part of the complex field W(x, t) obtained from simulating Eq. (2) with
N= 128 mesh points after initial transients have decayed. b Removing the spatial label yields a collection of N time series plotted here in random sequence. (c)
Using manifold learning (here diffusion maps), one finds that there exists a one-dimensional parametrization ϕ1 of these time series. Each point corresponds to
one of the N time series, and is colored by its actual spatial location x. d The real parts of the time series parametrized by ϕ1. e Real part of simulation predictions
for the complex variable W starting from an initial condition in our test set, using the partial differential equation model learned with ϕ1 as the spatial variable.
Since no analytical boundary conditions are available, we provide the true values near the boundaries during integration, within a corridor indicated by white
vertical lines. f Smallest Euclidean distance d in CN between the transients and the true attractor at each time step: true PDE (blue), learned PDE (orange).
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truth data. The issue arises of the right width for these corridors, and, more
generally, the prescription of boundary/initial/internal conditions appropriate for
the well-posedness of the overall problem, especially since the operator (the right
hand side of the PDE) comes in the form of a black box. This is already the subject
of extensive research that we, among others, are pursuing54.

In addition, each predicted snapshot from the model is filtered as described in
the following. On the whole training data set, an SVD is performed. Using the
obtained U and V matrices, we can decompose each predicted snapshot during
inference. In doing so, we truncate the SVD decomposition after two dimensions,
and reconstruct the snapshot. This means that each snapshot is projected onto the
two-dimensional subspace in which the training data lives, and thus prevents
directions that have not been sampled from growing during inference. The
resulting dynamics obtained from the learned model and using an initial snapshot
on the limit cycle is depicted in Fig. 6(e). 4-point wide boundaries are provided on
both sides of the domain. The learned dynamics can be investigated more clearly by
comparing the true and the learned transient dynamics towards the limit cycle. To
do so, we integrate a snapshot perturbed away from the limit cycle using the
complex Ginzburg-Landau equation and the learned model, and calculate the
smallest Euclidean distance in CN at each time step of the obtained trajectories to
the limit cycle. The results are shown in Fig. 6(f).

We also carefully checked that the learned model is converged with respect to
the number of discretization points N.

Stuart-Landau ensemble. We integrate Eq. (1) using an implicit Adams method
with the initial conditions of the oscillators uniformly distributed in the unit square
in the complex plane. The intrinsic frequencies are thereby linearly spaced in the
interval �1:5; 1:9½ �, and the coupling constant is taken as K= 1.2. The dynamics as
depicted in Figs. 1 and 3 are globally stable for the parameters considered here34. In
fact, arbitrary initial conditions decay to the limit cycle exponentially. Such
behavior can be investigated in more detail using Floquet theory: the convergence
to the limit cycle can then be described by Floquet multipliers with their associate
eigendirections. Since the limit cycle described above is stable, the absolute values
of the Floquet multipliers are less than one, except for one of them which equals
one. In particular, multipliers with large magnitude indicate slow attracting
directions, whereas multipliers with absolute values close to zero indicate fast
decaying directions. If both small and large Floquet multipliers are present, then
there exist transients with multiple time scales. Following Ref. 55, we calculate the
Floquet multipliers by calculating the monodromy matrix V along the limit cycle.
In particular, we obtain V by the integration

VðTÞ ¼
Z t¼T

t¼0

∂F
∂x

����
xðtÞ

� V dt ð16Þ

with V(0)= I2N×2N, I being the identity matrix, and T being the period of one
oscillation. The matrix ∂F

∂x represents the Jacobian of Eq. (1) obtained analytically

through differentiation and evaluated along the limit cycle. The eigenvalues of V(T)
then correspond to the Floquet multipliers, with the corresponding eigenvectors
being their respective directions.

The largest multipliers obtained this way, together with the three slowest
eigendirections, are depicted in Fig. 7. Notice the single multiplier equal to one
represents the neutral direction along the limit cycle. In addition, there is a pair of
complex conjugate eigenvalues λ2,3 ≈− 0.4 ± 0.4i (orange in Fig. 7). Due to the
magnitude of their real parts, the dynamics in this eigenspace is slow compared to
the subsequent eigendirections. These eigendirections are, as apparent from
Fig. 7(b) smooth functions of the frequencies ωk. In addition, perturbations in this
two-dimensional eigenspace spiral towards the stable limit cycle.

The directions of the subsequent multipliers affect only isolated oscillators. In
particular, the subsequent direction (green in Fig. 7) following the slow eigenspace
affects only the fastest oscillator, that is, the oscillator with the largest intrinsic
frequency ωk. The next direction then perturbs the second fastest oscillator (red in
Fig. 7), and so on. The step-like structure of the Floquet multipliers highlights the
multi-scale behavior of the coupled oscillator system: The oscillation and the
inward spiraling slow dynamics on one scale, and the single oscillator dynamics
towards the limit on the other, the fast scale. These eigendirections with support on
the most different oscillator are indicative of the SNIPER bifurcation marking the
edge of synchronization.

We sample data by integrating system Eq. (1) from the random initial
conditions described above, until the dynamics are settled on the limit cycle. For nlc
different points along the limit cycle, we calculate the monodromy matrix from Eq.
(16) and estimate the least stable eigendirection v1 transverse to the limit cycle,
presumably lying on the slow stable manifold. Then, we perturb in this direction by
perturbing each point Wlc on the limit cycle as Wlc ± ϵv1, with ϵ= 0.1. This yields
three initial points; integrating these points for a fixed amount of time then returns
two transients towards the limit cycle and one trajectory on the attractor. Here, we
choose nlc= 20 for the training data, and nlc= 5 for the test data, and a time
window of T= 200 dimensionless time units with a sampling rate of dt= 0.05,
yielding 4000 data points per trajectory, or 3 ⋅ ncl ⋅ T/dt= 240, 000 training data
points and 60, 000 test data points. The concatenated time series of length
3 ⋅ nlc ⋅ T/dt then serve as input data points for diffusion maps; the possibility of
using time series snippets of different durations is explored in9. The temporal
derivative ∂tW is then estimated using finite differences, cf. Eq. (13). When also
changing the system parameter γ we provide for each data point the corresponding
γ value as additional input to the network. In addition, the training data consists of
uniform γ values in 1:7; 1:8½ �, and the test data of randomly sampled γ different
from the training data. In addition, we estimate an SVD basis from the complete
training data. During inference, the prediction of f are reconstructed using this
basis and a truncation with ns= 3 dimensions.

For the extraction of diffusion modes, we use a kernel scale of ϵ= 20 for the case
when γ is fixed and ϵ= 10 when we sample data with different γ values. Other
hyperparameters and the model architecture are as described in the previous section.

Fig. 7 Floquet multipliers and corresponding eigendirections of the Stuart-Landau ensemble. a Absolute values of the Floquet multipliers, λi
�� ��, obtained

from the monodromy matrix for the dynamics shown in Fig. 3. b Eigendirection v1 corresponding to the pair of complex conjugate multipliers λ2 and λ3
(marked in orange) indicating a slow attracting direction. c, d Eigendirections v2 and v3 corresponding to the pairs of complex conjugate multipliers λ4, λ5,
and λ6, λ7, marked as green and red, indicating fast contracting directions. Note that since the Wk are complex, the directions vi are complex, with the real
parts indicated as solid curves, and the imaginary parts indicated as shaded curves.
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Heterogeneous network of Hodgkin-Huxley neurons. Following Refs. 36–38, we
model the dynamics of each neuron using the variables Vk and hk as

C
dVk

dt
¼ �gNam Vk

� �
hk Vk � VNa

� �� gl Vi � Vl

� �þ Iksyn þ Ikapp ð17Þ

dhk
dt

¼ h1 Vk

� �� hk
τ Vk

� � : ð18Þ

with k= 1,…,N. The neurons are coupled through the synaptic current Iksyn given
by

Iksyn ¼
gsyn V syn � Vk

� �
N

∑
N

j¼1
Akjs Vj

� � ð19Þ

with the symmetric adjacency matrix Akj. The nonlinear functions m Vð Þ, h1 Vð Þ,
τ Vð Þ and s Vð Þ are given by

m Vð Þ ¼ 1þ expð�ðV þ 37Þ=6Þ� ��1 ð20Þ

h1 Vð Þ ¼ 1þ expððV þ 44Þ=6Þ� ��1 ð21Þ

τ Vð Þ ¼ ϵ coshððV þ 40Þ=5Þ� ��1 ð22Þ

s Vð Þ ¼ 1þ expð�ðV þ 40Þ=5Þ� ��1 ð23Þ
with the constants C= 0.21, ϵ= 0.1, gNa= 2.8, gl= 2.4, gsyn= 0.3, VNa= 50,
Vl=−65, Vsyn= 0 and N= 1024. The applied currents Ikapp for each neuron k are

taken as Ikapp ¼ 22þ 2ωk with ωk being uniformly distributed in �1; 1½ �.
The adjacency matrix Akj is constructed using the Chung-Lu network topology.

Its entries are 1 with probability

pkj ¼ pjk ¼ min
wkwj

∑lwl
; 1

� �
; ð24Þ

with j < k, and the weights wk being defined as wk= pN(k/N)r, p= 0.9, r= 0.25.
Note that we take Ajk= Akj such that the adjacency matrix is symmetric.

We integrate the model using the Runge-Kutta method of order 5(4)56

starting from identical initial conditions Vk=− 60 and hk = 0. We collect data
after tmin ¼ 120 every dt= 2 ⋅ 10−3 time steps, until tmax ¼ 140. As for the
complex Ginzburg-Landau equation, we perturb the solution of the limit cycle
attractor. We again scale snapshots using a constant factor p 2 0:9; 1:1f g
such that

Vnew
k

hnewk

� �
¼ p

Vk

hk

� �
ð25Þ

and integrate these perturbed snapshots forward in time for an interval of
t= 20. We do this three times along the limit cycle to sample transients for
training, and one extra time for testing. Finally, the sampled data is rescaled
Vk → (Vk+ 37)/30 and hk → (hk − 0.42)/0.2 such that both variables are
approximately mean centered and are distributed over the same interval.

We employ diffusion maps with a kernel scale of ϵ= 4000 based on earlier
studies9. As in the previous sections, we scale the resulting diffusion eigenvectors
onto the interval �1; 1½ �. We fit the data on the rectangular grid shown in Fig. 5(b)
using polynomials of maximal order two. The data is then interpolated on a mesh
of 64 grid points in each direction.

The PDE model is represented by a neural network with three hidden layers of
64 neurons, each followed by a tanh activation function. The input at each point
consists of the rescaled and interpolated Vk and hk values, as well as their spatial
derivatives in both ϕ1 and ϕ2 up to order three obtained using finite differences.
Here, for simplicity, we do not use mixed derivatives. The model is optimized by
minimizing the mean-squared error between its output and the temporal
derivatives of Vk and hk obtained through finite differences in time. For integration,
we use the output of the neural network and step forward in time using forward
Euler with dt= 2 ⋅ 10−3. Finally, we scale the resulting Vk and hk back to their
physical variables, as they are shown in Fig. 5.

For filtering, we keep 10 SVD modes, capturing more than 99.99% of the
variance contained in the data.

Data availability
The data generated in this study are provided in the Supplementary Information/Source
Data file. All data can be reproduced using the code published under https://github.com/
fkemeth/emergent_pdes. Source data are provided with this paper.

Code availability
The source code to generate the reported data and to reproduce the results, as well as all
figures, is available under https://github.com/fkemeth/emergent_pdes.
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