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A new generative adversarial 
network for medical images super 
resolution
Waqar Ahmad1,2, Hazrat Ali3*, Zubair Shah3 & Shoaib Azmat1

For medical image analysis, there is always an immense need for rich details in an image. Typically, 
the diagnosis will be served best if the fine details in the image are retained and the image is available 
in high resolution. In medical imaging, acquiring high-resolution images is challenging and costly 
as it requires sophisticated and expensive instruments, trained human resources, and often causes 
operation delays. Deep learning based super resolution techniques can help us to extract rich details 
from a low-resolution image acquired using the existing devices. In this paper, we propose a new 
Generative Adversarial Network (GAN) based architecture for medical images, which maps low-
resolution medical images to high-resolution images. The proposed architecture is divided into three 
steps. In the first step, we use a multi-path architecture to extract shallow features on multiple scales 
instead of single scale. In the second step, we use a ResNet34 architecture to extract deep features 
and upscale the features map by a factor of two. In the third step, we extract features of the upscaled 
version of the image using a residual connection-based mini-CNN and again upscale the feature 
map by a factor of two. The progressive upscaling overcomes the limitation for previous methods in 
generating true colors. Finally, we use a reconstruction convolutional layer to map back the upscaled 
features to a high-resolution image. Our addition of an extra loss term helps in overcoming large 
errors, thus, generating more realistic and smooth images. We evaluate the proposed architecture 
on four different medical image modalities: (1) the DRIVE and STARE datasets of retinal fundoscopy 
images, (2) the BraTS dataset of brain MRI, (3) the ISIC skin cancer dataset of dermoscopy images, 
and (4) the CAMUS dataset of cardiac ultrasound images. The proposed architecture achieves superior 
accuracy compared to other state-of-the-art super-resolution architectures.

High-resolution (HR) images contain detailed information structures as compared to low-resolution (LR) images. 
Usually, expensive image acquisition devices are used to acquire HR images. This results in a long acquisition time 
and a relatively low signal-to-noise ratio1. Instead of using such a costly method for image acquisition, we can 
retrieve HR images from LR images using super-resolution (SR) methods. Technically, image super-resolution 
is a technique to reconstruct the high-frequency contents in an LR image. Using super-resolution methods, we 
only need LR images, which in turn reduce the image acquisition complexities. However, super-resolution is a 
challenging task. In the last few years, super-resolution methods have been proposed for both natural images 
and medical images. In the case of medical images, fine details such as small anatomical structures carry impor-
tant information that is useful for diagnostic purposes. For example, in brain MRI, the small structure details 
around a tumor help in diagnosing the growth rate and the origin of the tumor2,3. Similarly, in retinal images, the 
correct identification of fine vessels helps diagnose the swelling of vessels, which is a symptom of hypertensive 
retinopathy. Therefore, it is not desirable to allow the artifacts introduced by super-resolution methods as these 
may have an adversarial effect on the diagnosis. Over the years, the super-resolution methods proposed for both 
natural images and medical images can broadly be categorized into two categories: traditional methods and deep 
learning methods. We discuss both the categories below.

Traditional machine learning methods.  The methods used for image super-resolution in this category 
are mainly divided into three types, i.e., interpolation-based methods, reconstruction-based methods, and 
learning-based methods. The early and primary methods include interpolation-based methods such as linear 
interpolation and bicubic interpolation. Zhang et al.4 used an interpolation approach for image super-resolution. 

OPEN

1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, 
Abbottabad, Pakistan. 2National Center of Artificial Intelligence, Peshawar, Pakistan. 3College of Science and 
Engineering, Hamad Bin Khalifa University, Doha, Qatar. *email: haali2@hbku.edu.qa

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-13658-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9533  | https://doi.org/10.1038/s41598-022-13658-4

www.nature.com/scientificreports/

The authors transformed the LR image to discrete cosine transform (DCT) domain and applied interpolation 
methods to estimate high frequencies. The interpolation-based methods for upscaling by a significant factor 
such as 6x or 8x typically result in blurred output images.

The reconstruction-based methods perform better than interpolation-based methods. Sun et al.5 used the 
gradient profile method to map LR images to HR images. The authors used a non-local mean filter to extract 
gradient profile information, which was used to map the LR images to HR images. Based on the same idea, Zhang 
et al.6 also used gradient knowledge to reconstruct HR images. In7, the authors proposed a reconstruction-based 
method in which non-local mean features and handcrafted features such as Gabor wavelet and sparse domain 
selection-based features were used for HR image reconstruction. Protter et al.8 used the gradient profile method 
for the reconstruction of a sequence of images such as videos. These methods are also applied to medical images 
as reported in9,10. By using the gradient information, these methods outperformed interpolation methods to 
map LR images to HR images. The limitation of these methods is that one must design and use robust filters to 
extract gradient information. If the LR images have no clear gradient, then the performance of the SR method 
will be heavily affected.

The learning-based methods have recently attracted more attention for image super-resolution. For example, 
Freedman et al.11 and Yang et al.12 extracted highly localized patches from the input LR image and defined a 
mapping function to map these LR patches to an HR image. In13, the authors used a random forest classifier to 
classify the image space into multiple subspaces and then used a regression model to map the extracted patches 
to HR patches. The above-discussed methods are some of the traditional machine learning-based SR methods.

Deep learning‑based methods.  Recently, deep learning-based approaches have been explored for image 
super-resolution. These approaches have outperformed many traditional methods. In14, a feed-forward con-
volutional neural network (SRCNN) was used for feature extraction from LR images. The features were then 
up-sampled using the bilinear interpolation method. The architecture works in an end-to-end manner. SRCNN 
reported better results compared to the traditional methods. Kim et al.15 used deep recursive CNN for image 
super-resolution to extract complex features. The method is divided into three parts: the embedding network 
used for basic features extraction, the inference network used for deep feature extraction, and the reconstruction 
layer that maps back the features to a HR image. The deep recursive approach is also used in16 and17. With such 
deep networks, the vanishing gradient problem is a major concern. A dense skip connection was used by18 to 
overcome the problem of vanishing gradient.

For up-sampling in CNNs, the sub-pixel convolutional layer was introduced in19, and an enhanced sub-pixel 
convolutional network was proposed in20. The sub-pixel up-sampling layer outperformed both interpolation-
based up-sampling and transpose convolution-based upsampling methods. Zhang et al.21 proposed a channel 
attention mechanism to improve the performance of image SR methods. The authors used local receptive fields 
to incorporate channel-dependent features. The limitation of the method is that it might miss some non-local 
features. Dai et al.22 used both local and non-local receptive fields for feature extraction to handle this problem. 
The performance of the super-resolution method relies on the robustness of the extracted features. Due to better 
performance, the ResNet3423 architecture was adopted by authors in24,25,25. Using the same idea, Ahn et al.26 used 
a cascade of the residual network blocks.

To extract robust features, Lim et al, in27 used ResNet-based architecture for feature extraction. In addition, 
Lim et al.27 modified the traditional ResNet architecture by removing the batch normalization layer after each 
convolutional layer and proposed enhanced deep super-resolution architecture (EDSR). The limitation of the 
above methods is that all these methods only focus on the high peak-signal-to-noise ratio (PSNR). To obtain 
high PSNR, the authors only used mean square error (MSE) or mean absolute error (MAE) losses; however, the 
two losses make the resultant image more smooth and do not preserve the fine contents of the image. Pourya 
et al.28 has proposed a progressive dilated convolution neural network for SR. The proposed method has shown 
superior performance compared to SRCNN and other existing models on natural images while utilizing less 
computational resources.

Among deep learning-based super-resolution methods, Generative Adversarial Networks (GAN) based meth-
ods have demonstrated significant improvement29,30. To overcome the limitations of CNN-based SR methods, 
the GAN architecture uses the perceptual or content based loss function, i.e., the VGG19 loss. The first GAN-
based SR method, called SRGAN, was proposed in31. The generator of the SRGAN is a ResNet34 architecture 
that extracts features from LR images. For up-sampling, a sub-pixel convolution layer was used. This method was 
further modified by Wang et al.32. They used multi-residual networks, i.e., residual-in-residual dense blocks. In 
addition, the authors eliminated the batch normalization layer after every convolutional layer. The elimination 
of the batch normalization layer improved the performance of traditional SRGAN architecture. Using multi-
ple residual blocks or nested residual blocks increases computational complexity. Jiang et al.33 proposed edge-
enhanced GAN for super-resolution of satellite images. The architecture comprises two networks: ultra-dense 
subnetwork (UDSN), which extracts features and obtains high resolution features having sharp edges, and edge-
enhanced sub-network (EESN), which enhances the extracted sharp edges and removes artifacts produced during 
the UDSN feature extraction process. In34, the authors used a GAN and a saliency map to generate retinal fundus 
HR images. The effect of saliency map is used to minimize the GAN cost function, which effectively improves 
the performance of the generation of HR images using GAN. The limitation of this method is that, to improve 
the neural network’s performance, saliency maps are extracted separately, and efficient filters should be used to 
obtain robust saliency maps. Chen et al.35 proposed a multilevel densely connected SR network (mDCSRN) for 
brain structural MRI images super-resolution. The authors reported good accuracy with the proposed network 
and reported a sixfold increase in speed compared to other GAN-based models. MedSRGAN is proposed in36. 
The authors modified the RCAN21 architecture by replacing the global pooling with a 1x1 convolution layer. 
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Multiple residual-in-residual (RIR) blocks are used for feature extraction and sub-pixel convolutional layer for 
4x upscaling. The discriminator network in this work takes pair of images, i.e. (LR, HR) images pair and (LR, 
SR) images pair, to discriminate between a generated HR image and an original HR image. The limitation of 
the above-mentioned GAN-based methods is that they use very deep networks on a single scale, i.e., filter size 
three, which may miss some of the large-scale features. Furthermore, these methods perform the up-sampling 
in a single step rather than up-sampling progressively.

In this paper, we propose a GAN-based image super-resolution method for medical images. In the proposed 
method, we use SRGAN31 as a baseline and introduce significant modifications to its generator architecture. 
In31, the authors used ResNet34 architecture in the generator to extract single-scale features from LR images 
and then used a sub-pixel convolutional layer for 4x upscaling. In our work, we modify the structure of the 
generator network to extract shallow features on different scales. We evaluate our model on publicly available 
medical imaging datasets, i.e., retinal images datasets (STARE and DRIVE)37,38, ISIC skin lesion segmentation 
dataset39, BraTS 2018 dataset of brain MRI40, and the CAMUS dataset of cardiac ultrasound images41. The main 
contributions of this work are:

•	 We present a new GAN-based super-resolution model for medical images. The model extracts shallow fea-
tures on different scales, i.e., filter sizes 3, 5, and 7. In other GAN-based networks31,36, the authors extracted 
only single-scale features, i.e., filter size 3.

•	 Unlike other GAN-based models, our model splits the process of upscaling into two steps. In the first step, 
shallow features are extracted, followed by deep features extraction using ResNet34 architecture, and then 
2x upscaling is performed. In the second step, more complex features are calculated from the 2x upscaled 
version, and then 2x upscaling is performed again. This progressive upscaling helps in preserving fine details 
at each scale.

•	 In our model, we add one more loss function, i.e., mean absolute error (L1 loss), to the loss functions of 
SRGAN31, which in turn results in performance improvement.

•	 The super-resolution performance for our proposed method using multi-scaled features, progressive up-
sampling with added loss function, outperforms the current state-of-the-art SR methods on multiple medical 
imaging modalities.

Methods
Our architecture is a multi-path and progressive upscaling GAN. In the following text, we present the generator 
architecture, the discriminator architecture and the loss functions.

Generator network.  To overcome the shortcomings and improve the accuracy of the SRGAN31 for medical 
images, we propose a novel generator network with the following three major changes. The block diagram of the 
proposed architecture illustrating the changes, is shown in Fig. 1. The major components are:

•	 Shallow features extraction.

Figure 1.   An overall block diagram to show the two rounds of the features extraction and 2x upscaling.
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•	 Deep features extraction and 2x upscaling.
•	 Features extraction of upscaled version and 2x upscaling.

Shallow features extraction.  In this part of the architecture, we use the LR version of the original HR image as 
an input to the architecture. We calculate basic or shallow features on three different scales by using kernels of 
sizes 3, 5, and 7, respectively. For feature extraction of each scale, we use two blocks. Each block consists of two 
convolutional layers, the first convolutional layer in each branch is followed by the batch normalization layer and 
ReLU activation. In comparison, the second convolutional layer is followed by the batch normalization layer. The 
number of channels for each pair of convolutional layers is 64. A skip connection is used between the output of 
the 1st block and the 2nd block. Using the skip connections, the features of the 1st block are added elementwise 
with the features of the 2nd block. After the feature extraction on different scales, we concatenate (channel-wise) 
all the three scales features into a single feature vector forming a 192 channels wide features vector as shown in 
Fig. 2. This feature vector contains the basic or shallow features of the LR image, which will be used as the input 
to the next step of the proposed architecture. The parameters of this network are shown in Table 1. The extrac-
tion of basic or shallow features on three different scales helps in the preservation of the fine details that are very 
important in medical images. For example, in retinal vessel images, the tiny vessels are important. Hence, it is 

Figure 2.   Multi-path upscaling. The figure demonstrates the shallow feature extraction on three different scales. 
The features are then concatenated channel-wise. K, C and S denotes kernel size, number of channel and stride, 
respectively.

Table 1.   Network parameters for shallow features extraction (read in connection with Fig. 2).

Parameters Value

No of filters, stride 64, 1

Kernel size

Branch 1 ( 3× 3)

Branch 2 ( 5× 5)

Branch 3 ( 7× 7)

Weight initializer (standard deviation) 0.2

Batch normalization (Gamma initializer) 1.0, 0.02

Activation ReLU
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important to preserve these tiny vessels’ features and map them to HR features. Similarly, for tumor detection in 
brain MRI, the structure, i.e., edges of the tumor, are important information that should be preserved by preserv-
ing the information of tiny edges while mapping LR images to HR images. Therefore, the purpose of using three 
different scales for basic features extraction is to preserve the fine details on each scale.

Deep features extraction and 2x upscaling.  In traditional SRGAN31, the authors used ResNet34 architecture for 
deep features extraction with a single pre-residual convolutional layer. Furthermore, each convolutional layer is 
64 channels wide. In comparison, we use 192 channels in each convolutional layer. The reason behind using 192 
channels in each layer is that we are using the 192 channels wide concatenated output of step 1 as an input in this 
step of the architecture. As shown in Fig. 3, our ResNet34 architecture consists of 17 blocks, where each block 
has two convolutional layers. The first convolutional layer is followed by the batch normalization layer and ReLU 
activation, whereas a batch normalization layer follows the second convolutional layer. The features of each block 
are added elementwise with the features of the previous block. In the last layer of the ResNet34 architecture, we 
used kernel size 3 instead of kernel size 9 to overcome the blur effect and preserve more features. In addition, the 
last layer is added elementwise with the feature map of part 1, as shown in Fig. 3. After deep features extraction, 
we upscale the extracted features using a sub-pixel convolutional layer. As a result, we have 2x upscaled features 
of the LR image, which will be used as the input in step 3 of the architecture. The parameters used in this network 
are listed in Table 2.

Features extraction of upscaled version and 2x upscaling.  At this step, we have a 2x upscaled version of an LR 
image. In this step, we calculate features of the 2x upscaled version. We use a mini-network comprising three 
residual blocks, as shown in Fig. 4. Each residual block has two convolutional layers. The first convolutional 
layer is followed by the batch normalizationlayer and ReLU activation, whereas a batch normalization layer fol-
lows the second convolutional layer. At the end of the mini residual network, a 192-channel wide convolutional 
layer followed by the batch normalization layer is used. The features map obtained after 2x upscaling in step 2 is 
elementwise added with the feature map extracted using the mini-network as shown in Fig. 4.

This feature map is then upscaled 2x using a sub-pixel convolutional layer. At the end of step 3, we have a 4x 
upscaled feature map of the LR image. In the end, a convolutional reconstruction layer is used to map back the 
4x upscaled features to the HR image. The parameters used in the mini-network are listed in Table 3. In31,36, the 
authors upscaled the extracted feature map in a single step at the end of the architecture. By upscaling the features 
in a single step, artifacts may appear in the resultant image due to predicting the wrong information four times in 
a single step. In our work, we split the process of upscaling into two steps. We extracted the feature of LR image, 
2x upscaled the feature map, and rather than again upscaling 2x in the same step, we extracted features of 2x 
upscaled version and again 2x upscaled the feature map. The significance of this change over other GAN-based 
methods is discussed in the result section.

Discriminator network.  In this work, we also modify the traditional discriminator network of SRGAN31. 
In31 the discriminator network consists of 8 convolutional layers, having the number of kernels increasing from 
64 to 512, and a single dense layer at the end. Each convolutional layer is followed by the batch normaliza-
tion layer and ReLU layer. As our generator model is a deep network, hence it requires a strong discriminator 
in competition, therefore, we propose important modifications in the traditional discriminator. We add more 
convolutional layers to the discriminator by first increasing the number of kernels in each layer up to 2048 and 
then reducing the number of kernels progressively down to 512 (see Fig. 5). Thereafter, we have added three 
additional layers having the number of kernels equal to 128, 256, and 512, respectively. We have elementwise 
added the output prior to these three layers, and the output of the last 512 kernels layer as shown in Fig. 5. Using 
skip connection helps to eliminate the vanishing gradient problem.

Figure 3.   Proposed architecture for the deep features extraction and 2x-upscaling. The dotted line represents 17 
blocks, comprising the layers shown in first two blocks. K, C and S represent kernel size, number of Channel and 
Stride respectively. After this step, we get features map of 2x-upscaled high resolution (HR) image.
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Loss functions.  As discussed in the literature review, different authors have used different loss functions. 
In SRGAN31, the authors have used three losses that are VGG loss (Content Loss) LVGG , generator loss based on 
cross-entropy L gen, and mean square error L2 (L2 loss). The mathematical expressions for the above-mentioned 
losses are expressed in Equation 1, 2, and 3, respectively.

Figure 4.   Mini-network: architecture for the mini-network showing the three residual blocks. The features map 
from Step 2 (see Fig. 3) are added with the output of the mini-network. K, C and S represents the Kernel size, 
number of Channel and Stride respectively. At the end of this step, we get 4x-upsacled high resolution (HR) 
image (Predicted HR image).

Table 2.   Network parameters for the deep features extraction (in Part 2 of Fig. 1).

Parameters Values

No. of blocks 17

No. of kernels in each layer 192

Kernel size 3× 3

Stride 1× 1

Activation function ReLU

Upscale layer Sub-pixel layer

Scaling factor 2

Table 3.   Parameters for the mini-network shown in Fig. 4.

Parameters Values

No. of blocks 3

No. of kernels in each layer 64

Kernel size 3× 3

Stride 1× 1

Activation function ReLU

Upscale layer Sub-pixel layer

Scale 2
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where ∅i,j
(

IHR
)

 is the VGG feature vector of the HR image and ∅i,j
(

G
(

ILR
))

 is the VGG feature vector of the 
generated image. The variables h and w represents the height and width of the image, respectively.

where D(Ī) is the output of the discriminator.

where Ii,j,k is the original image and Īi,j,k is the generated image. The variables h, w, and c represent the height, 
width and the number of channels.

In our model, we use all the three losses, along with the absolute difference error (L1 loss) as shown in Eq. 
(4), which in turn improves the peak signal to noise ratio. L1 loss has the limitation of over smoothing results. 
This is addressed by using L2 loss along with L1 loss.

where Ii,j,k is the original image and Īi,j,k is the generated image. The variables h, w, and c represent the height, 
width and the number of channels. The overall loss is then calculated as in Eq. (5):
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(5)Overall Loss = L1(Ī , I)+ L2(Ī , I)+ Lgen + LVGG(Ī , I)

Figure 5.   Discriminator network: proposed discriminator network to classify a given input image as an HR or 
SR image. K shows the kernel size, C shows number of kernels and S shows the stride. Three additional layers 
having the number of kernels equal to 128, 256 and 512 are added to perform elementwise addition with the 
parameters of the previous layers.
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Datasets
Dataset preparation.  All experiments are carried out on four publicly available datasets. These include 
two fundoscopy datasets of retinal images, i.e., DRIVE37 and STARE38, a dermoscopy dataset of skin cancer 
images (ISIC)39, a dataset of brain MRI (BraTS 2018), and a dataset of 2D cardiac ultrasound images41. The 
preparation details for each dataset for our experiments are given below.

Retinal images dataset.  Retinal images datasets include two datasets, DRIVE and STARE. DRIVE dataset con-
tains 40 retinal images, where 20 images are training images while 20 images are test images. STARE dataset 
includes 397 images. We randomly select 20 images from the STARE dataset as test images. The remaining 
images and 20 training images from the DRIVE dataset are used as training images. The randomly selected 20 
images from STARE and 20 test images from the DRIVE dataset are used as testing images for our experiments. 
The original resolution of each image in DRIVE and STARE is 565x584 and 700×605, respectively. However, for 
our experiment, each image is resized to 512×512 resolution. We used these resized images as HR images. To 
obtain LR images, each HR image is downsampled four times to 128×128 resolution. A batch size of 2 is used for 
the retinal image super-resolution experiment.

Skin cancer dataset.  ISIC skin cancer dataset contains 540 skin dermoscopy images. Each image in the dataset 
is of a different resolution. For our experiments, we resized each image to 512×512 and used these images as HR 
images. We further downsampled the images 4 times to 128×128 resolution for use as LR images. We used 500 
images for training and 40 images for testing. A batch size of 2 is used for the skin cancer image super-resolution 
experiment.

Brain tumor MRI dataset.  BraTS 2015 dataset includes Brain Tumor MRI images developed for brain tumor 
segmentation task. This dataset contains two types of tumor data, i.e., high-grade glioma (HGG) and low-grade 
glioma (LGG). Four different modalities data are provided for each type. Each image is a 3D volume and is avail-
able in Nifti format. For our experiments, we extracted 2D slices from each 3D volumetric image. Each slice has a 
240×240 resolution. In this work, we use 240×240 2D slices as ground truth HR image and downsampled the HR 
slice 4 times to 60× 60 resolution, which is used as an LR image. We used 400 images for training and 30 images 
for testing. A batch size of 4 is used for the brain MRI image super-resolution experiment.

Cardiac ultrasound images dataset.  The CAMUS (Cardiac Acquisition for Multi-structure Ultrasound Seg-
mentation) dataset41 contains cardiac 2-chamber and 4-chamber 2D ultrasound images. The dataset is publicly 
available and contains 500 cardiac ultrasound images. Each image has a different resolution, and all of them are 
larger than 1024×512. Therefore, each image is re-scaled to a resolution of 1024×512 for use as ground truth. To 
obtain the LR version, each image is downsampled 4 times to 256×128 resolution. For the CAMUS dataset, we 
use 400 images for training and 100 images for testing, and a batch size of 2.

Results and discussion
Evaluation metrics.  The following evaluation measures were used to compare the performance of the pro-
posed work with other super-resolution methods.

Peak signal‑to‑noise ratio.  Peak signal-to-noise ratio (PSNR) is used to measure the quality of the reconstructed 
image. PSNR is the ratio of the maximum possible power of a signal to the noise that affects the quality of the 
signal. Mathematically, PSNR is shown in Eq. (6).

where, I is the image and MSE is mean square error (MSE). The lower the MSE, the higher will be PSNR. MSE 
is shown in Eq. (7).

where, I(x, y) is the original image and Ī(x, y) is generated image. The variables h and w represent the height 
and width of the image.

Structure similarity index.  The structural similarity index (SSIM) presents the degradation of image quality 
caused by processing the image such as image compression or image up-sampling or down-sampling. It shows 
the similarity of structure between the actual image and the reconstructed image. SSIM can mathematically be 
represented as in Eq. (8).
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where µIµĪ is the average of the original image I and the reconstructed image Ī , respectively, σI and σĪ are the 
variances of the original image I and the reconstructed image Ī , respectively, and c1 and c2 are the two variables 
to stabilize the equation.

The results for each dataset are discussed below.

Results on retinal images.  The PSNR and SSIM scores of the proposed architecture are compared with 
the traditional SRGAN31 and Bicubic interpolation method. Table 4 shows the score of PSNR and SSIM on the 
retinal images’ dataset for each method. For the STARE dataset, our method improves the PSNR score by 4.95 
dB compared to traditional SRGAN and by 11.52 dB compared to the Bicubic interpolation method. SSIM score 
is increased by 4 percent compared to traditional SRGAN and 6 percent compared to the Bicubic interpolation 
method. The experiment is repeated ten times to find the standard deviation. Similar improvement is shown 
while testing on the DRIVE dataset.

The SR results on the STARE dataset are shown in Fig. 6. In Fig. 6, each row shows the result for a single 
image. The LR image, the interpolation-based SR results, SRGAN31 results, proposed architecture results, and 
the corresponding ground truth HR images are shown in Fig. 6a–e, respectively. The green arrow shows the 
area where there exists the degradation caused by each method. The interpolation-based method degrades the 
structure by making it very blurry, increasing the mean square error. The SRGAN31 method removes the blur-
riness in the image but adds a lot of noise which can be seen near the optic disk. In comparison, the proposed 
architecture preserves the structure of the vessels and removes the noise making the image smooth. In Figs. 7 
and 8, we have extracted small regions from two images of the DRIVE dataset to show the image quality deg-
radation caused by each algorithm. The proposed architecture produces more realistic HR images compared to 
the other two methods.

Results on skin images.  The PSNR and SSIM scores for the skin dataset are shown in Table 5. The pro-
posed architecture improved PSNR by 3.11 dB and SSIM by 4 percent compared to SRGAN, and PSNR by 9.27 
dB, and SSIM by 2 percent compared to the bicubic interpolation. The experiment is repeated ten times for 
each method to report the standard deviation. In Figs. 9 and 10, we have extracted small regions from resultant 
images to show the qualitative improvement of our model. As shown in Figs. 9b and 10b, the SRGAN does not 
preserve colors correctly, and hence SSIM is heavily affected, while the bicubic method adds artifacts and blur-
riness in the resultant image (see Fig. 9a). The output of the proposed architecture is shown in Figs. 9c and 10c, 
which are qualitatively very similar to the ground truth HR images in Figs. 9d and 10d, respectively.

Results on brain MRI images.  The PSNR and SSIM scores for the BraTS dataset are shown in Table 6. The 
proposed method improved PSNR and SSIM by 9.31 dB and 7 percent, respectively, compared to bicubic inter-
polation and 6.35 dB and 5 percent, respectively, compared to the SRGAN method. The visual results of each 
method are shown in Fig. 11. Each row contains the SR results of a single image. The arrow shows the degrada-
tion caused by each method. It can be seen from Fig. 11b that the interpolation-based method produces blurry 
results. On the other hand, the SRGAN31 does not preserve the actual structure and adds noise to the resultant 
image, as shown in Fig. 11c. In comparison, the proposed architecture in Fig. 11d generates SR output images 
that are very close to the images in Fig. 11e, i.e., corresponding HR images. In Fig. 12, we have extracted a small 
region from an image and compared each method. These figures show that the proposed method generates more 
realistic HR images than SRGAN31 and the interpolation-based method.

Furthermore, in Table 7, we have compared the PSNR and SSIM of the proposed method with other state-
of-the-art methods for the BraTS dataset. The results of 2D FSRCNN42 and 3D FSRCNN are taken from 3D 
DCSRN43. The results of SRCNN14, VDSR44, and FSCWRN44 are taken from CSN45. The results for SRGAN31 are 
generated by us. Table 7 shows that the proposed method outperformed other methods.

Results on ultrasound images.  The PSNR and SSIM scores for the CAMUS dataset of cardiac ultrasound 
images are shown in Table 8. The proposed architecture improved PSNR by 1.65 dB and SSIM by 2 percent com-
pared to SRGAN, PSNR by 3.9 dB, and SSIM by 6 percent compared to bicubic interpolation. The experiment is 
repeated ten times to obtain the standard deviation. To better visualize the qualitative improvement of the pro-
posed model, we have extracted small regions from the resultant images to identify the qualitative improvement 
of the proposed model, as shown in Fig. 13. The bicubic interpolation output shown in Fig. 13a has blur effects, 
and the original details are not preserved. Similarly, in Fig. 13b, the output of SRGAN has a dark shade though 
less explicit, compared to Fig. 13d, i.e., ground truth HR image. Finally, the output of the proposed architecture 
is shown in Fig. 13c, which is very similar to the ground truth HR image in Fig. 13d.

Table 4.   Results on retinal images dataset. Significant values are in [bold].

Algorithm

STARE DRIVE

PSNR (dB) ± std SSIM ± std PSNR (dB) ± std SSIM ± std

Bicubic interpolation 27.05 ± 2.25 0.85 ± 0.21 25.2 ± 2.12 0.86 ± 0.17

SRGAN31 33.62 ± 3.16 0.87 ± 0.27 34.22 ± 3.51 0.88 ± 0.20

Proposed method 38.57 ± 3.45 0.91 ± 0.32 37.72  ± 3.1 0.91 ± 0.27
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Results on noisy data.  The proposed model is also evaluated using noisy brain MRI images. Gaussian 
noise with zero mean and variance of 0.01 is added to the brain MRI images. The SSIM and PSNR scores for 
both SRGAN and the proposed methods used on noisy data are shown in Table 9. The proposed architecture 
improved SSIM by 4 percent and PSNR by 4.85 dB compared to SRGAN31. As shown in Fig. 14, the proposed 
method outperformed the SRGAN31 method with a noticeable improvement. In Fig. 14, each row represents 
the results for a single image. To further identify the differences, small regions from the resultant images are 
shown in Fig. 15. The first row in Fig. 15 shows the LR image, the noisy LR, and the corresponding HR image. 
The SRGAN31 method does not preserve the structure of the image and hence causes noticeable degradation as 
shown in Fig. 15a, while the proposed method produces better results on noisy images shown in Fig. 15b. he 
proposed method result on noisy image is very close to the result on non-noisy image shown in Fig. 15c and the 
ground truth HR image shown in Fig. 15d.

Results analysis.  The results on the four datasets show significant improvement of performance achieved 
by the proposed method compared to other SR methods, particularly the interpolation-based methods and the 
SRGAN31. In SRGAN31, the authors extracted basic or shallow features using a single scale, i.e., kernel size 3. 
However, the features of large scale are missed by kernel size 3. Therefore, in part 1 of our proposed architecture, 
we extracted the shallow features on three different scales, i.e., kernel size 3, 5, and 7. Subsequently, we have con-
catenated all features into a single feature vector, as shown in Fig. 2. The effect of this can be seen, for instance, in 

Figure 6.   Results of super resolution for different images of STARE dataset. The column (a) has LR images 
(128×128 but scaled for uniform display), column (b) shows Bicubic interpolation SR result, column c shows 
output HR images for SRGAN31, column d shows output HR images for the proposed architecture, column e 
shows ground truth HR images (512×512). Each row illustrates results of a single image. The corresponding 
(SSIM/PSNR) scores are mentioned below each image. Green arrows illustrate the degradation or improvement 
caused by each algorithm with respect to the ground truth HR image.
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Fig. 12b, where the SRGAN missed the important features, while in Fig. 12c, the proposed architecture preserves 
the correct structure of the image while generating the HR image.

Furthermore, the second important proposed change in the architecture of SRGAN31 is that we have used the 
idea of progressive upscaling. In SRGAN31, the authors performed upscaling in a single step, i.e., after the feature 
extraction. The limitation of performing upscaling is that it does not generate true colors while generating an 
HR image. In our proposed work, we have extracted features of an LR image, then performed 2x upscaling, and 
extracted the features of the upscaled version, and again performed 2x upscaling. The advantage of this change 
can be seen in Figs. 9 and 10. In Figs. 9b and 10b, the SRGAN architecture does not preserve the actual colors 
in the generated HR images, while in Figs. 9c and 10c, the proposed architecture generates realistic colors very 
similar to the ground truth HR images in Figs. 9d and 10d.

The third proposed change is that we have added an extra loss function to the loss functions used in SRGAN31. 
We have used L1 loss, i.e., mean absolute error given in Eq. (4). The overall loss function used in the proposed 
architecture is shown in Eq. (5). L1 loss penalizes large errors. Therefore, using L1 loss in addition to the other 
three losses generates more realistic and smooth images. The significance of using L1 loss can be seen in Figs. 7 
and 8. As shown in Figs. 7b and 8b, the SRGAN generates the HR image with noise in it. The noise can be seen 
around the vessel in Fig. 7b and near the optic disc in Fig. 8b. In Figs. 7c and 8c, the proposed architecture 
generates smoother HR images similar to the corresponding HR image shown in Figs. 7d and 8d, respectively.

The results presented in this work are obtained on an Nvidia GTX 1080 Ti GPU and the code is implemented 
in Tensorflow 2.0.

Figure 7.   Small region results for an image from DRIVE dataset. The sub-region for (a) Bicubic interpolation. 
(b) SRGAN31. (c) Proposed architecture. (d) Ground truth HR image.

Figure 8.   Small region results for an image from DRIVE dataset. The sub-region for (a) Bicubic interpolation. 
(b) SRGAN31. (c) Proposed architecture. (d) Ground truth HR image.
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Ablation studies.  To show the effectiveness of the various modules of the proposed method, we carried out 
an ablation study on the retinal images from the DRIVE dataset. We performed ablation using three different 
steps. In the first step, we made changes to the feature extraction module. In this step, we extracted features on a 
single scale only, i.e., using kernel size 3. By doing so, we recorded that the SSIM and PSNR scores were reduced 
by 3.2 dB and 3 percent, respectively. In the second step, we made changes to the mini-network module of the 
proposed method. We removed the mini-network between the two subpixel convolution layers in this step. By 
doing so, we observed a 4.62 dB decrease in the PSNR and a 5 percent decrease in SSIM score. In the third step, 
we removed the additional error function, i.e., the absolute difference error of Eq. (4). By removing the addi-

Figure 9.   Small region results on image from ISIC skin cancer dataset. The sub-region for (a) Bicubic 
interpolation. (b) SRGAN31. (c) Proposed architecture. (d) Ground truth HR image.

Figure 10.   Small region results on image from ISIC skin cancer dataset. The sub-region for (a) Bicubic 
interpolation. (b) SRGAN31. (c) Proposed architecture. (d) Ground truth HR image.

Table 5.   Results on skin images dataset. Significant values are in [bold].

Algorithm PSNR (dB) ± std SSIM ± std

Bicubic interpolation 25.15 ± 2.3 0.88 ± 0.12

SRGAN31 31.31 ± 2.7 0.86 ± 0.21

Proposed 34.42 ± 2.0 0.90  ±  0.14
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Figure 11.   Results of super resolution for different images of BRaTS dataset. Column (a) shows the LR images 
(60×60, scaled for uniform display), column (b) shows results for Bicubic interpolation, column (c) shows 
results for SRGAN31, column (d) shows the results for the proposed architecture, column (e) shows ground 
truth HR images ( 240× 240 ). Each row illustrates result of a single image. The corresponding (SSIM/PSNR) 
scores is mentioned below each image. Green arrows illustrate the degradation or improvement caused by each 
algorithm with respect to the ground truth HR image.
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tional loss function, the PSNR and SSIM scores decreased by 6.58 dB and 8 percent, respectively. The scores for 
each experiment of the ablation study are shown in Table 10. To visualize the difference, we have extracted small 
regions from the resultant images as shown in Fig. 16. From Fig. 16a, it is clear that the experiment using a single 
scale features extraction resulted in a low-quality image. The degraded result for the second experiment “without 
mini-network” is shown in Fig. 16b. Figure 16c shows the resultant image of the third experiment, i.e., by remov-
ing the absolute difference error term from the loss function. The noise is clearly seen in the small extracted 
patch. The result of the proposed method incorporating all the modules of the proposed method is shown in 
Fig. 16d, which produces a better SR image that is very close to the HR ground truth image shown in Fig. 16e.

Conclusion
In this work, we have proposed a new GAN-based SR method that outperforms other state-of-the-art super-
resolution methods on different medical imaging modalities. We have used the concept of a multipath learning 
network to extract features at different scales and a progressive upscaling network to prevent the artifacts in 
the generated HR image. Furthermore, we have used L1 loss (mean absolute error) (mean absolute error) along 
with the the losses used in SRGAN, which generates more realistic and smooth HR images. We have evaluated 
the performance of the traditional SRGAN31, interpolation bases method (bicubic interpolation), and our pro-
posed architecture on four publicly available medical imaging datasets. Experimental results on medical imaging 

Figure 12.   Small region results on MRI image. The sub-region for (a) Bicubic interpolation. (b) SRGAN31. (c) 
Proposed architecture. (d) Ground truth HR image.

Table 6.   Results on brain MRI images. Significant values are in [bold].

Algorithm PSNR (dB) ± std SSIM ± std

Bicubic interpolation 29.52 ± 2.2 0.88 ± 0.15

SRGAN31 32.48 ± 2.5 0.90 ± 0.22

Proposed 38.83 ±  2.1 0.95 ± 0.17

Table 7.   Results on BraTS dataset: additional comparison with state-of-the-art methods. Significant values are 
in [bold].

Algorithms Publication year PSNR (dB) ± std SSIM ± std

SRCNN14 2015 29.90 0.89

VDSR44 2016 30.57 0.89

2D FSRCNN42 2016 31.55 ± 1.7 0.88 ± 0.11

3D FSRCNN43 2016 33.86 ± 1.7 0.91 ± 0.12

SRGAN31 2017 33.48 ± 2.1 0.90 ± 0.20

3D DCSRN43 2018 35.05 ± 1.8 0.93 ± 0.11

FSCWRN44 2018 30.96 0.90

CSN45 2019 31.23 0.90

Proposed – 38.83 ± 2.1 0.95 ± 0.17
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datasets of different modalities have demonstrated the effectiveness of our proposed method. We have presented 
a fair comparison among all three methods, and from the results, the proposed architecture outperformed the 
other two methods on all the datasets. When transforming the LR image to an HR image, the proposed method 
can preserve fine details while improving the overall quality of the images. We believe that these results can be 
vital to advance the research on super-resolution of LR medical image data recorded in clinics.

Figure 13.   Small region results on cardiac ultrasound image. The sub-region for (a) Bicubic interpolation. (b) 
SRGAN31. (c) Proposed architecture. (d) Ground truth HR image.

Table 8.   Results on ultrasound images. Significant values are in [bold].

Algorithm PSNR (dB) ± std SSIM ± std

Bicubic interpolation 33.21 ± 1.5 0.89 ± 0.20

SRGAN31 35.46 ± 2.1 0.93 ± 0.20

Proposed 37.11 ± 1.7 0.95  ± 0.23

Table 9.   Results on noisy images. Significant values are in [bold].

Algorithm PSNR (dB) ± std SSIM ± std

SRGAN on noisy data 28.58 ± 1.4 0.87 ± 0.23

SRGAN on non-noisy data 32.48 ± 2.5 0.90 ± 0.22

Proposed method on noisy data 33.43 ± 2.1 0.91  ± 0.31

Proposed method on non-noisy data 38.83 ± 2.1 0.95 ±  0.17
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Figure 14.   Results of super resolution for noisy MRI images. Column (a) shows the LR images ( 60× 60 but 
scaled for uniform display), Column (b) shows the noisy LR images ( 60× 60 but scaled for uniform display), 
column (c) shows the results for SRGAN31, column (d) shows the results for the proposed architecture, column 
(e) shows the results of proposed method on non-noisy images, column (f) shows ground truth HR images 
( 240× 240 ). Each row illustrates result of a single image. (SSIM/PSNR) score is shown for each image. Red box 
illustrates the degradation or improvement caused by each algorithm w.r.t ground truth HR image.
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Figure 15.   Small region results for noisy data. Top Row shows LR image, the noisy LR image and ground truth 
HR image. Bottom row contains the extracted small region results. (a) Shows the SRGAN results. (b) Shows the 
results of the proposed method on noisy image. (c) Shows the results of the proposed method on original image 
(non noisy) image, and (d) shows the corresponding ground truth HR image. Images re-scaled for better display 
purpose.

Table 10.   Ablation study for the proposed method using retinal images.

Ablation experiment PSNR (dB) ± std SSIM ± std

Single scale features extraction 34.5 ± 1.3 0.88 ± 0.15

Remove mini-network 33.10 ± 0.9 0.86 ± 0.21

Remove the absolute difference error loss function 31.04 ± 2.1 0.83 ± 0.14

Proposed method 37.72 ± 3.1 0.91 ± 0.27
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