Skip to main content
. 2022 Jun 10;34(18):15369–15385. doi: 10.1007/s00521-022-07380-5

Table 2.

Summary of deep learning models used in the studies reviewed with the time series-format input

Study Proposed/adopted model(s) Baselines Evaluation metrics
Year 2019
[50] LSTM DNN RMSE
Year 2020
[91] Memory time-series network AR, LRidge, LSVR, GP, VAR-MLP, GRU, LSTNet RSE, R, RMSE, MAE
[32] TCN ARIMA, LSTM MAPE
[11] LSTM, GRU RF, FFNN MAE, RMSE, MAPE, RMSLE
[92] WADC (CNN+LSTM+Attention) ARIMA, SVR, Deep Regression, CNN, SAES, LSTM, GRU, LSTM-CNN, Deep&Cross Net RMSE, MAE, MSLE
Year 2021
[22] Multi-Output VP-RNN HA, MA, LR, Poisson-RNN, VP-RNN RMSE, MAE, R2
[55] LSTM HW, kNN MAE, RMSE
[51] CQRNN N/A RMSE, MAE, R2
[72] FFNN N/A MSE, R2
[15] Bi-LSTM RF, XGBoost, DNN, LSTM MSE, RMSE, MAPE, R2