Skip to main content
. 2022 Jun 10;34(18):15369–15385. doi: 10.1007/s00521-022-07380-5

Table 3.

Summary of deep learning models used in the studies reviewed with the graph-format input

Study Proposed/adopted model(s) Baselines Evaluation metrics
Year 2018
[7] GraphCNN-Bike (GCN+LSTM) HA, ARIMA, SARIMA, GBRT, LSTM RMSE
[41] GCNN-DDGF (GCN) XGBoost, LSTM, MLP, SVR, LASSO, HA RMSE, MAE, R2
Year 2019
[24] BikeNet (GCN+GRU) ARIMA, SVR, FFNN, LSTM RMSE, MAE, MAPE
[35] TGNet (GN+Temporal Guided Embedding) ARIMA, XGBoost, ST-ResNet, DMVST-Net, STDN RMSE, MAPE, Parameter Number
[2] STG2Seq (GCN+Attention) HA, OLR, XGBoost, DeepST, ResST-Net, DMVST-Net, ConvLSTM, FCL-Net, FlowFLexDP, DCRNN, STGCN RMSE, MAE, MAPE
[40] STG2Vec+LSTM HA, LASSO, kNN, RF, GBRT, RNN, GRU RMSE, MAE
Year 2020
[88] ST-CGA (GAT+CNN) ARIMA, SVR, Fuzzy+NN, RNN, LSTM, DeepST, ST-ResNet, DMVST-Net, STDN, UrbanFM, ST-MetaNet, ST-GCN, ST-MGCN RMSE, MAPE
[69] SCEG (GCN) GRU, T-GCN, E-GCN, Multi-graph, CG-GCN MAPE, RMSPE
[18] DTCNN (GCN+GRU) HA, VAR, XGBoost, RNN, LSTM, GRU, DCRNN RMSE, PCC, MAE
[58] MVGCN (GCN) HA, VAR, GBRT, FC-LSTM, GCN, DCRNN, FCCF, ST-MGCN RMSE, MAE
[25] GBikes (GAT+GCN+Attention) HA, SHA, ARIMA, ANN, LSTM, RNN, STCNN, GC, MGN RMSE
[46] AGSTN (GCN+Attention+LSTM) ARIMA, SVR, FC-LSTM, DCRNN, AST-GCN, ST-MGCN MAE, RMSE, P@5, NDCG
[77] BikeGAAN (GCN+Attention+LSTM) SES, MLP, ARIMA, HA, RNN, GRU, LSTM, CNN, CNN-RNN, CNN-LSTM, CNN-GRU, GCN MSE
[53] GCN HA, ARIMA, LSTM, DCRNN, STGCN RMSE
Year 2021
[80] GCN+GRU+Attention XGBoost, FC-LSTM, DCRNN, STGCN, STG2Seq, Graph WaveNet RMSE, MAE, PCC
[89] ST-GDN (Attention+GAT+GCN) ARIMA, SVR, Fuzzy NN, ST-RNN, D-LSTM, DeepST, ST-ResNet, DMVST-Net, STDN, UrbanFM, ST-MetaNet, DCRNN, ST-GCN, ST-MGCN, GMAN RMSE, MAPE
[52] GCN+LSTM ARIMA, SVR, LSTM, DCRNN, STGCN, T-GCN RMSE, MAE
[82] FGST (GCN+LSTM) FNN, LSTM, GRU, GCN RMSE, MAE
[12] GCN+TCN HA, ARIMA, ETS, RF RMSE, MAE
[47] LSGC-LSTM (GCN+LSTM) RNN, LSTM, GRU, GAT-LSTM, AGCRN, DGCNN SMAPE, RMSE, MAE
[74] STGCN (GCN+TCN) RNN, LSTM, GRU SMAPE, RMSE, MAE