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Abstract: Overlapping phenotypic features between Early Onset Ataxia (EOA) and Developmental
Coordination Disorder (DCD) can complicate the clinical distinction of these disorders. Clinical rating
scales are a common way to quantify movement disorders but in children these scales also rely on the
observer’s assessment and interpretation. Despite the introduction of inertial measurement units for
objective and more precise evaluation, special hardware is still required, restricting their widespread
application. Gait video recordings of movement disorder patients are frequently captured in routine
clinical settings, but there is presently no suitable quantitative analysis method for these recordings.
Owing to advancements in computer vision technology, deep learning pose estimation techniques
may soon be ready for convenient and low-cost clinical usage. This study presents a framework
based on 2D video recording in the coronal plane and pose estimation for the quantitative assessment
of gait in movement disorders. To allow the calculation of distance-based features, seven different
methods to normalize 2D skeleton keypoint data derived from pose estimation using deep neural
networks applied to freehand video recording of gait were evaluated. In our experiments, 15 children
(five EOA, five DCD and five healthy controls) were asked to walk naturally while being videotaped
by a single camera in 1280 × 720 resolution at 25 frames per second. The high likelihood of the
prediction of keypoint locations (mean = 0.889, standard deviation = 0.02) demonstrates the potential
for distance-based features derived from routine video recordings to assist in the clinical evaluation
of movement in EOA and DCD. By comparison of mean absolute angle error and mean variance of
distance, the normalization methods using the Euclidean (2D) distance of left shoulder and right
hip, or the average distance from left shoulder to right hip and from right shoulder to left hip were
found to better perform for deriving distance-based features and further quantitative assessment of
movement disorders.

Keywords: early onset ataxia (EOA); developmental coordination disorder (DCD); AlphaPose; gait;
pose estimation

1. Introduction

Children with Early-Onset Ataxia (EOA) and Developmental Coordination Disorder
(DCD) both show features of motor incoordination, hampering clinical distinction [1].
Gait analysis plays a pivotal role in motor coordination assessment, contributing to early
diagnostics and rehabilitation [2]. In the clinical context, ataxic gait can be assessed by
validated, semi-quantitative rating scales such as the Scale for the Assessment and Rating
of Ataxia (SARA) [3]. Despite the high reliability of the clinical scales, evidence shows
they might be less effective in measuring diverse motor control strategies and/or mixed
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disorders [4]. Moreover, their application may depend on the evaluation and interpretation
of experts, especially in children with mixed movement disorder features [5,6]. Altogether,
usage of clinical rating scales such as the SARA can sometimes be regarded as subjective,
sensitive to confounding factors and time-consuming [4].

Inertial wearable sensors can provide an objective and feasible alternative for gait
assessment [7]. The use of inertial measurement units (IMUs) with accelerometers and
gyroscopes linked to the body with elastic straps has been investigated as an aid in the
differential diagnosis of early onset ataxia and developmental coordination disorder [8].
Automatic classification based on quantitative gait features from IMUs has been shown to
outperform phenotypic diagnosis, implying that movement quantification and subsequent
automatic classification might be a useful technique for consistent and repeatable diagnostic
evaluation [9]. However, this approach requires special preparation before use, and one of
the problems to overcome is how to measure distance-based features such as step width,
which is crucial for diagnosing ataxia: ataxia patients walk with reduced step length and
increased walking base width [10].

Human pose estimation is one of the fundamental tasks in computer vision. This task
can often be subdivided into single-person and multi-person pose estimation, as well as 2D
and 3D pose estimation, depending on whether the video or image dataset contains multi-
person or 3D depth information. Owing to the fast development of deep learning, many
convolutional neural network (CNN) based frameworks have been designed and published,
such as Maskr-cnn [11] DeeperCut [12], DeepLabCut [13], CPN [14], OpenPose [15], which
use convolutional pose machines to first locate human joints in an image and then a part
affinity field to complete the human body assembly, and AlphaPose [16], which contains a
symmetric spatial transformer network, parametric pose no-maximum- suppression, and
a pose-guided proposal generator. Currently, the applications of pose estimation include
motion capture for actors [17], assessment of athletes [18], and fall detection [19]. Compared
with other frameworks, AlphaPose can achieve higher comprehensive accuracy on the
MSCOCO dataset [20] with a map value of 72.3 [16], leading to its application in video
behavior detection [21], action recognition [22], and gait analysis [23–26].

In the daily clinical setting, neurologists routinely record patients’ movements for
further evaluation. The ubiquity of video cameras in outpatient clinics and recent advances
in video-based pose estimation have motivated us to design a 2D skeleton-based method
for quantitative analysis of movement disorders using video images taken in the coronal
plane. In a clinical setting, sagittal plane video recordings are typically not available, due
to space limitations. Through pose estimation, the joint coordinates of the patient in single
camera video recordings can be obtained in a convenient and low-cost way. The use of
2D video-based motion capture for gait analysis dates back to the last century [27]. It has
so far covered a wide range of topics, from disease diagnosis to rehabilitation; several of
those contributions relied on AlphaPose [23–26,28]. Mehdizadeh et al. [28] measured gait
parameters in elderly adults and discovered that temporal, but not spatial or variability gait
measures, derived from AlphaPose correlated with those calculated with a motion capture
system in the frontal plane. Sabo et al. [25] made predictions of parkinsonian gait in older
adults with dementia and for estimating parkinsonian severity using natural gait videos of
older adults [26]. Peng et al. studied differences in gait parameters between the healthy
population and patients with lower extremity dyskinesia [24]. Lv et al. found significant
differences in the entropy of heel and ankle joint motion signals between healthy people
and arthritic patients, which could be used to identify patients with knee arthritis [23]. To
allow the calculation of changes in distance-based features, we need to normalize these 2D
coordinates first. However, to the best of our knowledge, no prior study has discussed how
to perform normalization to derive distance-based features.

Here, we propose and compare seven different normalization methods that enable
the calculation of distance-based features derived from pose estimation results. The nor-
malization method needs to address two issues: (1) the skeleton size varies depending
on the distance from the camera in every frame, (2) the skeleton position in each frame
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might change due to camera instabilities. These problems induce nonphysiological frame-
to-frame variability, hindering calculation and comparison of distance-based features. We
here initially apply the AlphaPose deep learning model and PoseFlow framework to obtain
skeleton keypoint data from ataxia, DCD and the controls. We anticipate that the best
normalization method will maintain the constancy of certain distances in the coronal plane,
such as the distance between the two shoulders when walking, while maintaining the
variability of other distances, such as the distance between the two wrists.

2. Materials and Methods
2.1. Pipeline

The entire pipeline for quantitative assessment of gait from freehand 2D camera
recordings is summarized in Figure 1. A monocular camera is placed in front of the
participant for recording. After the video data is obtained, a deep neural network model
pretrained on the MSCOCO dataset [20] based on AlphaPose [16] is used to extract skeleton
keypoints. PoseFlow [29] is applied to match the skeleton to the same participant in a
recording. The keypoint data are then normalized using one of the proposed normalization
methods, allowing distance-based features derived from the scaled 2D trajectories to be
compared across different movement disorders. Finally, these extracted features can be used
to perform quantitative analysis or classify participants. The details are explained below.
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rollment. Children younger than 12 years of age also provided informed assent. EOA pa-
tients had radiologic (MRI), metabolic, and laboratory and genetic testing at the depart-
ment of (pediatric) neurology at the University Medical Center Groningen as part of their 
diagnostic evaluation. DCD patients were also evaluated at the pediatric neurology 

Figure 1. Overview of the proposed pipeline for the quantitative assessment of gait from freehand
2D camera recordings. From left to right: S1: Configure the camera and its settings. S2: Collect data
with the camera. S3: Extract keypoints using Alphapose. S4: Match the skeleton using PoseFlow.
S5: Normalize the skeleton data with one of methods given in Section 2.4. (BoN: box normaliz-
tion; S: shoulder normaliztion; H: hip normalization; LR/RH: left-shoulder right-hip normalization;
LS/RH-d: left-shoulder right-hip distance normalization; MS/MH-d: mid-shoulder mid-hip distance
normalization; ASH: average shoulder hip normalization). S6: Obtain the normalized keypoint skele-
ton sequences. S7: Analyze the (distance-based) features derived from skeleton data for classification.

2.2. Data Preparation

The data for this study were collected at the University Medical Center Groningen
(Groningen, The Netherlands), in accordance with local research and integrity codes.
Fifteen children, including five with EOA (mean age 12.6 years, SD 1.85 years), five with
DCD (mean age 9.6 years, SD 3.21 years), and five healthy controls (mean age 9.4 years,
SD 1.81 years) participated in the experiment. All included children older than 12 years
of age and all parents of the children included provided informed consent before study
enrollment. Children younger than 12 years of age also provided informed assent. EOA
patients had radiologic (MRI), metabolic, and laboratory and genetic testing at the de-
partment of (pediatric) neurology at the University Medical Center Groningen as part of
their diagnostic evaluation. DCD patients were also evaluated at the pediatric neurology
outpatient clinic. When applicable, these evaluations included MRI, electromyography,
muscle ultrasound, and/or laboratory and sometimes also genetic testing to exclude other
underlying neurologic disorders.
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Children were asked to walk freely and repeatedly in a straight line while an exper-
imenter stood at the end of the corridor holding a single 2D video camera (1280 × 720,
25 fps) facing the subjects for recording. They were asked to walk at their own pace in a
corridor of approximately 15 m, make a 180 degree turn and return to the starting position,
in accordance with the SARA regular gait task guidelines. EOA was clinically confirmed
in accordance with its definition [30]. For further processing, each video recording was
divided into segments belonging to the following categories: (1) walking towards the
camera, (2) walking away from the camera, (3) standing still, (4) turning around. We only
analyzed the video segments of walking towards and away from the camera. In addition,
frames in which body parts were occluded or lost were excluded from further analysis,
because the skeletons in these frames could not be detected correctly using the current 2D
pose estimation algorithm. In total, 60 segments of video data (15 participants, two types of
gait, two segments each) were used for skeleton extraction.

2.3. Pose Estimation

After cleaning the video data, we used AlphaPose, a deep neural network model, to
estimate the 2D locations of skeleton keypoints. Here, we utilized the Yolo-v3 detector [31],
pretrained on the MSCOCO dataset, to detect people in the video frame. Subsequently, the
fast resnet50 [32] model was chosen to obtain the final locations of each keypoint. For each
frame, the model returned 2D coordinates (in pixels) as well as a prediction confidence
probability for each of the 17 keypoints of each person detected, including the nose, and
bilateral eyes, ears, shoulders, elbows, wrists, hips, knees, and ankles. Finally, we used a
tracker, PoseFlow, to match the skeleton to the same participant in each recording.

2.4. Normalization

We proposed and analyzed different normalization methods. Here, the original
keypoint data of each video segment were presented as a sequence of N continuous
skeletons (S1, S2, S3 . . . SN), where skeleton Si of the i-th frame (i = 1 . . . N) is composed of
17 pairs of coordinates (in pixels) representing all 17 keypoints.

It should be noted that movement inside the coronal plane (such as up-and-down or
side-to-side movement of a limb) has no effect on distance computation, but movement
outside the plane (such as walking towards or away from the camera, or body rotation)
does. For this reason, we consider both the Euclidean distance between two joints and the
distance between two points in the horizontal and vertical directions, respectively, for the
different normalization methods. We consider two-step solutions, that include position
shifting and size scaling.

Step 1: Position shifting. This method achieves the result that the mid- shoulder point
becomes the origin (0, 0) in each frame, by shifting all coordinates according to:

XSi
′ =XSi−

xLs
Si
+xRs

Si

2
, YSi

′ =YSi−
yLs

Si
+yRs

Si

2
(1)

Here (XSi
′, YSi

′) are the position-shifted coordinates in the skeleton, Si, (XSi , YSi ) are
the original coordinates and (xLs

Si
, yLs

Si
) and (xRs

Si
, yRs

Si
) are the coordinates of the left shoulder

and right shoulder in the skeleton Si, respectively.
Step 2: Size scaling. Seven methods were considered that each used different distances

to scale every video frame, according to:

XSi
′′= w0 ∗

XSi
′

wSi

, YSi
′′= h0 ∗

YSi
′

hSi

(2)

Here (XSi
′′ , YSi

′′ ) and (XSi
′, YSi

′) are the scaled and position-shifted coordinates, re-
spectively, and wSi and hSi are width and height defined by the specific normalization
method. Four of the assessed normalization methods use the width and height of the
bounding boxes of: (1) all keypoints (Box scale or BoN method), (2) the two-shoulder key-
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points (S method), (3) the left-shoulder and right-hip (LS/RH method) and (4) the two-hip
keypoints (H method). The other methods use the Euclidean (2D) distance between (5) the
left shoulder and right hip for both w and h (LS/RH-d method) and (6) the mid shoulder
and mid hip for both w and h (MS/MH-d method). The last method uses the average
distance from the left shoulder to right hip and from the right shoulder to left hip for both
w and h (ASH method).

Finally, (w0, h0) can be obtained by averaging the width wSi and height hSi of each
video segment, according to:

w0 =
1
N

N

∑
i=1

wSi , h0 =
1
N

N

∑
i=1

hSi (3)

To visualize and reconstruct the video after normalization, we finally shift the whole
skeleton to the middle of the image:

XSi
′′′ =XSi

′′+x0, YSi
′′′ = YSi

′′+y0 (4)

Here, x0, y0 are constant values; we used x0 = 640 and y0 = 200 as we have a resolution
of 1280 × 720.

(1), (2) and (4) together can be written as follows:

XSi
′′′ =

w0

wSi

(XSi −
xLs

Si
+xRs

Si

2
) + x0 (5)

YSi
′′′ =

h0

hSi

( YSi −
yLs

Si
+yRs

Si

2
) + y0 (6)

To illustrate the effect of the different normalization steps on skeleton size and position,
we show several frames of an EOA patient walking towards the camera at each step of the
normalization process in Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 12 
 

 

Here (𝑋ௌᇱᇱ, 𝑌ௌᇱᇱ) and (𝑋ௌᇱ, 𝑌ௌᇱ) are the scaled and position-shifted coordinates, respec-
tively, and wௌ  and hௌ  are width and height defined by the specific normalization 
method. Four of the assessed normalization methods use the width and height of the 
bounding boxes of: (1) all keypoints (Box scale or BoN method), (2) the two-shoulder key-
points (S method), (3) the left-shoulder and right-hip (LS/RH method) and (4) the two-hip 
keypoints (H method). The other methods use the Euclidean (2D) distance between (5) the 
left shoulder and right hip for both w and h (LS/RH-d method) and (6) the mid shoulder 
and mid hip for both w and h (MS/MH-d method). The last method uses the average dis-
tance from the left shoulder to right hip and from the right shoulder to left hip for both w 
and h (ASH method). 

Finally, (w, h) can be obtained by averaging the width wௌ and height hௌ of each 
video segment, according to:  w  =  ଵே ∑ wௌேୀଵ , h  =  ଵே ∑ hௌேୀଵ  (3)

To visualize and reconstruct the video after normalization, we finally shift the whole 
skeleton to the middle of the image: 𝑋ௌ ᇱᇱᇱ = 𝑋ௌ ᇱᇱ + 𝑥,  𝑌ௌᇱᇱᇱ =  𝑌ௌᇱᇱ + 𝑦 (4)

Here, 𝑥, 𝑦 are constant values; we used 𝑥  = 640 and 𝑦  = 200 as we have a res-
olution of 1280  ×  720. 

(1), (2) and (4) together can be written as follows: 𝑋ௌᇱᇱᇱ= w
wௌ  (𝑋ௌ − xௌLs+ xௌRs

2  ) + 𝑥 (5)

𝑌ௌ ᇱᇱᇱ= 
ℎ
hௌ  ( 𝑌ௌ − yௌ  Ls + yௌRs

2  ) + 𝑦 (6)

To illustrate the effect of the different normalization steps on skeleton size and posi-
tion, we show several frames of an EOA patient walking towards the camera at each step 
of the normalization process in Figure 2. 

 
Figure 2. Example of several frames of an EOA patient walking towards the camera illustrating the 
effect of the different normalization steps when using the ASH method. 

2.5. Evaluation 
Performance was assessed by calculating the mean value of the absolute error of the 

angle (mean absolute angle error) and the mean variance of the distance between certain 

Raw Frames

Position Shifting

Size Scaling

Visualization

Figure 2. Example of several frames of an EOA patient walking towards the camera illustrating the
effect of the different normalization steps when using the ASH method.

2.5. Evaluation

Performance was assessed by calculating the mean value of the absolute error of
the angle (mean absolute angle error) and the mean variance of the distance between
certain keypoints. It is important to note that we cannot obtain any true physical distance
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measurements because we lost depth dimension information from the start by using a
2D camera. Therefore, our evaluation metrics are inspired by our clinical task, with the
expectation that in the ideal case (1) there should be no changes in angles between vectors
in the coronal plane before and after normalization, (2) normalization should maintain the
variability of the distance between the two wrists and the two ankles, and (3) the constancy
of the distances between the two shoulders and between the two hips is maintained
(assuming that out-of-coronal-plane rotation is limited during gait towards and away
from the camera). We selected four relative angles (angles between vectors): the angles
between the left- and right-wrist–elbow vector and the elbow–shoulder vector, and the
angles between the hip–knee vector and the knee–ankle vector. We also selected eight
absolute angles (angles between vectors and the horizontal line) related to the left- and
right-wrist–elbow, elbow–shoulder, hip–knee, and knee–ankle vectors. For comparison of
the mean variance of distance, we selected the distance between the two shoulder, wrist,
hip, and ankle keypoints, expecting that after normalization the variance of the distance
between the two shoulder and between the two hip keypoints should be close to 0 (due
to physical limitations), but the variance of the distance between the two wrist and two
ankle keypoints should be as large as possible (expecting most variability in movement
from these keypoints).

3. Results
3.1. Likelihood from Pose Estimation

Table 1 provides the mean and standard deviation of the likelihood (confidence proba-
bility) of the 17 keypoints for all participants and segments before and after cleaning. The
average likelihood of skeleton keypoint locations obtained from pose estimation using raw
video data was 0.817 (SD = 0.09). A paired-samples t-test was conducted to compare the
likelihood of prediction of keypoint locations before data cleaning and after data cleaning.
After noisy frames and the standing and turning around segments were removed, there
was a significant increase of the probability (M = 0.889, SD = 0.02, t(28) = 3.36, p < 0.05).

Table 1. Likelihood of prediction of keypoint locations.

Mean STD

before cleaning 0.817 0.09
after cleaning 0.889 0.02

3.2. Mean Absolute Angle Error

The results for the mean absolute angle error are provided in Figure 3. The H method,
especially for the eight absolute angles, has the largest error (M = 14.60), followed by the
S method (M = 10.39). These two normalization methods had much higher errors compared
with the other methods, hence they were omitted from further consideration. The other
normalization methods had similar good performances.

3.3. Mean Variance of Distance

Figure 4 presents the mean variance of the distance between shoulder, wrist, hip, and
ankle keypoints for the original data and the BoN, LS/RH, LS/RH-d, MS/MH-d, and ASH
methods. As expected, the mean distance variances were high (shoulder: 16.33, wrist: 29.35,
hip: 10.29, ankle: 13.74) in the original data. The results of the BoN (shoulder: 5.67, wrist:
8.18, hip: 5.96, ankle: 9.24) and LS/RH (shoulder: 5.26, wrist: 14.08, hip: 5.83, ankle: 9.69)
methods were similar, with the exception that LS/RH normalization produces somewhat
more fluctuation in the wrist component. The final three normalization methods (LS/RH-d,
MS/MH-d, and ASH) provided fairly similar results with minor differences. The results
of MS/MH-d (shoulder: 3.08, wrist: 11.52, hip: 5.09, ankle: 8.81) were a little higher than
those of LS/RH-d (shoulder: 2.90, wrist: 11.49, hip: 5.06, ankle: 8.79), but these differences
were not significant (shoulder: U = 54, p = 0.16; wrist: U = 62, p = 0.29; hip: U = 57, p = 0.20;
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ankle: U = 68, p = 0.41; Mann–Whitney U-tests). Although the shoulder and hip variances
of the ASH method obtained the lowest variances (shoulder: 2.78, wrist: 11.32, hip: 5.05,
ankle: 8.77) among all normalization methods, there was no significant difference between
the MS/MH-d and ASH methods either (shoulder: U = 69, p = 0.44; wrist: U = 68, p = 0.42;
hip: U = 65, p = 0.35; ankle: U = 67, p = 0.40; Mann–Whitney U-tests). However, this method
balanced using the distance between the left shoulder and right hip and the right shoulder
and left hip to achieve a more stable performance.
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We subsequently plotted the distance variance for EOA, DCD, and the controls sep-
arately in Figure 5 to better comprehend the variability across groups in mean variance
of distance. Here, we assume that a good normalization method should (1) preserve the
stability of the distance between the shoulders and between the hips within each of the three
groups, resulting in minimal shoulder and hip distance variance, and (2) result in larger
wrist and ankle distance variance in the EOA group than in the control group [1,2,10,33,34].
The BoN method cannot account for the expected high variability of wrist distance in the
EOA group, so we suggest not using this method. The variability of wrist distance in EOA
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after LS/RH, LS/RH-d, MS/MH-d, or ASH normalization is considerably larger than in
the controls and DCD, as may be expected based on EOA phenomenology. Variance in
wrist distance in the DCD and the control children shows different results with different
normalization methods, which appears to be consistent with our predictions, given that it
is difficult to diagnose DCD clinically. Furthermore, ankle variance in the EOA children
is larger than in DCD and the control children after LS/RH-d, MS/MH-d, and ASH nor-
malization, as may also be expected based on EOA phenomenology [1,33,34]. Finally, we
performed Mann–Whitney U-tests for all three group pairs for ankle and wrist distance
variance for each normalization method. The only significant differences found were for
mean variance in ankle distance between the EOA and CON groups for the LS/RH-d and
ASH normalization methods (LS/RH-d: U = 44, p = 0.048; ASH: U = 42, p = 0.045). As the
goal of these tests was only to identify the best performing method(s), we did not correct for
multiple comparisons. To conclude, both the LS/RH-d, and ASH normalization methods
performed reasonably well and similarly in our task.
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3.4. Location Distribution Comparison

To better understand what our normalization is accomplishing, we plotted the dis-
tribution of the 17 keypoints before and after LS/RH-d normalization for one segment
of a DCD child walking towards/away from the camera (See Figure 6). The coordinates
on the left (before normalization) are spread widely for each keypoint because when the
participant is farther away from the camera, the skeleton’s size becomes smaller in the 2D
video frame. After we used the LS/RH-d normalization method, each of the keypoints
is localized more concentrated in a small region, resulting in a more stable, robust, and
less noisy trajectory. This then allows the derivation of distance-based features and their
comparison across different movement disorder groups or use for diagnostic classification.
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4. Discussion

In this study, we present a framework based on 2D video pose estimation and proposed
different normalization methods for skeleton data to enable the quantitative assessment of
movement disorders. We found that AlphaPose and PoseTrack based keypoint localization
can achieve relatively high confidence in coronal plane 2D recordings, and normalization
methods in this framework could be helpful for the calculation of distance- based features.

The high likelihood after cleaning in our dataset from AlphaPose and PoseTrack with
pretraining in the MSCOCO dataset supports the potential for quantitative analysis of
routine video recordings for assistance in diagnosis and daily monitoring. Our video data,
which included 15 children walking freely in a corridor, was captured with a single camera
at a resolution of only 1280 × 720 pixels and a frame rate of 25 frames per second. The
major reason the confidence cannot achieve values higher than 0.9 after cleaning is that
keypoints on the face, such as the nose, eyes, and ears, cannot be seen or have low spatial
resolution as people walk away from the camera. Yet, the likelihood findings show that even at
low video resolution, the pose estimation model has a high level of reliability, and thus provides
a solid platform for further study and demonstrates that it is promising for clinical application.

Assessing movement disorders objectively and accurately is notoriously difficult.
Even though machine learning models have been used to predict gait characteristics [35],
current models still rely on data from specialized hardware such as optical motion capture
devices [36] and inertial measurement units [9]. Deep learning pose estimation approaches
have been investigated in clinics for predicting gait parameters [37] and quantifying parkin-
sonian gait features [38]. However, the approach investigated in this study has not been
adequately illustrated or explored, particularly in terms of how to extract distance-based
movement features. It is feasible to reconstruct the three-dimensional kinematics of human
movement by recording with a 3D capture system with several different cameras [39,40], or
with a single RGB-D camera [41]. Previous research has already compared pose estimation
from 2D and 3D video data and demonstrated that the 2D skeleton modality with proper
preprocessing performed almost as well as the 3D-based method for an action recognition
task [42]. In addition, an earlier study compared the validity of 2D and 3D analyses when
recording rearfoot walking [43] and found no significant differences between the two
approaches on variables commonly examined in rearfoot motion. Furthermore, the com-
parison of 2D and 3D video analysis during running [44], for angular measurements [45],
and for sagittal plane gait assessment [46] supports that implementing 2D video analysis
is more reasonable and feasible due to its convenient features compared with the high
equipment cost and time required for 3D analysis, and might thus be clinically applicable.
Based on this research conclusion, we investigated several normalization methods in 2D from
the perspective of convenience and practicality for clinical use. To the best of our knowledge, this
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is the first study to discuss how normalization may be used to extract distance-based features
from 2D skeletons to produce interpretable movement features for clinical research.

This study has some limitations. First, the children with EOA were slightly older than
the DCD and the control children. However, as healthy and DCD children grow up, the
variability in coordinative movements declines [47,48], and thus the difference in variability
in movement between EOA and DCD or the control children would be expected to be
even larger if the DCD or the control children had been fully age-matched. Second, our
long-term goal is to utilize ubiquitous surveillance cameras (such as mobile phones) to
collect data and analyze it in a rapid and easy-to-use way; however, the present approach
does not address how the camera’s height and angle impact the results. When the camera
moves to different angles, the size of the human skeleton also varies. This could be solved
by using a tripod for recording, but this decreases ease of use. Third, the 2D skeleton data
still contains some noise after cleaning, and the trajectories of keypoints through time are
still not smooth after normalization; filtering could potentially be applied to deal with this.
Further, here we express our distance-based measures in pixels and not (yet) in meters. This
does allow consideration of variability in such measures, which, as argued, are clinically
relevant parameters, but not yet absolute distances. In principle, such absolute distances
could be obtained from 2D video frames if a calibration were performed, for example,
by measuring the height of the participant and including a standing frame in the video
clip. This would allow the expression of pixel sizes in meters. In the current study this
was not yet included as we employed existing clinical footage. In further studies when
collecting more data prospectively, this calibration step could be added, which would also
allow comparison of distance-based features derived from 2D footage with a gold standard
measure, such as those derived from 3D optical measurements.

Our normalization framework applied to 2D freehand single camera video recording
data demonstrated a promising application for the quantitative assessment of movement
disorders in a convenient and objective manner. For future further evaluation of the pro-
posed normalization methods, after inclusion of a calibration step in prospectively collected
video recordings, 3D optical systems employing reflective markers could be utilized to
establish ground truth. As such, this study is a preliminary step towards quantitative
analysis of clinically observed gait using single camera freehand video recording. In ad-
dition, if more data is collected, machine learning algorithms could be developed to help
differentiate between different movement disorders.
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