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Abstract: A flexible sinusoidal-shaped antenna sensor is introduced in this work, which is a modified
half-wave dipole that can be used for strain sensing applications. The presented antenna is an
improved extension of the previously introduced antenna sensor for respiration monitoring. The
electrical and radiative characteristics of the sinusoidal antenna and the effects of the geometrical
factors are studied. An approach is provided for designing the antenna, and equations are introduced
to estimate the geometrical parameters based on desired electrical specifications. It is shown that
the antenna sensor can be designed to have up to 5.5 times more sensitivity compared to the last
generation of the antenna sensor previously introduced for respiration monitoring. The conductive
polymer material used to fabricate the new antenna makes it more flexible and durable compared to
the previous generation of antenna sensors made of glass-based material. Finally, a reference antenna
made of copper and an antenna sensor made of the conductive polymer are fabricated, and their
electrical characteristics are analyzed in free space and over the body.

Keywords: dipole antenna; miniaturized antenna; sinusoidal antenna; strain sensor; tunable antenna;
conductive polymer; antenna sensor

1. Introduction

The electrical and radiative characteristics of antennas are functions of their geo-
metrical structure and the material specifications of the conductors and dielectrics in the
antenna’s vicinity [1]. Consequently, antennas can be exploited for sensing applications,
where the geometrical deformations or material changes can be detected by monitoring
the antenna’s radiative and electrical characteristics. Applications of antenna sensors can
be in body movement capturing for computer animation or robot controlling, monitoring
structural deformations, such as tracking cracks and displacements in buildings, monu-
ments, and similar structures, and most importantly, monitoring vital signals for diagnosis
and rehabilitation [2–6]. A Serpentine meshed patch antenna is reported for stretch strain
sensing fabricated using laser-cut conductive textiles on Ecoflex substrate [7]. Recently, an
RFID-incorporated meandered line dipole antenna in Ecoflex has also been reported to
detect stretching strain [8].

In addition, some recently published works are focused on detecting bending strain.
For example, Graphene-based patch antennas are introduced in recent works for detecting
bending strain with applications in identifying human posture and joint movements [9,10].
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An aluminum tape patch over a cellulose substrate is also reported in another work for
bending strain detection. The use of cellulose makes the antenna recyclable and suitable
to employ in disposable electromechanical sensors [11]. Some other works are focused
on structural health monitoring (SHM) applications. Recent works in this area are in the
form of rectangular [12], circular [13], and folded patch antennas [14]. Fractal-shaped patch
antennas are also studied by Herbko and Lopato for a more miniaturized SHM antenna
sensor [15]. More recently, a novel metamaterial-based SHM antenna sensor was also
reported by the same team using a double split-ring resonator (dSRR) structure to achieve
even more miniaturization while increasing the strain sensitivity [16].

Antenna sensors can also be embedded in wearables for vital signal monitoring
applications. Although many sensing technologies have been developed for monitoring
vital signals [17,18], applying on-body antenna sensors for this purpose is a relatively new
field of study. A spiral-shaped flexible dipole antenna was reported for respiration detection
by analyzing the received signal strength indicator (RSSI) of a Bluetooth connection [2].
Recently, a low-profile fully textile patch antenna was proposed for respiration monitoring
applications [19]. A new antenna sensor in the form of a fully embroidered meander line
dipole was also proposed in a recent work for real-time respiration monitoring [20].

This work presents a flexible sinusoidal-shaped half-wave dipole antenna sensor that
can be used in strain sensing and vital signal monitoring applications. The proposed
sinusoidal antenna sensor is the new generation of a previously introduced antenna sensor
for respiration monitoring [2]. Using flexible conductors as antenna material, the changes in
the antenna’s impedance due to the mechanical compressions or stretchings can be picked
up by a measurement device as an indicator of the strain applied to the antenna [4]. It
is shown that the antenna sensor introduced in this paper could be up to 5.5 times more
sensitive than the previous generation [2].

The sinusoidal antenna introduced in this paper is a modified version of the half-wave
dipole antenna. Modified dipoles are reported and studied in the literature for the sake of
miniaturization and impedance control, such as meandered, zigzag [21–24], and monopole
sinusoidal geometries [25,26]. They are also employed in Log Periodic Dipole Array (LPDA)
antennas [27,28] and Radio frequency identification (RFID) tags [29,30] due to their short
axial length. Similarly, the sinusoidal antenna introduced here has a resonant impedance
lower than the traditional straight dipole antenna and an axial length shorter than λ/2. For
example, a sinusoidal antenna designed for 50 Ω is 20% axially shorter than a traditional
straight half-wave dipole. The miniature size of the sinusoidal antenna makes it suitable
for wearable applications.

Our implemented antenna sensor for vital signal monitoring is designed to be placed
over the front of the chest area and embedded in a T-shirt [4]. This method of vital
signal monitoring is different from non-contact systems, where both antenna and the
measurement and detection system are located remotely from the subject [17]. The changes
in the circumference of the upper body may lead to a geometrical deformation of the
wearable antenna sensor, which changes its radiative and electrical characteristics, which
will be detected by a measurement system. Sensitivity to strain, stretchability, flexibility,
and durability are crucial factors for achieving a viable vital signal sensing system, as well
as the Specific Absorption Rate (SAR) since these antenna sensors are placed over the body.

In the light of these requirements, this paper paves the way for realizing a vital signal
monitoring system with a more sensitive, flexible, durable, and miniaturized antenna
sensor compared to the previous generation [2–4]. A detailed study of the sinusoidal
antenna’s radiative and electrical specifications for various configurations is provided,
its sensitivity to deformations is studied, and a design guide is provided for the antenna
sensor. Finally, a prototype antenna is fabricated and measured in free space and over the
body, and its durability and SAR compliance are studied. An upcoming paper will cover
the antenna’s application in a vital signal monitoring system and provide measurement
data for the antenna sensor.
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The sinusoidal antenna is introduced and studied in detail in the second and third
sections of this paper. The antenna is simulated using CST Studio Suite® 2020 software [31],
and the effects of the geometrical parameters are analyzed on its radiation characteristics
and strain sensitivity. A design guide is provided in the fourth section using two methods,
and equations are introduced for estimating the geometrical parameters based on desired
characteristics. In the fifth section, a reference copper antenna and a flexible polymer
antenna sensor are fabricated, their electrical parameters are measured, and their environ-
mental durability is analyzed through an experiment. Discussions are made in the sixth
section about the antenna’s SAR, its behavior under bending and twisting, and its applica-
tion in strain sensing. Additionally, a summary of the state-of-the-art is provided, and it is
shown that higher sensitivity to strain is achievable using this antenna sensor compared to
the traditional design used in our previous work, known as a half-turn Archimedean spiral
antenna [2].

2. Antenna Geometry

The design of the antenna sensor, shown in Figure 1, is based on the traditional straight
half-wave dipole. The antenna wires are bent n times to form a sinusoidal shape in the
domain of zero to nπ. Equation (1) can be considered for plotting the shape of a single pole
of the antenna in a cartesian coordinate system where parameters WA and LA define the
width and the length of the antenna, respectively. The n factor indicates the number of
extrema in the structure of a single antenna pole.

y = WA sin
(

nπ
LA

z
)

z = (0, LA) (1)
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Figure 1. Antenna Geometry with n = 5. Small circles in the middle indicate the feeding point. The
antenna is placed along Z-axis, and the peaks and dips are along the Y-axis.

3. Specifications and Intrinsic Parameters

A straight half-wave dipole antenna has a total wire length of 2LW = λ
2 relative to its

wavelength of operation, and ideally has an inductive impedance of ZW = 73.1 + 43j on
the respective frequency [32]. For the modified half-wave dipole antennas, the Shortening
Ratio (SR) is defined as the ratio between the reduction in its axial length and its total wire
length, which is shown as [21,25,26]:

SR =
λ
2−2LA

λ
2

= 1− LA
LW

(2)

The antenna introduced here is simulated using CST Studio Suite® 2020 full-wave elec-
tromagnetic simulation software [31]. The antenna is modeled by very thin wires made of
Perfect Electric Conductor (PEC) and with a diameter d of less than λ× 10−4 as an approxi-
mation of an infinitesimally thin antenna [1]. A feeding point gap of Lg = 1.25× 10−5λ is
considered to keep it as small as possible. The model details mentioned here are considered
for all of the simulations presented in this work.

A set of calculations are made on the introduced antenna geometry for n = 1, . . . , 9, in
which the SR is increased in fine steps while keeping wire length (LW) constant, as shown
in Figure 2. The antenna’s width has to increase in each step to ensure the constancy of
the wire length. The simulation results are presented in Figure 3. The antenna’s resonance
frequency is normalized to the resonance frequency of the straight half-wave dipole ( fD1). It
is evident that the more the antenna becomes compressed, the lower the radiation resistance
on resonance, but the higher the resonance frequency.
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Figure 2. Sample design of an antenna with n = 3 for different values of SR. It is evident that the
more the SR increases, the higher the width of the antenna.
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Figure 3. (a) Radiation Resistance of the antenna on resonance frequency. Inset: zoomed-in detail
of the crossing around the 50 Ω line. (b) The resonance frequency of the antenna normalized to the
resonance frequency of the straight half-wave dipole ( fD1 ).

3.1. Radiation Resistance

The decrease of radiation resistance due to the increase of SR seen in Figure 3a is
expected behavior. To analyze the radiation resistance, we need to observe the antenna
from a far-field point of view, with a distance of r from the antenna, where r � λ. With
the assumption of WA � λ, the oscillations of the sinusoidal shape can be ignored from a
far-field standpoint. Therefore, the antenna can be approximated as a straight dipole with a
physical length of 2LA which is less than half of the operation wavelength. The antenna
seen from the far-field is electrically shorter than a half-wave dipole. The real part of its
impedance, indicating the radiation resistance, will be less than <e {Zw} which is expected
to become even smaller as it becomes a shorter dipole [1,21].

3.2. Resonance Frequency

The normalized resonance frequency of the antenna is shown in Figure 3b as a function
of SR for the different number of bents (n parameter). The point SR = 0 is equivalent to a
straight half-wave dipole LA = LW , and therefore the simulation results show a resonance
at around RD1 ≈ 70 Ω and a normalized frequency of unity. While the wire length is kept
constant, the resonance frequency increases as the SR rises, which means that the rise of
peaks and dips in antenna geometry causes an extra capacitive effect on the antenna [21].

3.3. Effects of the n Factor

It can be concluded from Figure 3a that the higher the n factor, the shorter the axial
length of the antenna for specific radiation resistance, making it more miniaturized. Addi-
tionally, the antenna’s sensitivity to the deformations becomes more significant by choosing
higher n values.

In the case of n = 1, the antenna becomes so wide that it violates the assumption of
WA � λ and cannot be categorized as a linear dipole antenna from a far-field point of
view. For example, the required designs to achieve 50 Ω using n = 1, 5, and 9 are shown in
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Figure 4. The width of the antenna n = 1 is noticeably large and around ≈ 0.15λ, which is
violating WA � λ. Consequently, by choosing n = 1, the antenna cannot be approximated
with a linear equivalent antenna from the far-field point of view anymore. The antenna
would virtually become a superposition of two perpendicular equivalent dipoles with
specifications out of this work’s context.
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Figure 4. Antennas designed for radiation resistance of 50 Ω on a specific frequency using values of
1, 5, and 9 for the n factor. The higher the n factor, the less the antenna width for the same resonance
frequency and radiation resistance, resulting in a more linear structure.

3.4. Radiation Pattern and Maximum Gain

The radiation patterns of antennas designed for 50 Ω are illustrated in Figure 5. The
antennas designed with the constraints of n > 1 have a radiation pattern similar to a
straight half-wave dipole. The maximum gain and Half-power beamwidth (HPBW) are
presented in Table 1 for a straight half-wave dipole antenna (n = 0) and sinusoidal antennas
RR = 50 Ω and n = 1, 3, . . . , 9. It can be concluded that a larger n makes the antenna
more similar to the straight half-wave dipole antenna in terms of HPBW and far-field
pattern. The HPBW is slightly wider than the straight dipole in lower n values and becomes
narrower as n rises, resulting in more directivity (D) and maximum gain (G), as G ∝ D [1].
Following the discussion above about the effects of the n factor, it can be seen that the
unusual radiation pattern for the case of an antenna n = 1 resembles a superposition of
two dipoles along the Z- and Y-axis due to its noticeably large width of WA ≈ 0.15λ.
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Table 1. The Maximum Gain and HPBW of the straight half-wave dipole and 50 Ω sinusoidal dipoles
for different n values.

n Max Gain
(dBi/dBd)

HPBW
XZ Plane (φ=0◦)

HPBW
YZ Plane (φ=90◦)

0 * 2.14/0 78◦ 78◦

1 2.419/0.269 89.6◦ 82.6◦

3 2.451/0.301 79.2◦ 80.6◦

5 2.467/0.317 78.5◦ 79.7◦

7 2.474/0.324 78.3◦ 80.1◦

* Indicates traditional straight half-wave dipole.

4. Design Methods

Here a set of curve fittings are made of the simulation data to provide equations based
on geometrical parameters for estimating the impedance on resonance and the resonance
frequency of the sinusoidal antenna, which can provide a starting point for fine-tuning the
antenna parameters. Two methods are presented, based on two constraints of fixed wire
length or fixed axial length, and the pros and cons of each are described. The curve fittings
are made through a Nonlinear Least Squares (NLS) method based on the Trust Region
algorithm [33].

4.1. Method 1: Designing Based on LA for a Known LW
4.1.1. Curve Fittings Based on SR

In the data presented in Figure 3, the radiation characteristics are expressed based on
SR, which is the antenna length LA relative to the fixed total wire length LW . According to
the curve fittings, the resonance frequency f increases with the rise of SR, and the slope is
proportional to the square root of n. It can be written in the following form:

f = fD1

(
1 +

√
n

k11
· SR

)
(3)

where fD1 is the resonance frequency of a straight half-wave dipole with a length of LW .
The impedance on resonance RR drops as SR increases, and the drop rate is approximately
proportional to the 8th root of n. Therefore, it can be fitted on the following form:

RR = RD1

(
1− k12

8√n
· SR

)
(4)

By choosing k11 = 8.265 in Equation (3), and RD1 = 69.54, k12 = 1.587 in Equation (4),
an R2 of 99.55% and 99.85% is achieved for each Equation, respectively, as a measure of
goodness-of-fit [34]. The curve fitting is made of the data in the domain of n = 3, . . . , 9 and
SR = 0.05, . . . , 0.3. The precision of the curve fittings is shown in Figure A1 in Appendix A.
It is also possible to choose a RR or f of choice and solve the introduced equations for SR. It
should be noted that n factor can only take integer values and should be chosen according
to the fabrication capabilities.

4.1.2. The Design Steps Using Method 1

1. Choosing a wire length LW and n
2. Calculating RR for different SR values, or calculate SR for a given RR
3. Calculating f for the SR chosen in step 2
4. Readjusting LW (and subsequently updating fD1) while keeping SR fixed to reach the

desired resonance frequency
5. Calculating WA based on the finalized LA and LW using the integral Equation intro-

duced in the following.
6. Verify the design by simulating the antenna model based on Equation (1)
7. Finish if the desired frequency is acquired; otherwise, repeat from Step 4.
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It is worth mentioning that the designer has to redo all the steps if they decide to
choose another n value.

4.1.3. Calculating Antenna width WA

With LW and LA as known variables, calculating the width of the antenna (WA)
requires solving an integral equation. A small arc dL can be fit on the hypotenuse of
a right triangle. According to the Pythagorean theorem, its length can be written as
dL =

√
dy2 + dz2. By integrating dL over the curve, the total curve length can be calculated

as follows:

L =
∫ b

a

√
1 +

(
dy
dz

)2
dz. (5)

By combining (1) and (5), the wire length can be calculated as the following:

LW =
∫ LA

0

√
1 +

(
WA

nπ
LA

cos
(

nπ
LA

z
))2

dz . (6)

4.1.4. Disadvantages of Method 1 Based on SR

The integral in Equation (6) does not have an elementary antiderivative and is an
elliptic integral of the second kind. Even though numerical methods and software packages
such as MATLAB can be used to solve the integral Equation for WA effortlessly [35,36], it
would not be a convenient method in the antenna design synthesis process, especially if
the design needs to be made based on antenna width WA parameter.

Although the definition of SR could help to understand the behavior of the antenna, it
is not a decent choice for providing a design method since its dependency on constant wire
length LW requires solving Equation (6) for WA before each iteration of the simulation to
obtain the full geometrical parameters of the antenna. Additionally, the designer has to
redo all the design steps in the case they decide to go with another value of n. Moreover,
the estimation of RR using Equation (4) based on SR cannot differentiate well between
adjacent n values since the data lines are very close.

4.2. Method 2: Designing Based on WA for a Known LA
4.2.1. Widening Ratio

Widening Ratio (WR) is presented in Equation (7) for studying the antenna character-
istics directly based on the geometric parameters of WA and LA and alleviate the need for
solving the integral equations during the antenna design process.

WR = WA
LA
× 100. (7)

A new set of simulations were performed on antennas with different WR values
while keeping LA constant and ignoring the assumption of fixed total wire length LW . This
definition is beneficial while modeling the antenna based on LA and WA in electronic design
automation (EDA) software and electromagnetic simulators. Figure 6 shows an example
representation of the simulated model configurations for n = 3. This set of simulations are
repeated for different n values, and the results are presented in Figure 7.
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Figure 6. Representation of increasing WR of an example antenna with n = 3, while keeping LA as
constant and ignoring the fixed wire length LW constraint.
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Figure 7. Antenna characteristics for different n values expressed versus WR while the axial length
LA is kept constant (a) Radiation Resistance of the antenna on resonance frequency. The required WR
values to design a 50 Ω antenna are marked for n = 3, . . . , 9 (b) Resonance frequency normalized
to fD2.

4.2.1.1. Curve Fittings Based on WR

According to the data presented in Figure 7, the decrease in f and RR is approximately
proportional to n and WR, and Equations (8) and (9) are provided based on this observation.
These equations provide approximations for a given n and WR, as a starting point for fine-
tuning. In this Equation fD2 is the resonance frequency of a straight half-wave dipole with
a length of LA, and by setting k21 = 182.3 in Equation (8) and RD2 = 72.78, k22 = 120.94
in Equation (9), the equations fit approximately on the data points with an R2 of 98.41%
and 99.07%, respectively. The precision of the fitting is illustrated in Figure A2a,b in
Appendix A.

f = fD2

(
1− n

k21
·WR

)
(8)

RR = RD2

(
1− n

k22
·WR

)
(9)

The surface fitting is made with the data in the domain of n = 3, . . . , 9, WR = 1, . . . , 15
and the range of RR = 30, . . . , 65 and f / fD2 = 0.6, . . . , 1. Similarly, these equations can
also be solved for WR considering a f or RR of choice. By combining Equations (8) and (9),
we reach the following Equation (10), which defines f solely based on RR and does not
depend on n, as shown in Figure A2c in Appendix A.

f = fD2 (1− k31(RD3 − RR)) (10)

where:
k31 = k22

k21
, RD3 = k22

k21
RD2 (11)

4.2.1.2. The Design Steps Using Method 2

1. Choosing a wire length LA and n
2. Calculating RR for different WR values, or calculate WR for a given RR
3. Calculating f for the WR chosen in step 2
4. Readjusting LA (and subsequently updating fD2) while keeping WR fixed to reach

the desired resonance frequency
5. Verify the design by simulating the antenna model based on Equation (1)
6. Finish if the desired frequency is acquired; otherwise, repeat from Step 4.

4.2.1.3. Advantages of Method 2 Based on WR

This design method has three advantages compared to the previous method, based
on SR. First, the design is made directly based on LA and WA values and no integrals
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need to be solved to calculate WA for each iteration of the design process. Second, the
estimation of RR has a better separation for adjacent n values compared to the previous
method. Third, if the designer finishes the design process and then decides to go with
another n factor, they will not need to start over. By only repeating the second step, a new
WR can be calculated for the previously chosen resistance, and then WA can be readjusted.
As shown in Equation (10), the resonance frequency of the antenna will not change as long
as the designer keeps the previously chosen radiation resistance for the design.

4.3. Tuning Considerations

The factors affecting classic straight dipole antenna characteristics also apply to
the sinusoidal dipoles, such as feeding point gap width, wire conductivity, and wire
thickness [32]. All simulations were achieved using PEC as the material of the antenna
wires. For convenience, the designer might consider extending the feeding point gap of
Lg = 1.25× 10−5λ to a larger value for high-frequency antennas where λ is shorter than a
kilometer. In this case, the WR (or SR) factor needs to be adjusted to a slightly lower value
for compensating the inductive effect caused by the extra gap widening.

All the data presented from the simulation runs in this work were prepared with the
assumption of a very thin wire with a diameter d of less than λ× 10−4. For an antenna
made of a thicker wire, the WR (or SR) parameter needs to be adjusted to a slightly higher
value to achieve the desired radiation resistance on resonance.

5. Fabrication and Measurement
5.1. Fabrication Process

Two sample high-frequency antennas with n = 5 are fabricated as a proof-of-concept.
Table 2 shows the geometrical parameters used for the fabrication of both antennas. The
antenna is designed and simulated for 800 MHz and 50 Ω impedance. A copper-made
antenna is fabricated as the reference, and a second antenna is also made using a conductive
flexible polymer suitable for wearable sensor applications.

Table 2. Geometrical Parameters of the antennas.

Parameter Axial Length (LA) Width (WA) n Wire Thickness

Value 74.54 mm 5.65 mm 5 1.4 mm

Compared to the previously introduced traditional antenna sensor based on silica
hollow-core fibers, the newly developed polymer fiber is enduring, flexible, and sustains its
electrical characteristics better than silica hollow-core fibers [37]. The conductive polymer
is biocompatible, highly flexible, and resistant to water and other perturbations. It can
be easily sewn on textiles and bending, twisting, or stretching does not break it. The
measured resistance of the material is around ≈ 8 Ω·cm−1 and is observed to have a good
performance in high frequency.

The composition of the conductive polymer fiber is a combination of poly (ethylene-
co-vinyl acetate) (PEVA) polymer (Sigma-Aldrich, St. Louis, MO, USA) and multi-walled
carbon nanotubes (MWCNTs) (commercially available at Cheaptubes, Grafton, VT, USA,
with a carbon purity of 95 wt%) with a composition of 41 wt% mass of MWCNT and 59 wt%
mass of PEVA and without any purifications.

The fabrication steps of the conductive polymer are shown in Figure 8a. For an hour,
the MWCNT nanoparticles are sonicated in 10 mL of tetrahydrofuran (THF) (Fisher Scien-
tific International, Waltham, MA, USA). Afterward, the PEVA polymer and the MWCNTs
solution are mixed by mechanical stirring for one hour at 1400 rpm. The mixture is then
sonicated for an additional 180 min for better dispersion. Finally, the colloidal solution is
placed in the oven at 100 ◦C for 15 min to obtain a high-viscosity composite.
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Figure 8. (a) Fabrication process of the MWCNT-PEVA conductive polymer (b) the extrusion process
of the polymer wire (c) SEM image of the cross-section of the MWCNT-PEVA polymer wire.

The composite of the conductive fiber is extruded [38] using a commercially available
syringe, as shown in Figure 8b, and is left to dry out. The initial thickness of conductive
fiber is 1.6 mm, which reduces to 1.4 mm after the drying process. The scanning electron
microscopy (SEM) image of the cross-section of the polymer wire is presented in Figure 8c.

5.2. Measurements

The fabricated antennas are shown in Figure 9a,b and are fed using the commercially
available 1:1 balun TC1-1-13MA+ from Mini-Circuits [39]. The measurements are made
using a calibrated VNA system, with effects of the transmission line de-embedded from
the final scattering parameters (S-Parameters) readout [40]. Table 3 shows the measured
specifications of the fabricated antennas. The return loss of the antennas is also presented in
Figure 9c. Each measurement is repeated eight times, and the average values are reported.
The measurements show a good agreement between the antennas and the simulation. The
differences are due to the error in fabrication, the material specifications, and non-rigid
nature of the polymer wire.
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Figure 9. (a) The Copper antenna (b) The Polymer antenna, sewn on a T-shirt (c) Return loss of the
antenna in simulation, the Copper antenna, and the Polymer antenna, both in free space and over
the body.

Table 3. Measured Antenna Specifications.

Antenna Operation Frequency Impedance on Frequency

Copper 790 MHz 52 + 0.2 i Ω
Conductive Polymer

(Free space) 827 MHz 50.4 + 2.5 i Ω

Conductive Polymer
(Over the Body) 808 MHz 49.2 + 19.9 i Ω
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It can be seen that the resonance frequency of the polymer antenna is changed when it
is placed over the body. There are two factors contributing to this frequency shift. The first
one is the changes in the antenna’s surrounding material in its reactive near-field region,
which makes a change in the impedance of the antenna seen from the feeding circuit,
resulting in an impedance mismatch and therefore affecting the resonance frequency and
the radiation resistance of the antenna [41].

The other factor causing this shift is the deviation of the antenna’s dimensions due
to its initial stretching when the patient wears the smart textile, as shown in Figure 10.
Therefore, it is recommended that the T-shirt selected for the antenna integration be a right
fit for the patient’s body form and not too tight. Otherwise, the initial state of the antenna
sensor will be considerably stretched, which would potentially limit the dynamic range of
the antenna sensor.
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Figure 10. A 50 Ω antenna sensor n = 5, embedded on a smart T-shirt for vital signal monitoring
applications.

5.3. The Durability of the Antenna Sensor

An experiment is performed in order to demonstrate the durability of the conductive
polymer material for wearable smart textile applications intended for everyday use. A 50 Ω
antenna sensor is fabricated and sewn on a piece of fabric, and its electrical specifica-
tions are measured. The fabric and the antenna sensor are washed for 20 cycles, and the
measurements are performed again after each cycle.

During each step, the fabric is submerged in a container filled with tap water and
detergent and is stirred vigorously to simulate a washing procedure. The fabric is taken
out after 5 min, and then it is rinsed using tap water. Next, a piece of a napkin is used to
remove the excessive wetness of the fabric. Finally, a heat gun is used for 10 to 15 min to
completely dry out the fabric and antenna sensor. The specifications of the antenna sensor
are remeasured and recorded after the complete dry out.

The container water and the detergent were refreshed every five cycles. The SMA
connectors were held outside the water during the washing process, as shown in Figure 11.
The heat gun is placed at least 15 cm away from the fabric during the drying process to
prevent accidental burning due to its high temperature and is manually swung over the
fabric to ensure complete dryness.

The measurements after each cycle are shown in Figure 12. It can be seen that there
is a slight shift in the antenna’s operation frequency throughout the cycles, which could
be due to the antenna deformations or fabric shrinkage caused by the heat during the
drying process. The reflection loss of the antenna is still ideally below −10 dB, and despite
the slight frequency shift, the antenna’s performance is not significantly affected after
20 wash cycles.
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6. Discussion
6.1. Strain Sensitivity

The introduced antenna design is notably valuable in strain sensing applications. It
was previously shown in Figure 3 that the impedance and the resonance frequency of the
antenna shift as SR changes when the sinusoidal dipole becomes stretched or compressed
along its axis. One can exploit this behavior and make a sinusoidal antenna out of flexible
conductors and record the S-parameters of the antenna over time as an indicator of the
strain applied to the antenna [4]. The strain detection can be achieved by tracking the
resonance frequency or measuring the reflection coefficient on a fixed frequency.

The traditional antenna sensor employed in previous works on respiration monitor-
ing [2–4] is essentially a sinusoidal half-wave dipole n = 1. Higher n values can increase
the sensitivity of the antenna sensor. For comparison, by choosing n = 2, the resonance
frequency sensitivity of the antenna versus SR will be ≈ 2.2 times more than the sensitivity
demonstrated by the traditional antenna. It increases to ≈ 4.1 and ≈ 5.5 times more for
the antennas n = 5 and n = 9, respectively, which is a significant improvement. Figure 13
shows the trend of sensitivity improvement for different n values.
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Figure 13. Sensitivity of the resonance frequency of the sinusoidal antenna sensor to the applied
strain, expressed relative to the sensitivity of the traditional antenna sensor with n = 1, for antennas
n > 1.

Although a higher n value can provide better sensitivity, the advantage is reduced as
n become larger and larger. For instance, raising n from 7 to 9 only improves the sensitivity
by 12%, while changing n from 2 to 4 will boost the sensitivity by a significant amount of
83%. Moreover, an antenna sensor designed with a very high n value could be challenging
to fabricate if the wire is relatively thick, and it will not be easy to integrate the antenna
into wearable applications.

Table 4 summarizes the characteristics of this work compared to other recently pub-
lished works on flexible antennas for strain sensing. Stretching strain is defined as
ε = ∆L/L0 where L0 is the initial antenna sensor length, and stretchability is εmax × 100%
which is the maximum amount of the possible strain ε that can be applied to the sensor,
expressed in percentage [7]. Bending strain is defined as ε = h/2r where h is the antenna
sensor thickness and r is the bending radius. The maximum bending is defined as the angle
at which the sensor cannot be bent any further [11]. Exceeding the limits of the reported
stretchability (or maximum bending) is either destructive for the antenna sensor or yields
unreliable sensor readings [7,11]. The sensitivity to strain is also defined as S = (∆ f / f0)/ε
which is the normalized frequency shift ∆ f / f0 for an applied strain of ε [7,11]. Table 5
compares recent works on another category of antenna strain sensors primarily used in
structural health monitoring to detect surface strains and cracks in the structures.

Table 4. Comparison of recent works on stretchable antennas for strain sensing.

Description Strain Type Stretchability/Max.
Bending

Sensitivity
to Strain Year Ref.

Sinusoidal dipole antenna * Stretching 30% 0.40 2022 This work
Serpentine meshed patch

over ground plane Stretching 40% 0.20 2021 [7]

Serpentine meshed in patch
and ground planes Stretching 100% 0.25 2021 [7]

RFID Meandered half-wave
dipole in Ecoflex Stretching Not provided 0.141 ** 2019 Based on [8]

Flexible planar dipole
antenna over Kepton tape Stretching Not provided 0.066 ** 2012 Based on [42]

Liquid metal loop antenna Stretching 40% 0.18 2009 [43]
Graphene patch antenna

over copper tape Bending Not provided 1.4 2021 [9]

Flexible multi-layer
graphene film Bending Not provided 5.39 2018 [10]

Aluminum tape patch over
cellulose substrate Bending 160

◦
3.49 2016 [11]

* With the assumption of n = 9 and the initial SR = 0.3. In the case of using adequately thin wires, a higher initial
SR and therefore higher stretchability could be achieved. ** The original author does not provide the sensitivity
directly. The presented value is calculated from the reported data.
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Table 5. Comparison of recent works on antenna sensors for structural health monitoring.

Description Resonance Freq Sensitivity to Strain
(kHz/µε) * Year Ref.

Double split-ring resonator (dSRR) antenna 2.725 GHz −1.548 2022 [16]
Rectangular microstrip antenna 2.725 GHz −2.379 2022 [16]
Rectangular microstrip antenna 2.469 GHz −2.847 2021 [12]

Sierpinski fractal microstrip patch 2.725 GHz −1.18 2019 [15]
Circular patch antenna 2.5 GHz −2.05 2018 [13]

RFID folded patch antenna 911.6 MHz −0.76 2015 [14]

* The sensitivity of this category of antenna sensors is usually reported in absolute frequency.

A crucial factor for antenna sensor comparison is the magnitude of force needed to
achieve a specific strain. This factor becomes especially important in applications with very
small stretching forces. To the best of our knowledge, such a parameter is not reported in
any of the works summarized in Table 4. However, the materials used in the fabrication
of each antenna sensor are well described in the other works and this paper, which might
indirectly address this issue. Nonetheless, a study on the magnitude of force required to
achieve a specific strain on the antenna introduced here is undoubtedly an interesting point
that could be experimentally measured and included in a forthcoming paper.

6.2. Effects of Bending and Twisting

Although the antenna sensor introduced here is ideally designed for applications
where the deformations are mainly along the Z-axis, the effects of other forms of deforma-
tions are also investigated to understand the antenna’s behavior better. A sample 50 Ω
sinusoidal antenna with the geometrical parameters introduced in Table 2 is simulated in
twisted and bent conditions, as illustrated in Figure 14. The twisting is performed around
the Z-axis up to 90

◦
, and the cylindrical bending is applied along the X-axis up to 180

◦
.
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Figure 14. Illustration of (a) the twisting and (b) the bending applied to the modeled antenna in
simulation software. The blue metallic-colored plane, the thick wire, and the lighting effects are
added for a better presentation of the 3D model.

Figure 15 presents the antenna simulation results for different bend and twist angles.
There is a significant change in the antenna’s resistance on the resonance frequency under
bending deformation. It is shown that the more the antenna becomes bent, the lower
becomes the resistance on the resonance frequency. Bending can also shift the resonance
frequency to slightly higher, which is negligible in low bending angles and will be less
than 2% for 180

◦
. In comparison, twisting does not significantly affect the resistance on

resonance and shows a slightly decreasing trend. It also has a similar effect on the resonance
frequency, making it drop by as much as 2.5% at 90

◦
of twisting according to the simulation.



Sensors 2022, 22, 4069 15 of 19

Sensors 2022, 22, x FOR PEER REVIEW 15 of 20 
 

 

interesting point that could be experimentally measured and included in a forthcoming 

paper. 

6.2. Effects of Bending and Twisting 

Although the antenna sensor introduced here is ideally designed for applications 

where the deformations are mainly along the Z-axis, the effects of other forms of defor-

mations are also investigated to understand the antenna’s behavior better. A sample 50 Ω 

sinusoidal antenna with the geometrical parameters introduced in Table 2 is simulated in 

twisted and bent conditions, as illustrated in Figure 14. The twisting is performed around 

the Z-axis up to 90°, and the cylindrical bending is applied along the X-axis up to 180°. 

 

Figure 14. Illustration of (a) the twisting and (b) the bending applied to the modeled antenna in 

simulation software. The blue metallic-colored plane, the thick wire, and the lighting effects are 

added for a better presentation of the 3D model. 

Figure 15 presents the antenna simulation results for different bend and twist angles. 

There is a significant change in the antenna’s resistance on the resonance frequency under 

bending deformation. It is shown that the more the antenna becomes bent, the lower be-

comes the resistance on the resonance frequency. Bending can also shift the resonance 

frequency to slightly higher, which is negligible in low bending angles and will be less 

than 2% for 180°. In comparison, twisting does not significantly affect the resistance on 

resonance and shows a slightly decreasing trend. It also has a similar effect on the reso-

nance frequency, making it drop by as much as 2.5% at 90° of twisting according to the 

simulation. 

 

Figure 15. (a,b) The shift in antenna’s resistance on resonance and (c,d) its normalized resonance 

frequency for different angles of bending and twisting, respectively. 

(a) (b) 

y

z

x

y

z

x
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frequency for different angles of bending and twisting, respectively.

6.3. Specific Absorption Rate (SAR) Analysis

The amount of radio frequency (RF) radiation exposure is a critical factor that should
be controlled in the radiating systems embedded in home appliances and portable devices.
This concern becomes even more important in wearable devices and smart textiles due
to the continuity of radiation and the close proximity of the radiating elements to body
tissues. The amount of RF exposure is regulated using a metric named specific absorption
rate (SAR), which is the time derivative of an incremental amount of energy dissipated in a
specific mass of tissues [44]. The Federal Communications Commission (FCC) defines the
limit of the SAR level of mobile phones for public exposure to 1.6 W/Kg, averaged over 1 g
of tissue [45].

An analysis of SAR level is made on a sinusoidal antenna with n = 5 and designed
for 50 Ω on its 800 MHz resonance frequency. The antenna model is simulated while
placed over the chest of the human body phantom model named Hugo from the CST Voxel
Family, with a voxel resolution of 2 mm× 2 mm× 2 mm [31]. The gap between the antenna
and the phantom model is considered 2 mm. The calculated SAR level for a reference
excitation power of Pre f = 1 mW (equivalent to 0 dBm), averaged over 1 g of tissue, has
a maximum value of 0.0138 W/Kg. Therefore, the maximum possible excitation power
Pmax complying with FCC SAR level limitations can be calculated using a simple ratio as
shown in Equation (12). Based on this calculation, the excitation power must be less than
Pmax = 115.9 mW (equivalent to 20.64 dBm) to comply with the limitations. Figure 16
presents the body phantom model and the SAR simulation results.

Pmax = Pre f ·
(

SARlimit
SARcalculated

)
= 1 mW ·

(
1.6 W/Kg

0.0138 W/Kg

)
≈ 115.9 mW ≡ 20.64 dBm (12)
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7. Conclusions

A new flexible dipole antenna with a sinusoidal geometry is introduced. The radiative
and electrical specifications of the antenna and the effect of geometrical parameters are
presented. The antenna is fabricated using a biocompatible conductive polymer with
high flexibility and great endurance. In contrast to the previous generation of antenna
sensors made from glass-based material, the new antenna will not break by twisting,
bending, and stretching, and can be used in wearable applications without compromising
the user’s comfort. It is also shown that the new antenna design can have up to 5.5 times
more sensitivity than the traditional antenna sensor employed in the previous works for
respiration monitoring [2].

Additionally, a design guide for sinusoidal antennas is provided, and curve fittings
are performed to estimate the geometrical factors based on the radiation characteristics
of choice. The equations presented here provide a starting point for fine-tuning the ge-
ometrical parameters to achieve the desired radiation characteristics. Finally, a sample
antenna is designed and fabricated in two versions, one with copper and one with the
conductive polymer. The fabrication method is described, and the electrical specifications
of the fabricated antennas are reported in free space and over the body. It is shown that
there is a good agreement between the simulation and the measurements. Experiments
are performed to prove the durability of the antenna sensor for everyday use, and it is
shown that the performance of the antenna does not decay after 20 washing, rinsing, and
drying cycles.

The contributions of this paper were mainly in the antenna design, characteristics,
and strain sensitivity analysis. It was shown that the new antenna could provide better
performance in sensing and be a superior choice for wearable applications compared to its
previous generation due to its miniature size, flexibility, and durability. An upcoming paper
will be focused on the application of the introduced antenna in a vital signal monitoring
system. The antenna’s performance in sensing applications will be evaluated, and the
measurement data will be provided.
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Appendix A

The correlation between the simulated data and the introduced fitted equations is
illustrated in this appendix for both design methods based on SR and WR.
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Figure A1. Correlation of the data and the equations achieved via curve fitting based on SR for
(a) radiation resistance on resonance frequency (zoomed in) and (b) resonance frequency normalized
to fD1. Solid lines represent the data, and dashed lines represent the fitted function. It is clear that the
fitted function on RR is ambiguous for adjacent n values.
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