Table 6.
Precision, recall, and f1-score comparative analysis for simulations with 60 neurons.
| Diabetes | Disease | Iris | Wine | Wine Quality | Satellite | Shuttle | ||
|---|---|---|---|---|---|---|---|---|
| ELM-IWO | accuracy (%) | 77.49 | 89.94 | 100.00 | 100.00 | 62.92 | 83.59 | 94.64 |
| precision | 0.747 | 0.899 | 1.000 | 1.000 | 0.285 | 0.826 | 0.538 | |
| recall | 0.750 | 0.900 | 1.000 | 1.000 | 0.296 | 0.778 | 0.422 | |
| f1-score | 0.748 | 0.899 | 1.000 | 1.000 | 0.290 | 0.747 | 0.427 | |
| ELM-WOA | accuracy (%) | 79.22 | 88.96 | 100.00 | 100.00 | 62.29 | 83.34 | 94.45 |
| precision | 0.768 | 0.890 | 1.000 | 1.000 | 0.277 | 0.885 | 0.377 | |
| recall | 0.756 | 0.889 | 1.000 | 1.000 | 0.253 | 0.770 | 0.384 | |
| f1-score | 0.761 | 0.889 | 1.000 | 1.000 | 0.239 | 0.749 | 0.380 | |
| ELM-HHO | accuracy (%) | 79.22 | 90.26 | 100.00 | 100.00 | 63.54 | 83.34 | 93.43 |
| precision | 0.769 | 0.902 | 1.000 | 1.000 | 0.277 | 0.850 | 0.366 | |
| recall | 0.753 | 0.902 | 1.000 | 1.000 | 0.271 | 0.771 | 0.374 | |
| f1-score | 0.760 | 0.902 | 1.000 | 1.000 | 0.265 | 0.749 | 0.370 | |
| ELM-BA | accuracy (%) | 79.65 | 88.96 | 100.00 | 100.00 | 63.54 | 83.39 | 90.61 |
| precision | 0.773 | 0.890 | 1.000 | 1.000 | 0.304 | 0.846 | 0.231 | |
| recall | 0.760 | 0.889 | 1.000 | 1.000 | 0.297 | 0.772 | 0.260 | |
| f1-score | 0.766 | 0.889 | 1.000 | 1.000 | 0.296 | 0.748 | 0.244 | |
| ELM-SCA | accuracy (%) | 79.22 | 89.61 | 100.00 | 100.00 | 62.92 | 83.84 | 90.83 |
| precision | 0.767 | 0.896 | 1.000 | 1.000 | 0.285 | 0.831 | 0.400 | |
| recall | 0.763 | 0.896 | 1.000 | 1.000 | 0.296 | 0.787 | 0.325 | |
| f1-score | 0.765 | 0.896 | 1.000 | 1.000 | 0.290 | 0.781 | 0.353 | |
| ELM-FA | accuracy (%) | 78.79 | 89.61 | 100.00 | 100.00 | 63.33 | 82.64 | 91.59 |
| precision | 0.768 | 0.898 | 1.000 | 1.000 | 0.320 | 0.794 | 0.353 | |
| recall | 0.737 | 0.895 | 1.000 | 1.000 | 0.282 | 0.759 | 0.311 | |
| f1-score | 0.748 | 0.896 | 1.000 | 1.000 | 0.284 | 0.742 | 0.308 | |
| ELM-ABC | accuracy (%) | 79.22 | 89.94 | 100.00 | 100.00 | 62.71 | 83.54 | 96.77 |
| precision | 0.770 | 0.900 | 1.000 | 1.000 | 0.263 | 0.815 | 0.410 | |
| recall | 0.750 | 0.898 | 1.000 | 1.000 | 0.257 | 0.778 | 0.410 | |
| f1-score | 0.758 | 0.899 | 1.000 | 1.000 | 0.246 | 0.756 | 0.410 | |
| ELM-MS-AFS | accuracy (%) | 82.68 | 94.16 | 100.00 | 100.00 | 68.13 | 86.89 | 97.68 |
| precision | 0.805 | 0.942 | 1.000 | 1.000 | 0.550 | 0.866 | 0.412 | |
| recall | 0.805 | 0.942 | 1.000 | 1.000 | 0.357 | 0.829 | 0.420 | |
| f1-score | 0.805 | 0.942 | 1.000 | 1.000 | 0.386 | 0.835 | 0.416 |