Skip to main content
. 2022 Jun 10;6(7):451–469. doi: 10.1038/s41570-022-00393-7

Fig. 6. Drugs derived from snake venoms in clinical or preclinical trials.

Fig. 6

a | Anfibatide (blue cartoon) is a snake C-type lectin-like protein that is predicted to bind to platelet glycoprotein Ib α-chain GPIbα (orange surface)124 at a site that partially overlaps with the GPIbα–von Willebrand factor binding surface (PDB ID: 1SQ0), thus inhibiting the association of von Willebrand factor and consequently platelet aggregation. Anfibatide is a promising anticoagulation candidate that has passed phase I clinical trials. b | Crotamine is an amphipathic and highly basic defensin that penetrates cells and is resistant to proteolysis. Crotamine exhibits antiproliferative, antinociceptive and analgesic activity in vivo upon oral administration. Cationic residues are shown as sticks and the disulfide bonds are shown in yellow. c | Dendroaspis natriuretic peptide (DNP) from the eastern green mamba (ochre tube with the disulfide bond in yellow) bound to the dimeric particulate guanylyl cyclase A receptor (shown as a lime surface and a green transparent cartoon) (PDB ID: 7BRI). Cenderitide is a natriuretic peptide chimaera resulting from the fusion of human C-type natriuretic peptide (CNP) to DNP and co-activates both DNP and CNP transmembrane receptors. d | The three-finger toxins mambalgin-1 and mambalgin-2 bind to the acid-sensing ion channels 1a and 1b, locking the channels in the closed state and impairing their function, with an analgesic effect as potent as that of morphine but with much lower toxicity in rodents. The complex of mambalgin-1 (green) with the transmembrane (light yellow) acid-sensing ion channel 1a (violet) is shown (PDB ID: 7CFT). The mambalgins are promising scaffolds for the development of a new generation of analgesics.