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ABSTRACT: Depression is one of the most fatal mental diseases, and
there is currently a lack of efficient drugs for the treatment of depression.
Emerging evidence has indicated oxidative stress as a key pathological
feature of depression. We targeted reactive oxygen species (ROS) and
synthesized CeO2@BSA nanoclusters as a novel antidepression nanodrug
via a convenient, green, and highly effective bovine serum albumin (BSA)
incubation strategy. CeO2@BSA has ultrasmall size (2 nm) with
outstanding ROS scavenging and blood-brain barrier crossing capacity,
rapid metabolism, and negligible adverse effects in vitro and in vivo.
CeO2@BSA administration alleviates depressive behaviors and depres-
sion-related pathological changes of the chronic restraint stress-induced
depressive model, suggesting promising therapeutic effects of CeO2@BSA
for the treatment of depression. Our study proved the validity by directly
using nanodrugs as antidepression drugs instead of using them as a nanocarrier, which greatly expands the application of
nanomaterials in depression treatment.
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■ INTRODUCTION

Depression is one of the most common and worldwide mental
illnesses with high morbidity and mortality, probably leading to
disability or suicide.1,2 Current therapeutic strategies include
psychotherapy, electroconvulsive therapy, and the use of
antidepressants, but all with limited outcomes.3,4 Among all
these strategies, the use of antidepressants is the most
straightforward and low-stimulative one; however, around
30% of patients with depression do not respond to
antidepressant treatment strategies.5

The limited therapeutic outcomes after using antidepres-
sants revealed a complicated pathogenesis of depression and
the importance of developing non-neurotransmitter pharma-
ceuticals for depression prevention and treatment. Emerging
evidence has indicated oxidative stress and excessive reactive
oxygen species (ROS) accumulation as key pathological
features of depression, which makes ROS potential therapeutic
targets.6−11 ROS, including hydrogen peroxide, superoxide
anion radical, hydroxyl radical, etc., is a term for derivatives of
molecular oxygen that are regulated by ROS-generating and
consuming enzymes such as peroxidase, nicotinamide adenine
dinucleotide phosphate (NADPH), superoxide dismutase
(SOD), and catalase (CAT).12−14 In depression status, the
imbalance between ROS production and antioxidative defense
induced oxidative stress leads to the dysregulation of brain
functions and abnormalities in neuronal signaling processes,6,15

and supplementation of ROS-inhibiting small molecules has
been shown to have a curative effect in depressive patients,
such as coenzyme Q10 (CoQ10),16 ascorbic acid,17 N-
acetylcysteine (NAC).18 Although ROS-targeted depression
therapy has shown effectiveness, the conventional antioxidants
still have some disadvantages, whether they are small
molecules or natural enzymes. For small molecule antioxidants,
the antioxidant efficiency is confined due to the consuming
reaction and low specificity; natural enzymes exhibit high ROS
eliminating efficiency and specificity, but their application is
limited due to their high cost, low stability, and difficulty in
recycle in vivo.19,20

Nanozymes are recently developed nanomaterials with
enzyme-like activities. Compared with natural enzymes,
nanozymes display stronger structural stability, lower cost,
higher functional diversity, better catalytic efficiency, recycla-
bility, and feasibility in large-scale preparation.21,22 There are
certain types of nanomaterials with the effective ROS
scavenging properties of catalase and superoxide dismutase,
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including metal oxides and noble metals and compounds.23−26

Among these nanozymes, nanoceria (CeO2) is a low-cost one
with the property to scavenge multi-ROS via the redox
reaction by the transition of oxygen vacancies,23 ,24 ,27 −29 and
it has been used for treating neurological disorders including
stroke, Parkinson’s disease, and Alzheimer’s disease.30−32

However, these nanocerias still have some defects, such as
limited ROS scavenging efficiency, low blood-brain barrier
(BBB) penetration efficiency, large size (>5 nm), complicated
syntheses process, and extra modifications.33−35 Therefore, it is
urgently necessary to pursue an easy and highly efficient
synthesis for preparing ultrasmall metabolizable nanoceria with
outstanding ROS scavenging ability and brain accumulation as
potential antidepressants.
Herein, nanoceria was synthesized by a convenient, green,

and highly effective bovine serum albumin (BSA) incubation
strategy, where BSA provided a spatial confinement effect for

nanoparticle growth and preventing aggregation.36−38 BSA has
been widely used to synthesize nanoparticles for neurological
disorders.39−41 More importantly, the level of serum albumin
decreases in depression patients and high serum albumin levels
may provide protection against depression.42−44 Several key
experiments have been performed in solution, in vitro, and in
vivo to assess the ROS scavenging ability, BBB crossing
capacity, metabolism, and cytotoxicity of BSA-incubated
nanoceria (CeO2@BSA). The therapeutic effects of CeO2@
BSA nanoclusters were determined using the chronic restraint
stress (CRS)-induced depressive model, a more credible
depression model to simulate human stress in life, compared
with other inflammatory models such as the lipopolysaccharide
(LPS)-induced one.45 Our study proved the validity by directly
using nanodrugs as antidepression drugs, acting as a nano-
carrier by loading antidepressants,46,47 which, in turns, greatly

Figure 1. CeO2@BSA nanoclusters are synthesized via a BSA-incubation strategy and can effectively scavenge multiple ROS. (A) Scheme
illustration of CeO2@BSA nanocluster formation. (B) HRTEM images (50 nm for left and 2 nm for right scale bar). (C) XRD and (D) XPS
analyses of CeO2@BSA nanoclusters. (E) TGA analysis of CeO2@BSA nanoclusters and BSA. Concentration dependent multiple ROS scavenging
ability evaluation of CeO2@BSA nanoclusters, (F) superoxide anion, hydroxyl radical, and hydrogen peroxide. (G) ESR spectrum of time depended
free radicals (superoxide anion and hydroxyl radical) scavenging ability of CeO2@BSA nanoclusters. (H) In vitro ROS scavenging ability of CeO2@
BSA nanoclusters in N2a cells (green fluorescence represents ROS) (scale bar: 100 μm) and (I) quantitative analysis (n = 3). Data are shown as
mean ± SD. Statistical analysis of (F, I) was performed by one-way ANOVA with a Tukey post hoc test.
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expands the application of nanomaterials in depression
treatment.

■ RESULTS AND DISCUSSION

CeO2@BSA was synthesized by a BSA incubation strategy
(Figure 1A). Detailed synthetic procedures are elaborated in
the Supporting Information. The synthetic method is simple
and effective since only three raw materials are utilized in the
synthesis process, the synthesis process is green without high
temperature and pressure, and the synthetic method can be
adapted to mass production. The formation of CeO2@BSA
nanoclusters was characterized by UV−vis spectroscopy, which
showed that the absorption peak around 330−340 nm
corresponded to Ce−O bonding and that around 280 nm
corresponded to BSA29,36 (Supplementary Figure 1A). The
size of CeO2@BSA could be regulated by different ratios of
BSA/Ce3+ (Supplementary Table 1, supplementary Figure 1B).
CeO2@BSA nanoclusters were obtained as a clarified buffer
solution (Supplementary Figure 2), the size of the nanoclusters
was ca. 2 nm in diameter, and the lattice structure was
observed via transmission electron microscopy (TEM; Figure

1B). X-ray diffracton (XRD) analysis confirmed the formation
of CeO2 crystals, corresponding to the standard of CeO2 (PDF
#34-0394) (Figure 1C). XRD analysis for CeO2@BSA
nanoclusters before and after ROS scavenging reaction
suggested no compositional and structural changes of
CeO2@BSA nanoclusters (Supplementary Figure 3). X-ray
photoelectron spectroscopy (XPS) analysis confirmed the Ce3+

(peaks at 905, 900, and 885 eV) and Ce4+ (peaks at 916, 898,
and 882 eV), and the ratio of Ce3+/Ce4+ reached 0.58, that is
attributed to the ROS-scavenging enzymatic activity of CeO2@
BSA nanoclusters29,31 (Figure 1D). TGA was used to calculate
the weight ratio of CeO2 clusters, and it was found that CeO2

clusters account for 10% of the weight of CeO2@BSA
nanoclusters (Figure 1E).
To investigate the ROS-scavenging ability of CeO2@BSA

nanoclusters, the levels of representative ROS, superoxide
anion, hydroxyl radical, and hydrogen peroxide were studied.
For the superoxide anion, CeO2@BSA nanoclusters showed
significant scavenging ability starting at 0.025 μg/mL Ce ion
concentration (Figure 1F). Scavenging equilibrium was
reached at 25 μg/mL Ce ion concentration, and the scavenging

Figure 2. CeO2@BSA nanoclusters exhibit BBB penetration capacity. (A) In vivo blood pharmacokinetics curve. (B) Biodistribution of CeO2@BSA
nanoclusters in major tissues in mice post administration for 30 min. Excreted Ce ion concentration in mouse (C) urine and (D) feces. (E) In vivo
fluorescence images of control mouse (left) and mouse treated with Cy5-labeled CeO2@BSA nanoclusters. (F) Fluorescence images of brain tissue
post Cy5-labeled CeO2@BSA nanocluster administration. (G) Ce ion concentration in normal mouse brain (after perfusion). (H)
Immunofluorescent staining of mouse brain (MAP2, IBA1, and GFAP for neuron, microglia, and astrocyte, respectively). Scale bar: 1 mm for
entire brain slice and 100 μm for the others. Data are shown as mean ± SD.
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percentage was 66.3% (Figure 1F). For the hydroxyl radical,
CeO2@BSA nanoclusters displayed significant scavenging
ability starting at 2.5 μg/mL Ce ion concentration and reached
scavenging equilibrium at 250 μg/mL Ce ion concentration
(scavenging efficiency of ∼15.5%) (Figure 1F). For H2O2,
CeO2@BSA nanoclusters showed significant scavenging ability
starting at 2.5 μg/mL Ce ion concentration, and the
scavenging percentage was 45% at 250 μg/mL Ce ion
concentration (Figure 1F). However, due to the insolubility
of CeO2@BSA nanoclusters at concentrations greater than 250
μg/mL Ce ions, the H2O2 scavenging equilibrium could not be
determined. Electron paramagnetic analyses also proved the
rapid superoxide anion, hydroxyl radical-scavenging ability of
CeO2@BSA nanoclusters within 10 min (Figure 1G).
We further characterized the catalytic properties of CeO2@

BSA nanoclusters via comparison with a natural antioxidant N-
acetylcysteine (NAC) (Supplementary Figure 4). NAC
significantly restrained superoxide anions during the first and
second rounds of reactions but was invalid during the third
reaction, while CeO2@BSA nanocluster was valid in three
reactions. During the hydroxyl radical and H2O2 scavenging
evaluation, the efficiency of NAC was still weaker than that of
the CeO2@BSA nanoclusters in multiple rounds of reactions.
These results indicated that the multiple reaction ROS
scavenging ability and the catalytic turnovers of CeO2@BSA

nanoclusters are superior to those of the traditional
antioxidants.48 In addition, multiple studies have demonstrated
better stability (in a wider range of pH and working
temperature) and multiple ROS scavenging ability of nanoceria
versus natural enzymes such as SOD and CAT.28,49

Furthermore, compared with other CeO2 nanoparticles,
23,32,50

CeO2@BSA nanoclusters possessed the smallest average size
and better ROS scavenging ability (Supplementary Table 2).
All these comparisons indicate excellent catalytic property to
remove multiple ROS.
To evaluate the intracellular ROS scavenging ability of

CeO2@BSA nanoclusters, Neuro-2a (N2a) cells were pre-
treated with Rosup to mimic oxidative stress conditions
(Figure 1H). The ratio of ROS+ cells, increased by Rosup
treatment (from 21% to 51%), was significantly reduced by the
treatment of either BSA (29%) or CeO2@BSA nanoclusters
(11%). Compared with BSA, CeO2@BSA nanoclusters
possessed much better ROS scavenging ability (Figure 1I).
These results suggested that the multiple reaction intracellular
ROS scavenging ability was mainly attributed to CeO2

nanoclusters, which is a well-recognized replacement for
superoxide dismutase and catalase,21,51 while BSA contributed
to partial ROS scavenging ability, that could be the direct
protein oxidation to consume ROS.

Figure 3. CeO2@BSA nanoclusters ameliorate depression-like behaviors of CRS mice. (A) Timeline for CRS mice treatment, behavior tests, and
pathological ameliorations. Depression-like behavior tests after treatment (n = 15): (B) forced swimming test, (C) sucrose preference test, and (D)
tail suspension test. Data are shown as mean ± SD. Statistical analysis was performed by one-way ANOVA with a Tukey post hoc test.
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The concentration of intravenously injected CeO2@BSA
nanoclusters in mouse blood was matched with a two-

compartment pharmacokinetics model (Figure 2A). The half-
lives of central and peripheral components were 0.09 and 0.5 h,

Figure 4. CeO2@BSA nanocluster administration suppresses ROS accumulation, inhibits microglia activation, and promotes BDNF expression. (A)
Flow cytometry detects for brain total ROS in negative, control, and CRS mice treated with PBS, BSA, and CeO2@BSA nanoclusters. (B)
Quantitative comparison of brain ROS levels between control, CRS mice treated with PBS, BSA, and CeO2@BSA nanoclusters (n = 9). (C) Cortex
immunofluorescent staining for IBA1 and GFAP (scale bar: 100 μm) and (D) quantitative results (n = 3). (E) Cortex immunofluorescent staining
for NeuN (scale bar: 100 μm) and (F) quantitative result (n = 3). Western blot results of (G) cortex and (I) hippocampus from CRS mice treated
with CeO2@BSA nanoclusters and (H, J) quantitative results (n = 3). Data are shown as mean ± SD. Statistical analysis was performed by one-way
ANOVA with a Tukey post hoc test.
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respectively. After PBS perfusion to exclude blood, CeO2@
BSA nanoclusters were found mainly in the spleen (62.4%),
liver (29.7%), and lung (6.02%) (Figure 2B). The Ce ion
concentration in urine and feces gradually increased, and both
reached the highest concentration at 24 h (Figure 2C, D),
indicating the metabolizing ability of CeO2@BSA nanoclusters.
We next verified the BBB crossing ability and the brain

accumulation of CeO2@BSA nanoclusters after intravenous
injection. The in vivo fluorescence imaging showed that the
whole-body distribution of CeO2@BSA nanoclusters lasted for
24 h (Figure 2E). Moreover, CeO2@BSA nanoclusters can be
found in brain tissues at all tested time points between 0 to 8 h
post administration (Figure 2F). In addition, the inductively
coupled plasma (ICP) results showed that Ce ions reached the
maximum concentration (ca. 106 μg/L) at 5 min and lasted
over 600 min after CeO2@BSA nanocluster administration
(Figure 2G). Immunohistochemical analysis revealed homoge-
neous distribution of CeO2@BSA nanoclusters that could be
detected in MAP2+ neurons, IBA1+ microglia, and GFAP+

astrocytes in the cortex, hippocampus, and thalamus (Figure
2H). Blood-delivered nanoparticles achieved limited accumu-
lation in the brain,30,31,50 but our results indicate that blood-
delivered CeO2@BSA nanoclusters can cross the BBB and
enter brain tissues, which could be attributed to the increased
BBB endothelial cell internalization and paracellular perme-
ability of the ultrasmall sized CeO2@BSA nanoclusters52,53 and
the oxidative-stress- and proinflammatory-cytokine-induced
BBB dysfunction in depression.54,55 It is worth-noting that
there are other nanozymes which exhibit anti-ROS capacity
(e.g., MnO2, single-atom catalysts, etc.50,51,56) or BBB crossing
ability (e.g., CuxO, MoS2, gold nanoparticles, etc.53,57,58).
Although it is difficult to compare them due to the distinct
synthetic methodologies, different working concentrations and
conditions, diverse sizes, and ROS removal mechanisms, our
results indicate that CeO2@BSA nanoclusters have both ROS
scavenging and BBB crossing capacities, making them a
promising nanozyme for the treatment of ROS dysregula-
tion-related neurological disorders including depression.
To evaluate the therapeutic effects of CeO2@BSA nano-

clusters on depression, we first generated mouse depression
model by CRS (3 h every day last for 3 weeks)
(Supplementary Figure 5A). After restraint, the body weights
of CRS mice were significantly lower than those of control
mice (Supplementary Figure 5B). CRS mice showed greater
immobility in the forced swim test (FST) and tail suspension
test (TST) (Supplementary Figure 5C, D) and were less eager
for sucrose than control mice (Supplementary Figure 5E). In
the open field test (OFT), there was no significant difference
in total distance, suggesting no influence of CRS on motor
ability (Supplementary Figure 5F). Hence, CRS mice
demonstrated typical depressive behaviors. The brain ROS
level of CRS mice was measured by flow cytometry. The
percentage of ROS+ cells reached 51.58% in CRS mice, higher
than 28.92% in control mice (Supplementary Figure 5G−I),
and CRS induced a significant ROS increase (Supplementary
Figure 5J). Therefore, our results confirmed the excessive ROS
accumulation in depression mouse brains.
CRS mice were then intravenously injected with CeO2@

BSA nanoclusters every other day for 1 week (Figure 3A). In
the FST, CeO2@BSA nanocluster treatment significantly
reduced the immobility compared with PBS or BSA treatment
(Figure 3B). In the sucrose preference test (SPT), CeO2@BSA
nanocluster treatment recovered the sucrose preference of CRS

mice (Figure 3C). In the TST, both the immobility and total
activity were rescued by CeO2@BSA nanocluster treatment
with no significant difference from control (Figure 3D). Our
results suggested that CeO2@BSA nanoclusters, but not BSA,
ameliorated CRS-induced depression-like behaviors.
Next, we studied the CeO2@BSA nanocluster-induced

pathological changes in CRS mouse brains. Fluorescence
activated cell sorting analysis identified 80.86% and 70.87%
ROS+ cells in PBS- and BSA-treated CRS mice, while the
proportions of ROS+ cells for CeO2@BSA nanocluster
treatment and control groups were 62.25% and 63.49%,
respectively (Figure 4A). The brain ROS level was significantly
decreased in CeO2@BSA nanocluster treatment group versus
PBS group, confirming the ROS elimination capacity of
CeO2@BSA nanoclusters (Figure 4B).
The effects of CeO2@BSA nanoclusters on glial activation, a

potential mechanism of depression,59,60 were examined next.
We found that CeO2@BSA nanocluster treatment abrogated
CRS-induced elevation of IBA1+ activated microglia in the
cortex, suggesting an anti-neuroinflammatory effects of CeO2@
BSA nanoclusters under depressive conditions (Figure 4C, D).
No difference in the proportions of GFAP+ active astrocytes
was observed among all groups, indicating negligible astroglial
activation in CRS mouse brains (Figure 4C, D).
We further investigated the neuroprotective functions of

CeO2@BSA nanoclusters. Although we found no difference in
the proportions of NeuN+ neurons (Figure 4E, F; Supple-
mentary Figures 6 and 7), CeO2@BSA nanocluster treatment
rescued CRS-induced downregulation of brain derived neuro-
trophic factor (BDNF) expression in the cortex and hippo-
campus (Figure 4G−J), that were both downregulated in
hippocampus but were increased after CeO2@BSA nanocluster
treatment. Furthermore, CeO2@BSA nanocluster treatment
reversed the downregulated expression levels of presynaptic
protein synaptophysin and postsynaptic protein PSD95 in the
CRS mouse hippocampus (Figure 4I−J). These results
indicate that CeO2@BSA nanocluster treatment could rescue
the expression of BDNF and synaptic proteins in depressive
mice.
Lastly, the cytotoxicity of CeO2@BSA nanoclusters was

evaluated in N2a cells, BV2 microglia, and A172 astrocytes.
After 24 h of incubation, there was no obvious cytotoxicity
within the test concentrations evaluated by CCK8 assay
(Supplementary Figure 8, Table 3). Furthermore, CeO2@BSA
nanoclusters were intravenously injected into naiv̈e mice for in
vivo safety evaluation. Electrocardiograph results did not show
an abnormal heart rate in CeO2@BSA nanocluster-treated
mice compared with control mice (Supplementary Figure 9).
Routine blood examinations including the numbers of
leucocytes, lymphocytes, monocytes, neutrophils, erythrocytes,
platelets, and hemoglobin did not show obvious differences
between CeO2@BSA nanocluster-treated mice and control
ones (Supplementary Figure 10). The liver and kidney
functions of CeO2@BSA nanocluster-treated mice were in
the safe range with no significant difference versus control mice
(Supplementary Figures 11 and 12). Importantly, CeO2@BSA
nanocluster treatment did not induce negative emotions as
shown by depressive-like behavior tests including TST, FST,
and SPT (Supplementary Figure 13). H&E staining indicated
no necrosis, congestion, or hemorrhage in the hearts, livers,
spleens, lungs, kidneys, and brains (Supplementary Figure 14).
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■ CONCLUSION

In summary, the concept that oxidative stress serves as a key
contributor in the pathogenesis of depression has been widely
recognized, and ROS has been proposed as a central target for
the next generation antidepressants. Herein, we utilized a
recently developed method to synthesize CeO2@BSA nano-
clusters to overcome shortcomings of current anti-ROS natural
enzymes and small molecule drugs including antioxidant
inefficiency, low stability, high cost, negligible BBB crossing
capacity, and difficulty in recycling. More importantly, we
demonstrated that CeO2@BSA nanoclusters could ameliorate
depression-like behaviors and depression-related pathological
changes like neuroinflammation and the impairment of
neuroprotection, almost without negative effects. Our study
provides convincing evidence for considering oxidative stress
as a therapeutic target of depression, and it will inspire the
development of nanodrugs that are directly used as novel
antidepressants instead of acting as nanocarriers.
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