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Abstract: An inverse correlation between the incidence of cancer and neurodegenerative disease 
has been observed, with the prevalence of cancer peaking around 60 years of age, then slowly taper-
ing off as neurodegenerative diseases increase in the elderly. Although the diseases rarely occur 
concurrently, the same genes are differentially expressed between the diseases, with four transcrip-
tion factors found to be in common for their expression. In the brain, mature astrocytes are the 
origin of astrocytoma, which make up 58.2% of malignant brain tumors in patients 65 or older, 
while GFAP+ astrocyte-like neural stem cells from the subventricular zone give rise to glioblastoma 
and anaplastic astrocytoma, which make up 41.6%. Likewise, in neurodegenerative disease, a de-
crease in astrocyte density is observed in early disease states, and senescent astrocytes increase. 
Because astrocytes coordinate synaptic function, astrocyte dysfunction likely contributes to or caus-
es initial synapse loss and cognitive decline seen in neurodegenerative disease. In non-disease 
states, astrocytes retain their ability to successfully re-enter the cell cycle through adult astrogenesis 
to maintain the neuroenvironment, and controlled astrocytic proliferation could be an important 
contributor to neurological function. Disruption to this astrogenic balance could account for the 
inverse correlation of cell cycle dysregulation resulting in malignant astrocytes and tumorigenesis, 
and astrocytic senescence and cell death without self-renewal in aging resulting in neurodegenera-
tive disease. The current understanding of the astrocytic roles of the transcription factors that could 
be the cause of this imbalance will be discussed, as well as possible therapeutic approaches to mod-
ulate their expression in the astrocyte. 
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1. INTRODUCTION 

 Astrocytes have a unique keystone role in the brain, from 
coordinating synaptic function [1-6], to forming a portion of 
the blood-brain barrier [7, 8], to communicating with micro-
glia to combat injury and disease [9-11]. Additionally, astro-
cytes regulate extracellular ions, neurotransmitters and  
proteins [12-15]. Astrocytes are dynamic and participate in 
neuroinflammation by undergoing reactive astrocytosis/ 
astrogliosis in the event of a localized injury, insult, or dis-
ease accompanied by morphological changes and alterations 
in the expression of hundreds of genes [16-18]. Likewise, in 
healthy human tissue, unlike neurons, astrocytes retain their 
ability to successfully re-enter the cell cycle to replenish the 
cell population and maintain the cellular environment 
through adult astrogenesis [19-27]. Astrocytes or glial fibril-
lary acidic protein (GFAP)+ astrocyte-like neural stem cells 
are the cell type of origin of most brain cancers [28, 29],  
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while an additional analysis of five astrocyte subtypes 
demonstrated they each had a malignant counterpart in tumor 
formation [30]. Conversely, astrocyte senescence and atro-
phy have been observed early in dementia [31, 32]. Similar-
ly, in the aging brain, astrocytes exhibit a senescence-
associated secretory phenotype in a chronic inflammatory 
environment [31], and an inverse correlation between the 
incidence of cancer and neurodegenerative disease has long 
been observed [33]. A gene expression profile was conduct-
ed and 40 genes were found to be expressed in opposing 
directions between neurodegenerative disease and cancer, 
with four transcription factors that typically regulate cellular 
proliferation, apoptosis and inflammation responsible for 
their expression: activator protein 1 (AP-1), nuclear factor of 
activated T cells (NFAT), CCAAT/enhancer-binding protein 
beta (C/EBPβ) and E2F transcription factor 1 (E2F1) [34]. 
Because of astrocytes’ unique position in synthesizing many 
physiological functions of the central nervous system, it is 
useful for potential therapeutic development of neurological 
diseases to consider the current knowledge of the role of 
these transcription factors in astrocytes, in the context of the 
role of astrocytes in neurodegenerative disease and cancer. 
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2. THE ROLE OF ASTROCYTES IN DEMENTIAS 
AND CANCER 

2.1. Neurodegenerative Diseases 

 As it is now clear that astrocytes are integral to synaptic 
communication and synaptogenesis [2, 5, 35-41] and it is 
known that synapse loss correlates with cognitive decline 
and disease progression in dementias such as Alzheimer’s 
disease (AD) and dementia with Lewy bodies (DLB) [42, 
43], astrocyte dysfunction could be the cause of neurodegen-
erative disease [44-46]. Many types of dementias involve 
aggregation of proteins that can be removed and degraded by 
astrocytes in healthy tissue, which can also recruit microglia 
to facilitate degradation [47]. Another common hallmark of 
the different types of dementia in aged individuals is the nar-
rowing of blood vessels within the brain, leading to damage 
to the surrounding neurons, of which astrocyte dysfunction is 
a driving factor [48]. Vascular dementias are more common 
in the elderly population, and the incidence increases signifi-
cantly over the age of 85 [47]. 

 In the aged brain, astrocytic senescence alters transcrip-
tional activity that limits synaptic structures and activity. 
Aging astrocytes upregulate genes associated with inflamma-
tion and synapse elimination (C4, SPARC, MHC class I) 
while downregulating the cholesterol synthesis pathway, 
essential for presynaptic vesicle formation [49]. A 2 to 3 fold 
increase in glial fibrillary acidic protein (GFAP) mRNA and 
protein expression has been found in aging astrocytes, sig-
naling an increase in global astrocyte reactivity rather than a 
localized response to injury or damage [50, 51]. Aging astro-
cytes also downregulate Hspa1b, a protective molecular 
chaperone involved in protein degradation and associated 
with neurodegenerative processes [49]. Taking these find-
ings together, astrocytes become more reactive with age, 
causing a change in genomic expression that downregulates 
synaptic structures and activity and disrupts protein degrada-
tion processes in a manner similar to neurodegenerative dis-
ease. 

 Additionally, upon internalization of proteins that accu-
mulate post-mortem in disease, such as α-synuclein (αS) and 
amyloid-β (aβ), the genetic expression profile of astrocytes 
changes, with neuroinflammatory genes upregulated. Subse-
quently, one clear increase is the initial protective response 
of GFAP as astrogliosis [52, 53]. Astrogliosis has been ob-
served in response to αS in tissue culture, in transgenic 
mouse models overexpressing αS, and in post mortem tissue 
of patients diagnosed with neurodegenerative disease [54-
59]. Initially believed to coincide with proliferation, this is 
now not always the case [60]. Although astrogliosis was 
originally thought to be an all-or-none phenomenon in injury 
and disease, it is now known that astrocytes respond to neu-
rodegeneration by upregulating growth factors, cytokines, 
chemokines and anti-oxidant enzymes [9, 17] and that mu-
tant GFAP in Alexander disease dysregulates autophagy 
[61]. It appears that the role of astrogliosis is likely neuro-
protective to initially degenerating nervous tissue, and occurs 
along a continuum of injury or disease severity [16, 62]. 

 Astrocyte atrophy, signified by a reduction in the number 
of primary processes, size of the cell body, and an overall 

decrease in astrocytic-marker positive labeling, has been 
demonstrated to occur in the hippocampus, prefrontal and 
entorhinal cortices at the earliest stages of AD onset in 
mouse models [63]. Likewise, in post-mortem evaluations of 
Parkinson’s disease (PD), a significant reduction in astrocyte 
density has been observed in the substantia nigra [46, 64]. 
Because of their function in the regulation of synapses, the 
general atrophy of astrocytes could impede synaptic signal-
ing, and contribute to cognitive decline evidenced early in 
the disease [63, 65]. In addition to astrocyte atrophy, synapse 
loss has also been observed in early disease states [43]. As-
trocytes support synaptic health and synaptogenesis through 
the neuroligins [66] the glypicans [67] and the release of 
TNFα [68]. 

 Disruption to the astrocyte is particularly impactful to the 
human brain, where astrocytes in the cortex are 3 fold greater 
in diameter and have 10 times as many terminal processes, 
signalling via internal calcium exchange on an order of mag-
nitude 10 times quicker than the rodent [69, 70] When hu-
man astrocytes progenitors were implanted in the mouse 
brain, they became the predominant astrocyte cell type by 7-
10 months at the expense of endogenous murine astrocyte 
[71], incorporated into synapses and increased learning and 
long term potentiation compared to murine astrocytes [35]. 

 As astrocytes maintain the ability to re-enter the cell cy-
cle in the parenchyma, controlled astrocytic proliferation is 
likely an important contributor to the neuroenvironment, and 
there is evidence of increased astrocytic proliferation within 
rodents undergoing operant learning tasks [72]. Cortical as-
trocytes are capable of self-renewal throughout the human 
lifespan [22, 24, 25] and dysregulation of the cell cycle could 
result in tumorigenesis on one end of the spectrum, while 
aged atrophied senescent mature astrocytes incapable of re-
entering the cell cycle could result in neurodegenerative dis-
ease on the other end of the spectrum (Fig. 1). 

2.2. Glioblastoma and Astrocytoma 

 Longitudinal studies looking at age-related mortality 
rates revealed that cancer mortality peaks around 60 years 
and steadily decreases, while the mortality rate of neuro-
degenerative disease steadily increases after the age of 60 
[34]. The incidence of central nervous system (CNS) cancer 
is steadily increasing, with 83,830 total diagnoses of malig-
nant and non-malignant central nervous system (CNS) can-
cers expected in 2020 [73]. The 5-year survival rate for glio-
blastoma from 2012-2016 was just 6.8% [74]. Transcriptom-
ic analysis of various aging tissues may have revealed a pos-
sible genetic explanation to the susceptibility or mortality 
rates of late age-related pathologies seen in humans. In the 
aging expression of genes involved in inflammation increas-
es, while the expression of cell-cycle genes falls, reflecting 
genetic expression motifs similar to neurodegenerative dis-
eases and less so to cancer [34]. Notably, researchers found 
that shared risk alleles between cancer and neurodegenera-
tive disease antagonistically predispose to either type of dis-
ease while protecting from the other in an age-dependent 
manner, supporting previous epidemiological findings [34]. 

 Mature astrocytes have become of interest in the field of 
neuro-oncology due to their ability to re-enter the cell cycle 
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and proliferate in a physiological setting, suggesting that a 
dysregulation in this process can lead to the formation of 
astrocytomas and glioblastoma multiforme (GBM) [75]. In 
the brain, Surveillance Epidemiology, and End Results Pro-
gram (SEER) data indicate that mature astrocytes are the root 
of astrocytoma, which makes up 58.2% of malignant brain 
tumors in patients 65 or older, and glioblastomas and ana-
plastic astrocytoma make up 41.6%, originating or GFAP+ 
astrocyte-like neural stem cells originating from the subven-
tricular zone glioblastoma [29]. However, astrocytes them-
selves are much more heterogeneous than previously be-
lieved, and an analysis of different astrocyte subtypes all 
expressing Aldh1l1 revealed they all had a malignant analog 
in brain cancer [30]. 

 Despite their cellular origin, high-grade brain tumors like 
anaplastic astrocytoma and GBM are genetically and molec-
ularly heterogeneous with respect to the composition of tu-
mor cells, as some tumor types can contain multiple cell 
types potentially with stem cell-like capacities, thus a signif-
icant component of high-grade glioma pathology is the peri-
vascular niche [76, 77]. Apart from astrocytic-origin brain 
tumors, localized reactive astrocytes, termed tumor-
associated astrocytes (TAAs) have been shown to aid the 
progression and growth of high-grade gliomas and tumor cell 
lines. At the cellular level, cultured human tumor cells 
showed that TAAs use this moment of altered genomic ex-
pression to communicate with microglia and release anti-
inflammatory cytokines like TGFβ and IL-10 via the 
JAK/STAT pathway, creating a favorable tumor growth en-
vironment [78]. In vitro human TAAs are capable of rescu-
ing human glioma cells from cytotoxic effects and apoptosis, 
suggesting that TAAs play a chemoprotective role for grow-
ing tumors [79]. 

 In order to better understand the inverse correlation be-
tween cancer and neurodegenerative disease [33], age-related 
changes in genetic expression were observed in four species 

human, mice, zebrafish and the short-lived killifish, in sam-
ples derived from blood, brain liver and skin [34]. Of the 
genes antagonistically expressed, four transcription factors 
were found to be in common that could affect the genes: 
E2F1, NFAT, C/EBPβ and AP-1 [34]. All four are widely 
expressed in the body, by astrocytes, and perhaps the most 
interesting is AP-1, which is part of the c-Jun N-terminal 
(JNK)/AP1 pathway [80] that is stimulated to induce GFAP 
expression in astrogliosis that is increased in the aged brain 
[81]. Although these studies were not completely conducted 
in human brain tissue in human aging, the induction and re-
pression of genes involved in cell cycle, inflammation and 
apoptosis in aging have implications for astrocytic physiolo-
gy and function in neurological disease. Therefore, a consid-
eration of the knowledge of the activity of these four tran-
scription factors to date in astrocytes might shed light on 
treatments for neurological disease and future research direc-
tions. 

3. ASTROCYTES AND TRANSCRIPTION FACTORS 
IMPLICATED IN CANCER AND NEURODEGENE- 

RATIVE DISEASE 

3.1. AP-1 

 Activator protein 1 (AP-1) is a homodimeric or hetero-
dimeric transcription factor, composed of the Jun and Fos 
families [82]. It is a basic leucine zipper (bZip) - an alpha 
helical structure constructed between the conversion of a 
leucine-zipper domain and the adjacent basic domain [82]. 
The leucine zipper is needed for homo- and hetero-
dimerization, whereas the basic region of the bZIP structure 
is responsible for DNA binding [83]. Depending on the 
unique homo- or hetero-dimer arrangements of AP-1, this 
transcription factor differs in interacting sequence elements 
[82]. For example, Jun/Jun and Jun/Fos complexes are 
known to bind to the 12-O-tetradecanoylphorbol-13-acetate 
(TPA) response element (TRE) sequence with the consensus 

 

Fig. (1). A Model for the Role of Astrocytic Cell Cycle Regulation as the Basis of the Inverse Correlation Between the Incidence of Cancer 
and Neurodegenerative Disease in Aging Brain. An astrogenic balance maintains the neuroenvironment, as healthy astrocytes (B) can re-
enter the cell cycle to replenish cell populations in a regulated controlled manner. In aging, senescent astrocytes (A) are no longer able to 
reenter the cell cycle to replenish the astrocytic cell population, resulting in astrocytic atrophy and subsequent neurodegeneration. Likewise, 
the dysregulation of the cell cycle earlier in aging can result in malignant astrocytes (C) and tumorigenesis. (A higher resolution / colour 
version of this figure is available in the electronic copy of the article). 
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sequence 5′-TGAG/CTCA-3′; ATF transcription factors rec-
ognize the cAMP response elements (CRE) at the consensus 
site 5′-TGACGTCA-3′; and MAFs interact with MAF 
recognition elements, consisting of a sequence that is either 
extension of the TRE sequence -- 5′-TGC-(TRE)-GCA-3′-- 
or CRE -- 5′-TGC-(CRE)-GCA-3′ [82]. 

 Of the four transcription factors, AP-1 has mostly been 
studied in astrocytes due to its regulation of the GFAP pro-
moter. Binding of AP-1 to the GFAP promoter increases 
mRNA expression and protein levels in reactive astrocytes in 
response to neurological disease, but is not involved in its 
basal level of expression [84]. In relation to disease, it was 
found that AP-1 was necessary for increased GFAP produc-
tion in an Alexander disease model, after kainite treatment to 
induce seizures, and after injury [84]. 

 Activation of AP-1 in astrocytes can occur through the 
JNK pathway as a cellular response from stress in a cell en-
vironment and is often associated with proliferation, apopto-
sis, metabolism and DNA repair [85]. The pathway starts 
with stress to the environment that can range from ionizing 
radiation, heat, oxidative stress, DNA damage, and inflam-
matory cytokines. This initiates one of two paths for the JNK 
pathway along with the Rho family GTPases Cdc42 and Rac 
receptors [86]. One process for the pathway promotes astro-
gliosis and/or cellular apoptosis, while the other inhibits sig-
naling for cell survival via STAT and CREB from scaffold 
proteins [85]. 

 Proteins that accumulate in the brains in patients diag-
nosed with neurodegenerative disease are degraded by astro-
cytes through the autophagic process and can also stimulate 
astrogliosis. aβ aggregates have been known to lead to the 
apoptosis of astrocytes and astrocytes treated with aβ had an 
increased expression of the mRNA of AP-1 and increased 
phosphorylation of JNK and C-JUN [87]. αS, another protein 
that accumulates in pathological aggregates of neurodegen-
erative disease stimulates the inflammation response in as-
trocytes through toll-like receptor 4 (TLR4), which activates 
the JNK signaling pathway [81, 88]. 

 The AP-1 transcription factor is also necessary for the 
synthesis of inflammatory secretory cytokines such as IL-2 
and IL-6 by astrocytes, via mitogen-activated protein kinase 
(MAPK) [89]. Once MAPK is activated, phosphorylation of 
a number of other regulatory proteins such as c-Jun can oc-
cur [90]. This allows subsequent steps to follow if the mech-
anism is proceeding with cell death [89]. If this does not oc-
cur when necessary, this could result in the overgrowth of 
cells, running the potential risk of cancer growth. This is 
because the AP-1 transcription factor is a mix between the 
Jun and Fos, allowing it to metabolize and create the follow-
ing reactions to proceed with the programmed cell death 
[91]. Notably, AP-1 acts as a mediator in the cell cycle by 
activating or inhibiting key components. For example, c-Jun 
and c-Fos increase the rate of cell proliferation, however, 
another protein in the Jun family, JunB, antagonizes the pro-
cess [82]. c-Jun is known as an oncogene and tumor promot-
er due to its ability to hinder the p53 tumor suppressor and 
by stimulating cyclin D1, promoting the progression from 
G1 to S phase. 

 In contrast, JunB inhibits transition to S phase by activat-
ing CDKI p16INK4a and repressing cyclin D1. p16 INK4a as 
well as metalloproteinase 3 have been shown to accumulate 
in senescent astrocytes in AD [32]. Similarly, stress-induced 
senescence in astrocytes also results in the accumulation of 
p16INK4a as well as p21 [92]. Single nucleotide polymor-
phisms were also discovered to occur in both cancer and 
neurodegenerative disease in the p16INK4a gene [34]. 

 In gliomas, it has been observed that IL-13Ra2 is over-
expressed, but not in normal tissue. Both AP-1 and NFAT 
were able to induce elevated levels of IL-13Ra2 in glioblas-
toma multiforme [93]. Subsequently, it was observed that IL-
13/IL-13Rα2 used the AP-1 pathway to mediate signal trans-
duction in glial pathologies such as glioblastoma multiforme 
and astrocytoma [94]. AP-1 was also found to be the tran-
scription factor regulating the expression of γ-synuclein (γS) 
in astrocytoma cells [95]. γS is upregulated in cancer and 
also found in inclusions in astrocytes in neurodegenerative 
disease [96, 97]. RNAi knockdown of γS in astrocytes re-
sulted in a mitotic catastrophe [98], while treatment of astro-
cytes with γS caused astroprotection and increased prolifera-
tion [99]. 

3.2. E2F1 

 The E2F family consists of eight total members (E2F1-8) 
[100]. Several domains compose the configuration of the 
E2F1 protein. Among them, a nuclear localization signal, a 
DNA binding domain, a protein binding site for its dimeric 
partners, a transcriptional activation domain, and a reti-
noblastoma (Rb) protein-binding domain [101]. In its un-
phosphorylated form, Rb hinders the ability of E2F1 to bind 
to its DNA binding site, while phosphorylation of Rb by 
CDKs frees E2F1 from Rb and the transcription factor can 
then bind to its dimerization partners (DP), DP1 or DP2 
[102]. The formed dimer binds onto the promoter regions of 
target genes, with a consensus site TTTSSCGCS in which S 
= G or C [102]. 

 E2F1 undertakes a pivotal role in the cell cycle, apopto-
sis, and differentiation [100]. Mounting evidence suggests 
that E2F1 is paramount in the G1 to S phase transition, with 
its highest expression levels at this transition [102]. E2F1 is 
a tumor suppressor/oncogene with its increased expression 
associated with cell cycle activation and proliferation [103, 
104]. E2F1 overexpressing mouse astrocytes showed neo-
plastic transformation with a downregulation of GFAP [105]. 
Likewise, other studies have exhibited E2F1 as an oncogene 
in brain tumors [106]. Using glioblastoma and sarcoma cells, 
it was observed that the ectopic expression of E2F1 prompt-
ed a greater level of activity at the promotor for the catalytic 
subunit of human telomerase in cancer cells [106, 107]. In 
gliomas, it was found that E2F1 could be repressed if mi-
croRNA-10b was inhibited, with effected E2F1 expression 
through p21 [108]. 

 Like AP-1, the activation of the TLR-4 can affect E2F1. 
The inflammatory response of astrocytes is, in large, regulat-
ed by the activation of toll-like receptors (TLRs), members 
of the pattern recognition receptor (PRR) family. These 
transmembrane proteins, expressed both by immune and  
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nonimmune cells, are responsible for the pro-inflammatory 
reaction to pathogens infecting the CNS [109]. Prolonged 
activation of TLRs has been linked to both cell death and 
proliferation, as the receptors can initiate a dual response. 
Here, the antitumoral effects of TLR activation promote an 
environment for neural cell degeneration and the protumoral 
roles support glial cell renewal [109, 110]. This inverse rela-
tionship implies that disruption of TLR mediated pathways 
may accompany neurodegeneration or cancer. 

 The TLR4 receptor activates the innate immune response 
of astrocytes [111]. While this receptor generally signals via 
both the TRIF-dependent pathway and the MyD88-
dependent pathway, astrocytic TLR4 has been found to uti-
lize only the latter [112]. Through protein-protein interac-
tion, TLR4 can activate an IL-1R-associated kinase (IRAK) 
chain reaction, effectively translocating nuclear factor-kappa 
B (NF-κB) to the nucleus where target genes are bound [113, 
114]. NF-κB is another transcription factor that can inhibit 
E2F1, which subsequently inhibits the release of inflamma-
tory molecules like TNF-α involved in synaptogenesis and 
IL-6 [112]. The previously mentioned dual effects of TLR 
activation may be accredited to NF-κB and E2F1 function, as 
each of the two proteins has been liked to both pro and anti-
inflammatory responses in the astrocytic immunity process 
[113, 115, 116, 117]. However, it is unclear whether the 
transcriptomic changes are contributors to the differentiation 
of function in either protein, as human immune and inflam-
matory aging-regulated genes have been shown to mutually 
turn the aging signature toward both cancer and neurodegen-
eration [34]. 

3.3. NFAT 

 The nuclear factor of activated T cells (NFAT) is a fami-
ly of transcription factors consisting of five proteins: 
NFAT1, NFAT2, NFAT3, NFAT4, and NFAT5 [118]. Be-
sides NFAT5, which responds to osmotic stress, the other 
members are regulated by calcium and calcineurin CN path-
ways [119]. The NFAT-homology region (NHR) forms the 
calcium-regulated region of the proteins and is highly phos-
phorylated in resting cells, which maintain NFAT in an inac-
tivated state [119]. However, when Ca2+ is released into the 
cell, it interacts with calmodulin which activates the calci-
um/calmodulin-dependent serine/threonine phosphatase, CN 
[118]. Thereafter, CN dephosphorylates serine residues on 
NFAT, resulting in the transcription factor translocating into 
the nucleus and coordinating the transcription of specific 
genes [118, 119]. Moreover, the DNA-binding domain 
(DBD) of NFATs is highly conserved, which allows all pro-
teins of this family to bind to the DNA core sequence 
(A/T)GGAAA [119]. 

 In neurodegenerative disease, postmortem studies on AD 
tissue samples from patients denote increased CN/NFAT 
levels, with elevated NFAT1 observed in astrocyte nuclei in 
postmortem brain sections taken from human subjects with 
mild cognitive impairment [120, 121]. Additionally, there is 
a bi-directional interaction between CN/NFAT and cytokine 
factors, suggesting the pathway is preferentially programmed 
to maintain positive feedback cycles underlying chronic neu-
roinflammation [122]. 

 Additionally, once activated by CN, NFAT can down-
regulate expression of glutamate transporter EAAT2/GLT-1 
expression leading to glutamate excitotoxicity seen in neuro-
degenerative disease [123, 124]. On the other side, hindering 
the activity of NFAT provided protection for the transporter, 
leading to reduced extracellular glutamate and neuronal sur-
vival [125]. 

 An increase in CN also caused a two to three-fold in-
crease in astrocytic complement C3, which stimulated mi-
croglia to remove synapses in a mouse model of AD by hin-
dering matricellular factors like SPARC and hevin from par-
taking in synaptic formation [125]. Indeed, impeding 
CN/NFAT activity in astrocytes has clearly been demon-
strated to lead to synaptoprotection. An increase in amyloid 
pathology has also been correlated with an increase in 
CN/NFAT activity, and regions of high amyloid aggregation 
have been demonstrated to have high CN/NFAT activity. 
Inhibition of NFAT caused a decrease in amyloid plaque 
load and soluble Aβ peptide levels [124]. Aβ also affected 
the CN/NFAT pathway to contribute to the synaptic disturb-
ances as well [126]. In A53T mice, overexpression of αS 
stimulates CN expression and nuclear translocation of NFAT 
in midbrain dopaminergic neurons, suggesting a role in neu-
rodegenerative pathology as well as cancer [127]. 

 In cancer, the specific NFAT isoform differs in its prolif-
erative or suppressive effects on cell growth, thus, each phe-
notype bestows a difference in cancer development [119, 
128]. It has also been demonstrated that NFAT1 is overex-
pressed in glioblastoma multiforme, and appears to be re-
sponsible for invasive potential but not proliferation in glio-
blastoma multiforme cells [129]. In astrocytes, CN/NFAT 
and AP-1 activities on separate occasions have been shown 
to drive the expression of MMP3 as an early neuroinflamma-
tory response for cell migration [104, 130]. Coincidently in a 
tumor setting, NFAT regulated MMP3 expression aids in 
tumor growth and metastasis, while increased AP-1 expres-
sion promotes tumorigenesis [131, 132]. 

 Calcium dysregulation occurs in reactive astrocytes in 
disease [133]. Calcium release from the endoplasmic reticu-
lum in astrocytes can occur through activation of g-protein 
coupled transmitter receptors which open IP3 calcium chan-
nels on the endoplasmic reticulum membrane [134, 135]. 
Although L-type calcium channels to allow entry of extracel-
lular calcium has been implicated in disease and CN activa-
tion, only small changes are required to stimulate CN/NFAT 
signaling [136]. Purinergic receptors are among those that 
can stimulate intracellular calcium release to activate 
CN/NFAT, and can also spread to proximal astrocytes [137, 
138]. It has been shown that P2Y1 receptor activation led to 
increased proliferation of astrocytic cells [139]. However, at 
the highest concentrations of ATP, a decrease in prolifera-
tion rate was observed, an effect possibly explained by the 
activation of the P2X7 astrocytic receptor, which is regarded 
as an inhibitor of proliferation [140]. In astrocytoma cells, 
the P2Y2 receptor-stimulated the upregulation of genes asso-
ciated with the prevention of apoptosis while downregulating 
pro-apoptotic genes and continuation of the cell cycle [141]. 
Likewise, activation of P2Y6 in astrocytes by UDP caused 
increased internal calcium and CN/NFAT expression and  
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release of chemokines [142]. Similarly, CN/NFAT is stimu-
lated by injury, which can also be mimicked by P2Y receptor 
activation in astroctyes, by upregulating NFATc1 but not 
NFATc2 [143]. 

3.4. C/EBPβ 

 The CCAAT/enhancer-binding protein beta (C/EBPβ) 
belongs to the family of C/EBP transcription factors [144]. 
This group includes five other members: C/EBPα, C/EBPγ, 
C/EBPδ, C/EBP� and C/EBPζ. Similar to AP-1, the C/EBP 
proteins are also characterized by a highly conserved bZIP 
domain [144]. Moreover, the various proteins have the abil-
ity to form heterodimers in all intrafamilial combinations due 
to their conserved bZIP domain [145]. Besides C/EBPζ, the 
other members can interact with the same DNA sequence 
site, RTTGCGYAAY, where R is A or G, and Y is C or T 
[145]. Due to its leucine zipper, C/EBPζ can still dimerize 
with the other members, however, because it contains two 
proline residues that disrupt the alpha-helical structure, 
C/EBPζ/C/EBP heterodimers bind to a different DNA se-
quence with the consensus site PuPuPuTGCAAT(A/C)CCC, 
where Pu is a purine [145]. 

 Although much of the research on astrocytes has focused 
on C/EBPδ [146, 147], C/EBPβ expression in astrocytes also 
has a role in inflammatory responses. C/EBPβ regulates var-
ious human astrocyte inflammatory genes induced by inter-
leukin (IL)-1β [148]. C/EBPβ expression is also incited by 
synaptogenesis stimulator tumor necrosis factor-α and in-
creased expression of C/EBPβ was observed in AD and PD 
[148]. Silencing of CEBPβ has shown to diminish glial acti-
vation and neurodegenerative effects in PD mouse models, 
whereas upregulation of CEBPβ expression occurs in reac-
tive astrocytes [149, 150]. C/EBPβ, therefore, has a pro-
inflammatory role in astrocytes [151, 152]. 

 Similarly, C/EBPβ mRNA and protein levels correlated 
with high-grade gliomas and patients with lower expression 
revealed a longer survival time, while in vitro silencing of 
C/EBPβ impeded both glioma cell proliferation and invasion 
[153]. And lastly, one of the transcription factors that en-
hances brain-derived neurotrophic factor, which is upregu-
lated in cancer and downregulated in neurodegeneration, is 
C/EBPβ. 

4. EFFECTING AGE-RELATED NEUROLOGICAL 

DISEASE THROUGH ASTROCYTE-SPECIFIC 
MODULATION OF TRANSCRIPTION FACTORS 

4.1. Astrocyte Complexity and Drug Development 

 The study on the heterogeneity of astrocytes is in its in-
fancy, with one study demonstrating five subtypes alone 
when only analyzed through the expression of Aldh1l1, all 
with malignant counterparts [30]. Single-cell RNA sequenc-
ing in rodents has described at least seven subtypes of astro-
cytes [154]. Histological analysis of cortical astrocytes in 
humans and primates also revealed a unique astrocyte sub-
type in humans and another astrocyte subtype unique to hu-
mans and primates [69, 70]. Similarly, astrocyte activation in 
injury and disease has traditionally been described as astro-
gliosis and evidenced by upregulation of GFAP, however, it 
is now known that there are two different states of reactive 

astrocytes, A1 and A2 [10]. A1 astrocytes are under the con-
trol of microglia, more prevalent in senescence, and toxic to 
neurons and oligodendrocytes, while A2 reactive astrocytes 
provide a healthy environment for recovery after injury and 
disease [10, 155]. Despite this growing complexity, astro-
cytes associated with the blood-brain barrier (BBB) have an 
advantage in intravenous central nervous system treatments 
as treatments can theoretically be more effectively delivered 
to this cell type [156]. Therefore, as more becomes under-
stood on astrocyte heterogeneity, it should be noted that in 
developing astrocyte-specific treatments, the diversity of the 
different subtypes of astrocytes and their variety of function 
must be considered for directed therapies. 

4.2. Modulators of AP-1, NFAT, E2F-1 and C/EBPβ 

 Pharmacological development of molecules to affect 
transcription factors has traditionally been difficult, because 
of the broad implications of affecting the transcription of 
many different genes [157]. Avenues to indirectly target 
transcription factors through inhibition and activation can be 
at the expression level itself, through protein/protein interac-
tion, through binding in an activation/inhibition pocket, or at 
the protein/DNA binding level [158]. Traditionally, DNA 
binding drugs were developed to inhibit transcription in can-
cer through recognition of helical structures and resulted in 
broad effects [158]. More specific inhibitors were then de-
veloped, such as the ability to bind AP-1 recognition element 
5’-CATATG-3’ can be blocked by Lambda-1-
Rh(MGP)2phi5+ thereby inhibiting AP-1 transcription. An-
other drug that can inhibit the binding of AP-1 is MLN944, 
which inhibits c-JUN binding on 5’-aTGAGTCA-3’ se-
quence [159]. Similarly, attacking signaling pathways that 
activate transcription factors, such as cyclosporine A and 
FK506, that inhibit binding of NFAT to CN have been de-
veloped in immunosuppression studies and could be deliv-
ered specifically to astrocytes [160]. Artificial peptides have 
also been developed because they recognize similar consen-
sus sequences, such as a novel E2F-1-like peptide shown to 
regress prostate tumor xenografts or to mimic transcription 
factor activity [161]. 

 However, more promising current therapeutics employ 
RNA interference (RNAi) through small interfering or si-
lencing RNA (siRNA) to downregulate specific mRNA after 
transcription. siRNA-based drugs have been clinically ap-
proved in the United States for GIVLAARI for treatment of 
acute hepatic porphyria and in the United States and Europe 
for ONPATTRO for treatment of hereditary amyloidogenic 
transthyretin [162]. siRNAs have also shown promise in ear-
ly clinical phases in possible treatments of glioblastoma 
[163-165]. 

 In terms of affecting cancer and neurodegeneration, how-
ever, more recently, the focus has turned to microRNAs 
(miRNAs) as a more effective specific method to attack tran-
scription factors without a broad reaching impact and side 
effect of traditional DNA-binding drugs, and more nuanced 
than siRNA [166]. Originally considered as transcription 
factor inhibitors, it now appears that miRNAs can act as ac-
tivators or enhancers, or work in a positive feedback loop to 
activate transcription factor activity by inhibiting an inhibitor 
[167]. 
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 For example, in a screen of 191 miRNAs that could regu-
late the human CN/NFAT pathway, it was found that 32 
were induced by the transcription factor, with 11 providing 
feedback modulation [168]. Of the 11, 6 were negative feed-
back loop by blocking activators of NFAT (hsa-miR-21-3p, 
hsa-let-7b-5p, hsa-miR-17-5p, hsa-miR-19a-3p, hsa-miR-
92b-3p, hsa-miR-17-3p), while 4 were positive feedback 
loop regulators by blocking inhibitors of NFAT (hsa-miR-
21-5p, hsa-miR-181c-5p, hsa-let-7c-5p, hsa-let-7b-3p, hsa-
miR-155-5p). Likewise, when E2F-1, JUN and CEB/P are 
activated in late states of tumorigenesis, they promote drug 
resistance and proliferation [169, 170]. It has been demon-
strated that transcription factors transcribe microRNAs at 
these stages to inhibit apoptosis by chemotherapies in a feed-
forward mechanism whereby the transcription factor can 
then in turn be upregulated by the miRNA [166]. RNA li-
brary studies have shown that some miRNA’s can inhibit 
transcription factor activation, and might provide a fruitful 
avenue for therapeutic development of transcription enhanc-
ers [167]. Additionally, a comprehensive analysis of miR-
NAs known to affect proteins implicated in neurodegenera-
tive disease demonstrated the active roles of miRNAs in se-
nescence and aging as well [171]. 

 However, as many miRNAs either inhibit or activate a 
pathway, a cocktail of miRNAs delivered to the astrocyte 
might be necessary to balance transcription factor activity 
between disease states. Interestingly, a method to measure 
miRNA activity in vivo has been developed that could pro-
vide a promising avenue for this strategy [172]. Using miR-
NA-mediated single guide RNA (sgRNA), specific DNA can 
be targeted based on miRNA levels that it senses through the 
utilization of the CRISPR-Cas9 system [172]. 

4.3. Astrocyte Specific Delivery of Gene Therapy 

 In order to deliver siRNA, miRNA, CRISPR or other 
gene constructs and combinations specifically to astrocytes, 
the use of viral transfection or nanoparticles is actively being 
explored [154]. Viral therapies that have advanced to clinical 
trials have not traditionally been cell-type specific, except 
through the promoter delivered, and several astrocyte-
specific promoters have been utilized, including GFAP, 
Aldh1l1 and glutamine synthatase [173-176]. 

 The tropism of adeno-associated viruses (AAVs) has 
typically been more astrocytic with greater access as they 
cross the blood-brain barrier. AAVs carry a relatively small 
load (~4.7 kb for conventional viruses). One type, AAV9 
had been shown to effectively cross the BBB and preferen-
tially infect astrocytes in adult mice and primates [177, 178], 
and designed promoters such as GFaABC1D which are only 
681 bp, can be utilized to infect the same cells as GFAP and 
save space if the gene construct is large [179]. However, in 
initial studies, GFaABC1D proved weaker at transducing 
astrocytes, and was loaded with miR124 to silence expres-
sion in neurons [180], while additional studies showed great-
er tropism for astrocytes with AAV5 and GFaABC1D [181]. 
However, for more specific astrocyte transduction, it would 
be ideal to only infect astrocytes themselves, regardless of 
the promoter, and further strategies have engineered AAVs 
via multiplexed CRE-dependent strategies (CREATE), have 
engineered AAVs with capsids with a higher tropism for 

specific cell types in the CNS, including astrocytes [182, 
183]. Additionally, vectors such as AAV9P1, with a peptide 
to more specifically recognize and transfect terminally dif-
ferentiated astrocytes, have been constructed [184]. Using 
this vector, HIV-1 genes in astrocytes were successfully ed-
ited with CRISPR/Cas9 and demonstrated much greater 
transfection efficiency in astrocytes compared with neurons. 

 Another option is lentiviruses, which can carry a greater 
gene load than AAVs, and when constructed with different 
envelope glycoproteins, it was shown that vesicular stomati-
tis virus (VSV) and Mokola Virus (MV) more specifically 
transduced neurons, while the lymphocytic choriomeningitis 
virus (LCMV) and the Moloney murine leukemia virus 
(MuLV) glycoproteins were shown to preferentially infect 
astrocytes [185, 186]. Although the lentivirus is effective in 
overexpressing genes, gene knockdown in astrocytes is not 
as efficient because of small hairpin RNA (shRNA) pro-
cessing. However, when used in combination with the glu-
tamine synthetase promoter specific to astrocytes, as well as 
two miRNAs, miR9*T-miR124T, it proved effective in al-
lowing gene silencing in astrocytes [176]. However, it 
should be noted that although neuronally targeted in the 
CNS, miRNA124 has also been shown to inhibit NFAT ac-
tivity in smooth muscle, and may demonstrate off-target ef-
fects when utilized in a vector to modulate NFAT in astro-
cytes [187]. 

 Nanoparticles have been used in the treatment of glio-
blastoma with RNAi therapy and have been developed to 
cross the BBB [188]. An advantage of nanoparticles is that 
outside elements can more easily contain antibodies or pro-
teins that would specifically recognize astrocyte transmem-
brane proteins to allow for astrocyte-specific recognition. 
One strategy to deliver siRNA to target astrocytes was a con-
struct engineered with antibodies for the bradykinin B2 on 
chitosan nanoparticles, that would recognize the transferrin 
receptor and bradykinin B2 receptor specific to the BBB and 
astrocytes [189]. Another strategy was to deliver lipid nano-
particles constructed with apolipoprotien E to mediate cellu-
lar uptake of an mRNA gene carrier. This caused genes to be 
expressed in astrocytes and some neurons after intracerebro-
ventricular administration. Further development in the treat-
ment of glioblastoma delivered RNAi by constructing gold 
nanoparticles with rabies virus glycoproteins conjugated to 
liposomes with apoplipoprotein E, which inhibited miRNA-
92b, an miRNA whose expression increases as cancer pro-
gresses [165]. Therefore, regulation of the four transcription 
factors described by activators, inhibitors or modulators in 
neurological disease could be achieved as viral and nanopar-
ticle postilions guide them with greater astrocytic tropism. 

CONCLUSION 

 Adult astrogenesis is a common process in the brain 
through adulthood. Astrocyte cell cycle re-entry is therefore 
a necessary physiological process to maintain the neuroenvi-
ronment. Because of the astrocytic role coordinating central 
nervous system function, as aging occurs, senescent astrocyt-
ic inability to successfully re-enter the cell cycle likely con-
tributes to the cognitive decline seen in age-related demen-
tias. Senescent astrocytes increase the inflammatory re-
sponse, become atrophic, and are unable to properly protect 
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and regulate the central nervous system. Additionally, astro-
cytes are the cell type origin for the majority of cancers in 
the brain, and four transcription factors that are involved in 
cell cycle regulation and apoptosis, are responsible for the 
genes that are antagonistically expressed in neurodegenera-
tive disease and cancer. Despite the multifaceted complex 
nature of transcriptional regulation, as well as the growing 
understanding of the diversity of astrocytes and their sub-
types, it is useful to consider the current knowledge on these 
particular transcription factors in astrocytes, due to their role 
in the aging brain, glioma and neurodegenerative disease. 
Similarly, emerging research has indicated that miRNAs 
may be an effective way to inhibit or activate transcription 
factors, and viral or nanoparticle gene delivery is evolving to 
be more cell-specific, including astrocyte-specific, which 
will advance the pharmacological development of astrocytic 
treatments. As future studies into astrocytic function and 
diversity progress, new avenues that connect these transcrip-
tion factors, pathways and diseases will likely provide an 
effective window into pharmacological treatment for age-
related neurological diseases. 
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