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Abstract: Pain is a prevalent biopsychosocial condition that poses a significant challenge to health-
care providers, contributes substantially to a disability, and is a major economic burden worldwide.
An overreliance on opioid analgesics, which primarily target the p-opioid receptor, has caused dev-
astating morbidity and mortality in the form of misuse and overdose-related death. Thus, novel
analgesic medications are needed that can effectively treat pain and provide an alternative to opi-
oids. A variety of cellular ion channels contribute to nociception, the response of the sensory ner-
vous system to a noxious stimulus that commonly leads to pain. Ion channels involved in nocicep-
tion may provide a suitable target for pharmacologic modulation to achieve pain relief. This narra-
tive review summarizes the evidence for two ion channels that merit consideration as targets for
non-opioid pain medications: ryanodine receptors (RyRs), which are intracellular calcium chan-
nels, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which belong to the
superfamily of voltage-gated K channels. The role of these channels in nociception and neuropath-
ic pain is discussed and suitability as targets for novel analgesics and antihyperalgesics is consid-

ered.
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1. INTRODUCTION

The treatment of pain is a frequent challenge to health-
care providers and a substantial medical and economic bur-
den worldwide. In the United States (U.S.), 20% of adults
have chronic pain, including 78% with high-impact pain that
causes limitations to daily activities or work on most days
[1]. These rates are consistent with estimates in other re-
gions of the world, including Europe [2], China [3], and de-
veloping nations [4]. The total cost in medical care and lost
productivity in the U.S. is estimated to be at least $560 bil-
lion each year [5, 6]. Pain accounts for over 20% of visits to
the emergency department [7], while back and joint pain
may account for over half of visits to healthcare providers to
address chronic conditions [8]. A common cause of pain is
surgery. Up to 12% of patients may experience severe to ex-
treme pain following surgery, while over half report at least
moderate pain [9]. Unfortunately, each increase of 10% in
the proportion of time postoperatively with severe pain is as-
sociated with a 30% increased risk for developing chronic
post-surgical pain [10]. Thus, both acute and chronic (which
includes neuropathic) pains are common conditions that re-
quire substantial resources from the medical community to
address.
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A historical and persistent overreliance on opioids to
treat pain has led to tragically high rates of morbidity and
mortality in the U.S. and worldwide. In 2017, over 46,000
deaths were caused by opioid overdose in the U.S., and near-
ly a third of these fatalities were from prescription drugs
[11]. Pain prescription misuse is the second most common
form of illicit drug use in the U.S., with ~12% of the popula-
tion aged 12 years and older reporting misuse of any pre-
scription pain reliever in 2018 (Table 1.98B from [12]). The
prevalence of opioid misuse has been driven by extraordinar-
ily high prescribing rates of opioid-based analgesics. Al-
though decreasing in number since 2012, there were over
168 million prescriptions for opioids in the U.S. in 2018,
which translates to 51 prescriptions per every 100 persons
(www.cdc.gov/drugoverdose/maps/rxrate-maps.html). For
adults presented to an emergency department for pain, ap-
proximately 35-45% of visits will include a prescription for
an opioid, depending on the patient’s age. Prescription opi-
oids have, in turn, led to rising rates of abuse of non-prescrip-
tion drugs, such as heroin and fentanyl (www.cdc.gov/drugo
verdose/data.heroin.html; www.cdc.gov/drugoverdose/data.
prescribing/prescribing-practices.html). Worldwide, opioids
are used by 58 million people, cause 66% of drug use disor-
der-related deaths, and account for half the disability-adjust-
ed life year loss from drug abuse [13].

These issues have led to recent guidelines from the U.S.
Centers for Disease Control and Prevention to limit the use
of opioids [14]. The current emphasis on avoidance or mini-
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mization of opioid use, however, has led to wariness among
providers to care for patients prescribed these medications,
which may lead to conversion to illicit substitutes and fail-
ure to address other medical conditions [15, 16]. A multi-
faceted, aggressive strategy is needed to confront the opiate
abuse crisis, and a chief component is the development of
non-opiate pharmacologic therapies for pain [17]. This scien-
tific goal is included in the mission of the Helping to End
Addiction Long-term®™ (HEAL) Initiative, a multi-agency
program to confront the opioid crisis led by the National In-
stitutes of Health (NTH).

Pain is defined as “an unpleasant sensory and emotional
experience associated with, or resembling that associated
with, actual or potential tissue damage” [18]. It is a complex
biopsychosocial experience [19] often triggered by nocicep-
tion, the biological activity of the sensory nervous system in
response to a noxious stimulus [18]. Nociception involves
peripheral sensory neurons, the spinal cord, and the brain,
with various ion channels mediating the transmission and
processing of the nociceptive signal [20]. Opioids primarily
target the p-opioid receptor, but various other cellular pro-
teins could be successfully modulated to achieve analgesia
[21]. Pain can be broadly categorized into either acute or
chronic pain, with chronic pain defined as pain that persists
or recurs for more than three months and chronic pain can
be further classified into multiple subtypes and/or conditions
[22]. These subtypes are relevant because they may predict
the efficacy of pharmacologic therapies, such as use of
gabapentinoids for neuropathic pain [14].

The focus of this review is intentionally limited to two
distinct ion channel families — ryanodine receptors (RyRs)
and hyperpolarization-activated cyclic nucleotide (HCN) reg-
ulated ion channels and their potential as molecular targets
for the development of novel therapeutics for the treatment
of acute and chronic (neuropathic) pain. This focus is intend-
ed to cogently summarize existing knowledge as well as to
provide a critical assessment of that information. It is worth
noting, however, that numerous alternative targets have pro-
posed these indications (beyond the commonly discussed
voltage gated sodium and calcium channels [23]), including
nicotinic acetylcholine receptors (nAChRs) [24, 25], Tran-
sient Receptor Potential (TRP) channels [26, 27], calcitonin
gene-related peptide (CGRP) receptors [28, 29], cannabi-
noid receptors and related regulatory pathways [30-33], and
neurotensin receptors [34-36], and the interested reader is di-
rected to literature for further information in those areas.
The basic neurobiology of RyRs and HCN channels is dis-
cussed, emphasizing their role in nociception and potential
suitability as pharmacologic targets as analgesics for the
treatment of acute pain and use of antihyperalgesics for the
treatment of neuropathic pain.

2. INTRACELLULAR CALCIUM CHANNELS

2.1. Overview

Ryanodine receptors (RyRs) are intracellular channels
that allow the efflux of calcium from the lumen of the sar-
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co/endoplasmic reticulum to the cytoplasm. RyRs are ho-
motetramers, exceeding 2000 kDa in size, with a mush-
room-shaped quaternary structure, in which the stalk spans
the ER membrane and cap protrudes into the cytoplasm
[37]. There are three isoforms of RyRs, with ~65% homolo-
gy, distinguished by their localization and method of chan-
nel opening. RyR1s are mechanically coupled to L-type, di-
hydropyridine receptor (DHPR) calcium channels (Cayl1.1),
such that depolarization-induced opening of DHPRs causes
opening of RyR1s [38-40]. For RyR2 and RyR3, changes in
cytosolic and SR/ER lumenal calcium are responsible for
triggering channel opening [41, 42]. In skeletal and cardiac
muscle, RyR1 and RyR2, respectively, mediate calcium-in-
duced calcium release (CICR) from the sarcoplasmic reticu-
lum (SR), a process by which elevations in cytosolic calci-
um cause efflux of calcium from SR stores [43]. CICR en-
ables excitation-contraction coupling by calcium binding to
troponin to shift tropomyosin from actin, allowing myosin to
bind to actin [44]. Several diseases have been definitively
linked to inheritable mutations in RyR1 and RyR2, includ-
ing malignant hyperthermia and central core disease, caus-
ing skeletal muscle pathologies, and catecholaminergic poly-
morphic ventricular tachycardia, which is associated with po-
tentially fatal cardiac arrhythmias [45, 46].

The roles of RyRs in neurons are not as well understood
[47]. Though originally designated as skeletal, cardiac, and
brain isoforms, RyR1, RyR2 and RyR3, respectively, are all
expressed in the central nervous system. In the brain, the iso-
forms display region-specific and developmental differences
in their expression, but, overall, RyR2 predominates
[48-50]. RyRs have been implicated in learning and memory
[51] and in various CNS pathologies, such as Alzheimer’s
disease [52], post-traumatic stress disorder [53], and
seizures [54].

2.2. Dorsal Root Ganglia and Spinal Cord Mechanisms

Of particular relevance to the topics of nociception and
pharmacologic targets of analgesics are the dorsal root gan-
glia (DRG) and dorsal horn of the spinal cord [55]. The
DRG contain sensory neurons that relay peripheral nocicep-
tive signals to the central nervous system [55]. Thus, slices
and cultures containing neurons from the dorsal horn and
DRG are an important model to study mechanisms of pain
transduction. Although the precise localization of RyRs in
the spinal cord and sensory neurons is not well studied,
RyR1 and RyR2 are likely to be present in both the anterior
[56] and dorsal horns [57] of the spinal cord. In neurons of
the DRG, RyR3 appears to predominate [58, 59], although
mRNA of all three isoforms is present at approximately
equal amounts, and RyR2 and RyR3 protein expression is in-
creased in DRGs in response to spinal cord injury [60].

Despite limited evidence of their specific distribution,
studies have demonstrated the relevance of RyRs to calcium
signaling in DRG and the spinal cord and implicated their
relevance to nociception. For example, in primary cultures
of DRG neurons, caffeine, a RyR agonist, increased cytoso-
lic calcium as measured by fura-2-based microfluorimetry,
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although primarily in somata as opposed to processes [61].
Notably, the ability for caffeine to repeatedly elicit an in-
crease in cytosolic calcium was dependent on whether the
neuron had been previously depolarized, such that depo-
larization may have “charged” the ER to allow subsequent
release. Thus, RyRs may be involved in magnifying calcium
transients in the soma of DRG in a use-dependent manner.
In slices of the lumbar spinal cord studied with patch-clamp-
ing and two-photon calcium imaging, back-propagating ac-
tion potentials (APs) evoked increases in calcium in the so-
matic cytosol and nucleus of lamina I neurons, with a contri-
bution in these compartments by CICR from RyRs [62]. The
authors speculated that augmentation of cytosolic calcium
by CICR in the somatic cytosol and nucleus may have a role
in affecting gene transcriptions based on neuronal activity.

RyRs have been shown to contribute to the induction of
long-term potentiation (LTP) in synapses of the spinal cord
dorsal horn. LTP is a form of neuronal plasticity in which a
conditioning stimulus leads to a sustained increase in synap-
tic efficacy, and it serves as a molecular model for hyperalge-
sia and chronic pain [63]. Low-frequency stimulation of the
sciatic nerve in rats caused potentiation of C-fiber-mediated
excitatory post-synaptic potentials (EPSPs) which could be
blocked by dantrolene, a RyR receptor antagonist [64]. Simi-
larly, inhibition of RyR by ryanodine (which causes inhibi-
tion of RyRs at high micromolar doses but potentiation at 1
uM and lower) and dantrolene prevented LTP in the lumbar
dorsal horn following tetanic of Lissauer’s tract in rat spinal
cord slices [65]. Furthermore, LTP of C-fiber-evoked field
EPSPs was prevented in vivo following tetanic stimulation
of the sciatic nerve by intrathecally administered ryanodine
[65, 66] in a dose-dependent manner and by dantrolene [66].
These results were behaviorally confirmed in experiments in
which dantrolene, applied intrathecally prior to tetanic sciat-
ic stimulation, prevented lowering the mechanical nocicep-
tive threshold to the paw withdrawal test [66]. RyRs may al-
so be involved in the development of hyperalgesia associat-
ed with diabetes. In streptozotocin-induced diabetic mice,
tail-flick latencies were lowered compared to control mice.
Inhibiting RyRs by intrathecal administration of ryanodine
attenuated thermal hyperalgesia, whereas thapsigargin, a sar-
co(endo)plasmic reticulum ATPase (SERCA) inhibitor pre-
venting calcium uptake into the ER, had the opposite effect
[67]. Thus, by regulation of cytosolic calcium, RyRs may
contribute to diabetes-associated pain.

RyRs have an important role in hyperalgesic priming, a
process of sustained, excessive responsiveness of nocicep-
tive neurons following a noxious stimulus to future insults
mediated by increased PKCe activity [68]. Hyperalgesic
priming is a molecular model for the transition from acute to
chronic pain [68]. In rats, local RyR potentiation by injec-
tion of ryanodine into the paw lowered the mechanical noci-
ceptive threshold measured with the paw withdrawal test af-
ter several days [69]. PKCe lowered the mechanical thresh-
old to pain by increasing cytosolic calcium mediated by
RyRs, which in turn activated o calmodulin kinase II (o-
CaMKII) [70]. Interestingly, the ability of RyR potentiation
to lower the mechanical nociceptive threshold in rats ex-
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hibits sexual dimorphism. The dose of ryanodine necessary
to cause hyperalgesic priming was substantially lower in fe-
male rats, and knockdown of estrogen receptor a, but not 3,
reduced the priming effect [69, 71]. Inositol 1,4,5-triphos-
phate receptors (IP;Rs) appear necessary to enable RyR-me-
diated hyperalgesic priming, as pharmacologic inhibition of
IP;R prevented priming [72]. Furthermore, IP;R priming
was dependent on both RyR and SERCA channels [72].
Thus, a positive feedback loop of calcium efflux from the
ER, causing sustained elevation of cytosolic calcium, is an
important step to cause hyperalgesia in rodent models.

RyRs may also be involved in hyperalgesia caused by in-
flammation. For instance, bradykinin, an inflammatory pep-
tide involved in pain signaling, increased excitability in a
subpopulation of neurons in primary cultures from the DRG,
an effect that was substantially attenuated by inhibition of
RyRs by ryanodine [73]. In neurons from the trigeminal gan-
glia, bradykinin agonism caused an acute rise in cytosolic
calcium, which was reduced by dantrolene but not xestospon-
gin C [74]. Those results, however, are challenged by experi-
ments with DRG neurons in which caffeine and bradykinin
did not overlap in their ability to elicit an increase in cytoso-
lic calcium, suggesting these two agents caused an increase
in calcium from separate pools [61].

While most studies have indicated that RyR potentiation
mediates LTP and hyperalgesia, some results indicate the
converse is true. For instance, in one study, RyR potentia-
tion prevented PKCe activation through CaMKII inhibitory
feedback, and local RyR injection prevented pB-adrenergic
mediated mechanical hyperalgesia in rats [75]. The authors
of this study proposed intracellular signaling mechanisms in
which the cell signaling “history” and, specifically, the de-
gree of calmodulin-dependent kinase II (CaMKII) activa-
tion, determined if a stimulus would be sensitizing or desen-
sitizing. In this context, RyR agonism could activate
CaMKII by increasing cytosolic calcium concentrations, pre-
venting PKCe-mediated hyperalgesia. In experiments ex-
amining the role of the imidazoline receptor (I,R) in mechan-
ical pain, inhibition of RyRs attenuated the antinociceptive
effect of [LR agonism [76]. Thus, while most studies have
found that RyRs mediate hyperalgesia, RyRs may be in-
volved in competing, calcium-dependent intracellular signal-
ing pathways, and their role in pain processing is possibly
context-dependent.

2.3. RyR Mechanisms in the Brain

RyRs may also be relevant to pain transduction in the
brain. In thalamocortical neurons expressing primarily RyR2
and RyR3 isoforms, pharmacologic inhibition of RyRs in-
creased tonic firing and increased behavioral pain responses
to stimuli modeling chronic inflammatory pain but not acute
mechanical or thermal pain; the converse responses were ob-
tained with RyR potentiation [77]. Pharmacologic modula-
tion of ER Ca’' stores by intraventricular injection of vari-
ous ER-targeted drugs altered behavioral responses to ther-
mal pain in mice. Specifically, antagonism of RyRs and
IP,Rs decreased the nociceptive threshold and potentiation
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of RyRs increased the threshold [78]. RyR inhibition was al-
so able to inhibit the antinociceptive effect of physostig-
mine, an anticholinergic medication. In mice, intraventricu-
lar injection of antisense oligonucleotides against RyR iso-
forms decreased antinociception by physostigmine in re-
sponse to thermal and mechanical pain [79]. This effect was
isoform-specific, as knockdown by intraventricular injection
of antisense oligonucleotides to RyR1 and RyR3, but not
RyR2, reduced the effect of physostigmine [80].

2.4. Pharmacologic Considerations for RyRs

Drugs currently identified as analgesics may rely on the
modulation of intracellular calcium stores to exert their ef-
fects. Consistent with the bulk of evidence demonstrating
that RyR inhibition decreases or prevents hyperalgesia, inhi-
bition of RyRs generally augments the analgesic effects of
established pain medications, while the converse is true for
RyR potentiation. For example, opiate-mediated antinocicep-
tion is modulated by intracellular calcium concentrations
[81]. Potentiation of RyRs inhibits the analgesic effect of
morphine on thermal pain in mice [81] whereas inhibition of
RyRs can partially reverse the development of morphine tol-
erance [82, 83]. Similarly, a decrease in thermal nociception
by intracerebral injection of ryanodine to block RyRs was
observed in the treatment of mice with trans-resveratrol
[84]. RyRs may also have a role in opioid-induced hyperal-
gesia. Administration followed by abrupt washout of the po-
tent opioid remifentanil caused LTP of C-fiber-evoked EP-
SPs in the spinal cord dorsal horn following low-frequency
stimulation of the dorsal root, but inhibition of RyRs with
dantrolene prevented LTP due to opioid withdrawal [85]. Th-
ese studies suggest that a key pathway contributing to analge-
sia is the modulation of cytoplasmic calcium by RyRs.

Only one medication used in humans, dantrolene, specifi-
cally targets RyRs, and it is approved as a RyR antagonist to
treat spasticity as well as malignant hyperthermia (MH)
[86]. In off-label use, patients with MH-related myalgias or
other musculoskeletal symptoms may experience improve-
ment of cramping and pain with consistent administration of
oral dantrolene [87, 88]. These studies demonstrate that
long-term dantrolene treatment is well tolerated, indicating
that RyR antagonism may be a safe, reasonable pharmaco-
logic target for novel analgesics. As RyR channelopathies
may be an underdiagnosed cause of myopathy with recur-
rent myalgia [88-91], dantrolene could have a limited role in
the treatment of myopathic pain outside use for MH.
Whether inhibition of RyRs, such as with dantrolene, amelio-
rate symptoms associated with other forms of myopathy,
such as Duchenne muscular dystrophy, has yielded inconsis-
tent results in limited studies [92-95].

Importantly, dantrolene inhibits RyR1 and RyR3 iso-
forms but not RyR2 [96, 97], the isoform which predomi-
nates in the heart and brain. Thus, it is unclear whether
drugs that inhibit RyR2 would have similar tolerability to
long-term oral dantrolene; however, rodent models of RyR2
knockdown exhibit cardiac and neurologic dysfunction. For
example, in an inducible, cardiomyocyte-specific RyR2
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knockout mouse, a decrease of RyR2 protein by 50% was as-
sociated with bradycardia, intermittent tachyarrhythmias, car-
diomyopathy, and early demise, possibly due to sudden car-
diac death [98]. Hippocampal knockdown of RyR2 by injec-
tion of antisense oligodeoxynucleotides into the CA1 region
exhibit worsened performance in a previously trained spatial
memory task [99]. Thus, it is possible that drugs inhibiting
RyR2 may cause cardiac or CNS toxicity precluding their
clinical use in human patients. Unfortunately, there are no
pharmacologic agents that exhibit specificity for a single iso-
form [100]. Moreover, the evidence, as summarized above,
does not clearly implicate one isoform as predominantly in-
volved in nociception or hyperalgesia. A more complete un-
derstanding of isoform-specific effects of RyRs in pain pro-
cessing is an important limitation to the further development
of pharmacologic strategies for novel pain medications.

Though most of the preclinical studies indicate that RyR
inhibition produces antinociception or reverses hyperalgesia,
several drugs with analgesic effects in use currently demons-
trate RyR agonism, which is incongruous with the previous-
ly discussed preclinical studies. For instance, a Cochrane sys-
tematic review found that caffeine, an established agonist of
RyRs [86], was an effective adjuvant for several painful con-
ditions at a safe, standard dose when added to conventional
analgesic medications [101]. Anesthetic medications used
for surgery and other painful procedures that have analgesic
effects, including volatile anesthetics [102, 103] and ami-
noamide local anesthetics [104], have been shown to potenti-
ate RyRs [105, 106]. However, because each of these drugs
likely exerts its effects through other receptors [107-109], it
is unclear what role RyR potentiation may have on their
antinociceptive actions, so these examples do not invalidate
that RyR inhibition is important for analgesia.

3. HCN CHANNELS

3.1. Overview

Hyperpolarization-activated cyclic nucleotide (HC-
N)-regulated channels are a four-isoform family of channels
that belong to the K, superfamily [110, 111], assemble as ho-
mo- and hetero-tetramers (with only HCN2 + HCN3 disfa-
vored [112]), and are present throughout the nervous system
[113, 114]. These channels are the molecular basis of the
“pacemaker” current I, (in neurons) [115, 116] and the “fun-
ny” current I; (in cardiac tissues) [117, 118]. The cryo-EM
HCNI structure demonstrates four-fold symmetry around a
central ion conduction pathway; binding of cAMP rotates cy-
toplasmic domains such that opening of the inner helical
gate is the favored conformation [119]. Channel function is
regulated by a number of modulators, including cyclic nu-
cleotides (most prominently cAMP), phosphatidylinositol
4,5-bisphosphate (PIP,), tetratricopeptide repeat-containing
Rab8b-interacting protein (TRiP8b) (which also regulates
cell-surface trafficking - [120-122]), H', MiRP1, Filamin A,
and various tyrosine kinases (Src, p38-MAPK) [123-126].
HCN channel expression (either mRNA or protein) in hu-
man and rodent sensory neurons is similar (but not identical)
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[127-132], and their presence in DRG neurons have made
them an attractive target for drug development for treating
pain [115, 133, 134].

Although I, controls fundamental aspects of neuronal
electrophysiology, most notably regulation of resting mem-
brane potential, temporal summation, and subthreshold oscil-
latory electrical activity [135], suggesting that HCN chan-
nels could play an important role in normal sensory transduc-
tion, their role in pathologic neuropathic pain is more clearly
evident. Following nerve injury, HCN channel expression
and I, increase in HCN1/2-rich sensory neurons [136-141];
the increase in expression is more pronounced for HCN1
than for HCN2 [141], and HCN subunit trafficking is altered
[136, 141, 142]. The increase in expression and current is ac-
companied by increased cellular hyperexcitability [136, 138,
139, 143], and both I, and excitability are inhibited by the
pan-isoform HCN channel blocker ZD7288 [136, 137, 141,
144, 145]. In rodents, blockade of HCN channels with either
of the pan-isoform blockers ZD7288 or ivabradine relieves
peripheral painful neuropathy [136, 140, 144, 146, 147].
Non-selective blockade HCN blockade, however, is likely to
produce undesirable cardiac effects (most notably bradycar-
dia) due to the key role HCN4 and HCN2 play in establish-
ing normal sinus rhythm [117, 148-150]. Indeed, the non-se-
lective HCN inhibitor ivabradine (Corlanor®, Procoralan®)
produces sinus bradycardia and is approved for use in pa-
tients “to reduce the risk of hospitalization for worsening
heart failure in patients with stable, symptomatic chronic
heart failure with center ventricular ejection fraction < 35%,
who are in sinus rhythm with resting heart rate > 70 beats
per minute, and either is on maximally tolerated doses of
blockers or have a contraindication to § blocker use.”

In the following sections, we will consider the current
evidence for and against the targeting of specific HCN chan-
nels for the treatment of peripheral neuropathic pain. The fo-
cus on peripheral neuropathic pain stems from the facts that:
1) HCN channels are widely, but variably, expressed in the
human brain (Allen Institute Human Brain Project:
http://human.brain-map.org/microarray/search - search
terms: HCN1, HCN2, HCN3, HCN4) and inhibition of HCN
isoforms present on central neurons may result in unaccept-
able neuropsychological side-effects, and 2) inhibition of
HCN channels on peripheral, but not central, neurons demon-
strates antihyperalgesic efficacy in a rat spinal nerve ligation
model of neuropathic pain [136]. It is possible, though, that
inhibition of HCN channels on central neurons at the spinal
cord level may be relevant to other forms of chronic pain as
intrathecal administration of ZD7288 in a neonatal colon irri-
tation model of irritable bowel syndrome provides pain re-
lief [151]. Those data cannot address, however, whether the
pain relief results from inhibition of I, in presynaptic or post-
synaptic neurons as HCN channels are located presynaptical-
ly on axon terminals at numerous synapses [152-159], in-
cluding those between primary afferents and principal neu-
rons in the spinal cord dorsal horn [160-162].
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3.2. Insights from HCN Gene Deletion and Other In Vivo
Studies

3.2.1. HCN1

Hcenl contributes to cold, and to a smaller degree, heat
perception [163]. Following peripheral nerve injury (partial
sciatic nerve ligation), mice rapidly develop cold allodynia,
which is Henl-dependent [164]. Cold allodynia is an impor-
tant feature of chemotherapy-induced peripheral neuropathy
(CIPN [165], commonly seen with platinum-based com-
pounds [166, 167]. Painful neuropathy also occurs with
other commonly administered chemotherapeutics, including
those in the vinca alkaloid and taxane families [168-172].
Oxaliplatin and paclitaxel administration results in a signifi-
cant increase in Henl gene [173] or mRNA [174] expression
in rodents. Correspondingly, DRG neurons from paclitax-
el-treated rats are hyperexcitable (demonstrated by increased
spontaneous AP firing and a lower rheobase) compared to
DRG neurons from untreated animals [173], consistent with
an increase in HCN channel expression. At the behavioral
level, oxaliplatin produces dose-dependent cold allodynia in
mice that is significantly relieved by the pan-HCN channel
blocker ivabradine [147, 174]. These results, coupled with
the increase in Henl gene/mRNA expression, strongly impli-
cate HCN1 channels as an important therapeutic target for
the treatment of CIPN.

Relevant to this discussion is the fact that HCN1-selec-
tive inhibitors have been identified; these include the intrave-
nous general anesthetic 2,6-di-isopropylphenol [175, 176],
the non-anesthetic congener 2,6-di-fert-butylphenol [177,
178], 2-ethoxy-N-((1-(4-isopropylpiperazin-1-yl) cyclo-
hexyl) methyl)benzamide [179], and MEL57A ((R)-6 in Mel-
chiorre et al. 2010 - [180]]: (R) N,N-bis-[ (Z)-4-(7,8-
dimethoxy-2-0x0-1,3-dihydrobenzo[d]azepin-3-yl) but-2-
enyl]-2-(3,4-dimethoxyphenyl)-propanamine) [180, 181]. /n
vivo, MEL57A relieves oxaliplatin-induced mechanical hy-
peralgesia [182] and cold allodynia [183], and both 2-
ethoxy-N-((1-(4-isopropylpiperazin-1-yl)cyclohexyl)
methyl) benzamide [179] and the alkylphenols [177, 178] re-
lieve nerve injury-induced hyperalgesia. Importantly, the
bradycardia-inducing ED;, of 2-ethoxy-N-((1-(4-iso-
propylpiperazin-1-yl)cyclohexyl)methyl)benzamide is 4-
fold higher than its antihyperalgesic ED;, (25 vs. 6 mg/kg)
[179]. Similarly, MEL57A has no effect on heart rate [182],
consistent with the proposition that within the HCN family,
HCN4, and possibly HCN2, are the primary drivers of cardi-
ac function [184, 185]. Thus, there is strong preclinical evi-
dence supporting the ongoing development of HCN1-selec-
tive inhibitors for the treatment of peripheral neuropathic
pain.

3.2.2. HCN2

A convincing role for Hen2 has been demonstrated in
the development of painful neuropathy. Using the promoter
for Na, 1.8 as a driver for expression, an Hcn2 conditional
knockout mouse line was generated in which the loss of HC-
N2 expression was restricted to a subset of small-diameter
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nociceptive primary sensory neurons [186]. Na,1.8-Hen2 ™~
mice were phenotypically normal, with preserved motor
function and normal pain thresholds at baseline. In these
mice, thermal hypersensitivity induced by injection of forma-
lin into the hindpaw foot pad was markedly reduced and
abolished in response to injection of prostaglandin E2
(PGE,); following sciatic nerve chronic constriction (CCI,
i.e., the Bennet model, a common model of peripheral nerve
injury-induced neuropathic pain [187]), mechanical and ther-
mal hyperalgesia and cold allodynia responses were indistin-
guishable from those seen in sham-operated f/fHcn2”" and
Na,1.8-Hen2™ animals. Collectively, these results demons-
trate that HCN2 is required for the initiation of both inflam-
matory and neuropathic pain. Tsantoulas et al. demonstrated
in both streptozocin-induced and db/db diabetic mouse mod-
els that cAMP-mediated upregulation of HCN2 function
(rather than changes in HCN2 expression per se) underlies
the development of diabetic neuropathy [188].

There is a significant interest in developing HCN2 selec-
tive inhibitors for the treatment of neuropathic pain [189]. In-
deed, in March 2019, King’s College London and The Well-
come Trust entered into a licensing agreement with Merck
& Co., Inc. (Kenilworth, NJ, USA) for up to $340 million in
development and sales milestones, as well as royalties, if an
HCN2-selective therapeutic was approved for clinical use
(https://www kcl.ac.uk/news/pioneering-pain-research-lead-
s-to-landmark-deal). At present, however, no potent, highly
selective, HCN2 blocker has been described [180, 190]. Of
concern for this approach is the clear expression of HCN2
protein in the human heart (atria and ventricles) under nor-
mal and pathologic (ischemic cardiomyopathy) conditions
[191], which correlates with the presence of a robust cAM-
P-sensitive I, current in human cardiomyocytes [192]; cou-
pled with the observation that global deletion of HCN2 re-
sults in sinus dysrhythmia [148], these data suggest that sim-
ply targeting HCN2 may result in an unacceptable cardiovas-
cular risk profile.

3.3.3. HCN3

Hcn3” mice are viable, fertile, and have no overt physi-
cal abnormalities; they do, however, have an increase in the
T-wave amplitude of the electrocardiogram that arises from
acceleration of the late repolarization phase in epicardial my-
ocytes [193], and their ability to process contextual (fear and
neutral) information is impaired [194]. Although Hen3 is pre-
sent in mouse DRG neurons at relatively low levels [195,
196], global Hen3 deletion produced only a modest decrease
in mechanical pinprick hypersensitivity in a partial sciatic
nerve ligation model, and had no effect on acute or inflam-
matory pain [197]. These results would suggest that HCN3
has little, if any role, as an antihyperalgesic target. If, howev-
er, changes in channel expression and/or function are a reac-
tive process in response to injury, these results may underval-
ue the potential role of HCN3. By way of example, strepto-
zocin-induced hyperglycemia results in a significant in-
crease in Hen3 protein in nodose ganglia A- and C- fiber
neurons (along with an increase in Henl in A-fiber neurons
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and an increase in Hen2 in A- and C-fiber neurons) [198],
suggesting that it could play a more important role than the
gene deletion studies would suggest. As with mice, HCN3
expression in human DRG neurons is significantly less than
that for HCN1 and HCN2 (Table 1 [128]), making it an un-
likely candidate for therapeutic targeting absent compelling
data demonstrating pronounced upregulation in any neuro-
pathic condition in humans.

Table 1. HCN mRNA transcript levels in human dorsal root
ganglia.

Transcripts Per Million

- " | [median (25%, 75%)]

Comparison P’

HCN1 | 21 63.2 (55.3, 80.9) HCN1 vs HCN4 | <0.001
HCN2 | 21 30.7 (23.5, 50) HCNI1 vs HCN3 | <0.001
HCN3 | 21 5.8(4.6,7.7) HCNI1 vs HCN2 | 0.177
HCN4 | 21 22(1.4,2.8) HCN2 vs HCN4 | <0.001

HCN2 vs HCN3 | <0.005

HCN3 vs HCN4 | 0.066

TOne-way ANOVA with Tukey Test for post-hoc comparison.
Data from Supplementary Table 2, North ez al. 2019 [128].

3.3.4. HCN4

Constitutive deletion of Hcen4 is embryonic lethal [199].
Using a Cre-LoxP strategy to produce a conditional Hen4
knockout, Herrmann et al. demonstrated that: 1) Hcn4 was
responsible for a significant fraction of I, in sinoatrial atrial
node cells, 2) the residual Hen4-independent current activat-
ed with a slow time course and a V,, that was markedly
right-shifted by the membrane-permeable cAMP analog, 8-
Br-cAMP, and 3) acceleration of heart rate in response to f3-
adrenergic stimulation was preserved in Hcn4 null mice
[150]; the latter two observations are consistent with HCN2
expression being responsible for the residual current given
that cAMP regulation of HCN2 gating is more pronounced
than for HCN1 [200]. The role of HCN4 in mediating neuro-
pathic pain has not been studied using this paradigm; howev-
er, HCN4 expression (protein or mRNA) in rodent [201,
202] and human [127, 128] sensory neurons is extremely
low (Table 1), suggesting that targeting of the isoform with
an HCN4-selective inhibitor [181] will not result in a mean-
ingful therapeutic for the treatment of neuropathic pain. Sup-
porting this hypothesis is the observation that the HCN4-se-
lective inhibitor EC18 [181] does not relieve cold allodynia
in mice [183]. There may be some promise for HCN4-selec-
tive inhibitors with regards to treatment for seizure disorders
[203], but here, too, the critical contribution of HCN4 to car-
diac I; and normal sinus rhythm [150] may present a funda-
mental obstacle with respect to future development.

3.4. Novel Drug Development — Why Targeting HCN1
Matters

While both HCN2 and HCN1 are present in mouse DRG
neurons, HCN2 appears to be the more predominant isoform
(at least based on mRNA levels) [132]. There is strong evi-
dence that HCN2 is a key driver in the development of neu-
ropathic pain in rodents [186, 188]. Those studies also de-
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monstrate that the cellular hyperexcitability seen in DRG
neurons results from increases in intracellular cAMP, which
strongly facilitates the gating of HCN2, but not HCN1 [200,
204-208]. This is in contrast to what is seen in human
pluripotent stem cell (hPSC)-derived sensory neurons
(which closely resemble native DRG neurons with respect to
the expression of ion channel genes), where the observed I,
current displays fast activation time constants and is insensi-
tive to modulation by the adenylyl cyclase activator
forskolin [127], suggesting that HCN1, not HCN2, is the pri-
mary isoform present in human sensory neurons. This inter-
pretation is consistent with the following observations:

[i] HCNI is present in human DRG at the gene [129]
and mRNA [132] level.

[ii] HCNI1 mRNA is present in a larger proportion of hu-
man DRG neurons than is HCN2 (94.4% vs. 44.0%,
respectively); this is in contrast to mice, where HC-
N2 mRNA-positive neurons are seen at the same lev-
el as those that are HCN1 mRNA-positive (71.5%
and 70.9%, respectively) [132].

[iii] HCNI1 may be more robustly expressed than HCN2
in human sensory neurons, where the relative RNA
expression (as measured in transcripts per million,
TPM) is HCN1 > HCN2 >> HCN3 > HCN4 (Table
1 [128]).

As noted by Shiers and colleagues, “these marked spe-
cies differences may have important implications for the
role of different HCN isoforms in pain states between mouse
models and human patients” [132]. Consequently, despite
the compelling data from mice linking HCN2 channels to
the initiation of neuropathic pain, there is a strong rationale
for the development of HCN1-selective therapeutics for treat-
ing neuropathic pain in humans.

Further support for the development of HCN1-selective
inhibitors comes from the observation that alkylphenols in-
hibit HCN1 gating [175-177, 209] rather than simply block-
ing the pore [210] as do ivabradine [211] and ZD7288 [212,
213]. Within this class, 2,6-di-isopropylphenol (propofol) in-
hibits HCN1 homotetramers and HCN1 + HCN2 heterote-
tramers with equal efficacy [176]. Thus, it is conceivable
that a potent alkylphenol-derived HCN1-selective inverse ag-
onist would be an excellent antihyperalgesic given that it
would block two relevant populations of HCN channels, HC-
N1 homotetramers and HCN1 + HCN2 heterotetramers.
Such a proposal has biologic plausibility as heterologously
expressed HCN1 and HCN2 channels freely co-assemble to
form functional heterotetramers [200], and the same pheno-
menon appears to be true for natively expressed HCN chan-
nels in hippocampal neurons [214], and of direct relevance
here, in trigeminal [163] and DRG [215] sensory neurons.
Like 2,6-di-isopropylphenol, 2,6-di-fert-butylphenol selec-
tively inhibits HCN1 channel gating [177, 209], but unlike
2,6-di-isopropylphenol, it is neither a positive allosteric mod-
ulator of GABA, receptors nor does it act as a general anes-
thetic [177, 178, 216, 217]. It does, however, relieve neuro-
pathic pain in partial sciatic nerve ligation [177] and chronic
constriction injury [178] mouse models. In addition to clear
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efficacy as antihyperalgesics in different animal models
across different labs (which speaks to reproducibility), HC-
N1-selective inhibitors appear to have an excellent cardiovas-
cular safety profile [179, 182]. Whether 2,6-di-tert-
butylphenol and congeners thereof are equieffective as in-
verse agonists for HCN1 + HCN2 heterotetramers as they
are for HCN1 homotetramers remains to be determined, but
if they are, they offer the potential of being an important
new class of therapeutics for the treatment of neuropathic
pain.

CONCLUSION

Pain is a prevalent medical condition that causes suffer-
ing and disability [19] demanding efficacious pharmacolog-
ic therapies. Unfortunately, over-prescription of opioid anal-
gesics has led to a widespread crisis of misuse and over-
dose-related deaths [11, 13]. Moreover, opioids are not supe-
rior to other analgesics for certain common pain conditions,
such as low back pain [14, 218] and neuropathic pain
[219-223]. Thus, novel analgesics are urgently needed to pro-
vide pain relief and minimize disability without the atten-
dant risks of opioids [17]. A strategy for the identification
and development of novel analgesics is to target ion chan-
nels involved in nociception [17], including the “low-hang-
ing” targets that control peripheral neuronal hyperexcitabili-
ty [224]. Both in vitro and in vivo studies indicate a possible
role of RyRs in nociception and hyperalgesia at the level of
the DRG, spinal cord, and brain. However, much remains to
be resolved to clarify if RyRs are an appropriate pharmaco-
logic target for pain therapy, such as which isoforms con-
tribute most to nociception, where along the nervous system
transduction pathway is the best target, and what subtypes of
pain may be most amenable to RyR modulation. Because
RyRs are ubiquitously expressed and have a fundamental
role in maintaining cytosolic and ER calcium concentrations
in multiple cell types, it will also be critical to evaluate, in
appropriate animal models, if RyR modulation can treat pain
without causing serious adverse effects. However, the tolera-
bility of long-term oral dantrolene for patients with MH and
myalgia is encouraging in that its adverse effect profile
would not preclude a priori specific RyR antagonists as a
pharmacologic therapeutic. A more extensive literature sup-
ports the role of HCN channels in pain, particularly in neuro-
pathic pain, highlighting their suitability, especially that of
HCNI and 2, as therapeutic targets. Given their role as cardi-
ac pacemakers, however, novel analgesics targeting HCNs
will need to be evaluated carefully for potential to cause dys-
rhythmias, among other potential toxicities.

Due to the tremendous need for efficacious pain treat-
ments without the potential for addiction and overdose, the
rational selection of therapeutic targets for the development
of novel analgesics and antihyperalgesics holds significant
promise. Studies have implicated both RyRs and HCN chan-
nels in nociception and hyperalgesia. Further research will
be required to understand whether pharmacologic modula-
tion of either of these families of ion channels could safely
provide pain relief in humans.
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