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Abstract

Purpose: To develop a model-guided self-supervised deep learning MRI reconstruction 

framework called REference-free LAtent map eXtraction (RELAX) for rapid quantitative MR 

parameter mapping.

Methods: Two physical models are incorporated for network training in RELAX, including the 

inherent MR imaging model and a quantitative model that is used to fit parameters in quantitative 

MRI. By enforcing these physical model constraints, RELAX eliminates the need for full 

sampled reference datasets that are required in standard supervised learning. Meanwhile, RELAX 

also enables direct reconstruction of corresponding MR parameter maps from undersampled 

k-space. Generic sparsity constraints used in conventional iterative reconstruction, such as the 

total variation constraint, can be additionally included in the RELAX framework to improve 

reconstruction quality. The performance of RELAX was tested for accelerated T1 and T2 mapping 

in both simulated and actually-acquired MRI datasets and was compared with supervised learning 

and conventional constrained reconstruction for suppressing noise and/or undersampling-induced 

artifacts.

Results: In the simulated datasets, RELAX generated good T1/T2 maps in the presence of noise 

and/or undersampling artifacts comparable to artifact/noise-free ground truth. The inclusion of 

a spatial total variation constraint helps improve image quality. For the in-vivo T1/T2 mapping 

datasets, RELAX achieved superior reconstruction quality compared to conventional iterative 

reconstruction and similar reconstruction performance to supervised deep learning reconstruction.

Conclusion: This work has demonstrated the initial feasibility of rapid quantitative MR 

parameter mapping based on self-supervised deep learning. The RELAX framework may also 

be further extended to other quantitative MRI applications by incorporating corresponding 

quantitative imaging models.
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INTRODUCTION

The use of deep learning for reconstructing undersampled MR images has gained substantial 

interest and attention in recent years (1–5). Deep learning utilizes a unique architecture 

(e.g., convolutional neural network (CNN)) (6) for extracting image features from reference 

MRI datasets with a data-driven training strategy, which enables more effective removal of 

undersampling artifacts/noise compared to standard constrained MRI reconstruction (e.g., 

compressed sensing reconstruction) that typically relies on generic image priors. Meanwhile, 

once the training step is completed, the learned deep neural networks are fixed and allow 

for rapid inference (reconstruction) of new undersampled datasets, typically in the order of 

seconds. This offers a unique opportunity to facilitate fast MRI reconstruction into routine 

clinical use from an efficient computation perspective.

To date, most deep learning-based MRI reconstruction techniques are based on a supervised 

training strategy, which aims to learn the mapping of undersampled images (with artifacts 

and noises) to corresponding reference images (typically fully sampled) with CNNs(1–5). 

One major challenge of supervised learning, however, is the requirement of abundant high-

quality reference images for network training. Although fully sampled static MR images 

may be obtained from routine MRI exams, it can be significantly challenging to acquire 

fully sampled dynamic MRI due to motion, imaging speed restriction, and associated trade-

off between spatiotemporal resolution and volumetric coverage that must be made in many 

dynamic imaging applications. In addition, ground truth images for quantitative MRI (e.g., 

MR relaxometry) are also difficult to acquire because quantitative imaging typically requires 

prolonged imaging time and it is not routinely implemented in current clinical settings. As 

a result, the requirement of reference images for network training can greatly restrict the 

broad applications of supervised learning in MRI reconstruction, particularly for dynamic or 

quantitative MRI.

More recently, several works have investigated unsupervised or self-supervised learning 

for the reconstruction of undersampled static MR images (7–12). Although the specific 

implementations of these works vary from one to the other, they all train CNNs on 

undersampled datasets directly without fully-sampled references, and inherent MR physical 

models (e.g., Fourier encoding and coil sensitivity encoding) are incorporated as training 

regularizations. The results in these works have shown that with proper design of network 

training, unsupervised or self-supervised learning can achieve similar reconstruction 

performance compared to supervised learning (8,9,11,12). In addition to standard Fourier 

and coil encoding for static image reconstruction, MRI also offers a variety of physical 

models that are typically used in quantitative MRI and can be exploited for deep learning 

reconstruction of quantitative images. Examples of these models include MR relaxometry 

models for T1 or T2 mapping, diffusion models for diffusion parameter mapping, and 
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tissue susceptibility models for quantitative susceptibility imaging. While the use of these 

models in conventional iterative reconstruction (the so-called model-based reconstruction 

(13–17)) has been well demonstrated in the literature, their use in deep learning-based MRI 

reconstruction has been very limited (18), particularly in the context of self-supervised 

learning.

The purpose of this study was to propose a general self-supervised deep learning 

reconstruction framework for quantitative MRI. This technique, called REference-free 

LAtent map eXtraction (RELAX), jointly enforces data-driven and physics-driven training, 

where the MR imaging model (Fourier encoding/coil sensitivity encoding) and a 

quantitative model are incorporated in network training towards self-supervised deep 

learning reconstruction. The demonstration of RELAX was tailored explicitly for rapid MR 

T1 and T2 mapping in this work. In the following sections, the framework of RELAX is first 

presented. Its performance is then demonstrated in realistic simulation studies followed by 

in-vivo evaluation of accelerated T1 and T2 mapping of the knee joint.

THEORY

Deep Learning Reconstruction with Supervised Learning

Deep learning enables direct end-to-end mapping for domain-to-domain translations using 

CNNs. The mechanism of end-to-end mapping is to train a CNN for learning spatial 

or spatiotemporal features, correlations, and contrast relationships between input datasets 

and desirable outputs. Once the training is completed, the learned networks can then 

be employed to efficiently inference new input data. When deep learning is applied to 

reconstruct accelerated MRI data, the inputs can be pairs of undersampled images with 

aliasing artifacts and corresponding fully sampled images (e.g., k-space sampling satisfying 

the Nyquist requirement). A learned network can then be applied to reconstruct new 

undersampled images by removing aliasing artifacts. Mathematically, this framework can 

be formulated as the following optimization function:

θ = arg min
θ

Edu P (du) C(du θ) − d K [1]

Here, C du |θ :du d is an end-to-end CNN generator conditioned on network parameters 

θ, so that it generates image d from undersampled image du. d represents reference fully 

sampled images for network training. Edu P (du) ⋅  is an expectation operator given that 

a training sample du belongs to the data distribution P(du) of all undersampled image 

datasets. ‖·‖K forms a loss function, where K is typically set as 1 or 2 representing ℓ1 or ℓ2 

norm. The network aims to search for optimized parameters θ through data-driven training, 

which can be generalized and applied to other new undersampled images. Since there is an 

explicit requirement for reference images in Eq.[1], this framework is generally referred to 

as supervised learning.
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Model-Based Deep Learning Reconstruction with Supervised Learning

The performance of deep learning-based MRI reconstruction can be further improved by 

incorporating additional constraints considering physical models that are inherently available 

in MRI. These constraints ensure that images generated from CNN mapping must be 

consistent with both the training reference and also corresponding physical models. A 

typical model that can be considered is MR imaging encoding (e.g., Fourier encoding), an 

essential process that is embedded in all MRI data acquisition and reconstruction. With this 

extension, Eq.[1] then becomes:

θ = arg min
θ

λloss1Edu P (du) EC(du θ) − yu K

+ λloss2Edu P (du) C(du θ) − d K
[2]

Here, yu denotes undersampled k-space and E is a forward model describing imaging 

encoding, which can include the Fourier transform, coil sensitivities (when multi-coil arrays 

are used), and undersampling patterns to generate yu. Compared to Eq.[1] with only a single 

loss term, Eq.[2] promotes data fidelity by further ensuring that CNN-generated images need 

to be consistent with acquired undersampled k-space. It can be seen that Eq.[2] is in close 

analogy to conventional constrained reconstruction. In fact, the right loss term in Eq.[2] 

can be treated as a regularization function to perform constrained image reconstruction. 

This leads to a joint data-driven and model-driven deep learning reconstruction framework 

balanced by two weighting parameters λloss1 and λloss2. Although some deep learning 

reconstruction methods are based on Eq.[1] (19–21), most recent deep learning techniques 

are based on Eq.[2] to fully take advantage of the MRI encoding process (1,3,5,22–24).

Model-Based Deep Learning Reconstruction with Self-Supervised Learning

The incorporation of MR physical models into deep learning MRI reconstruction in Eq.[2] 

not only improves the performance of supervised learning but also offers an opportunity to 

perform network training without the need for fully sampled references. In this scenario, 

CNN learning can be formulated by adapting Eq.[2] to eliminate the right loss term that 

relies on references, leaving the left data consistency term to enforce “self-supervision”:

θ = arg min
θ

Edu P (du) EC(du θ) − yu K [3]

The training of Eq.[3] purely relies on the imaging encoding mechanisms of MRI to 

find out how to remove undersampling-induced artifacts and noises. In this manner, self-

supervised learning still enforces a joint data-driven (a training database consisting of only 

undersampled images) and model-driven network training process, but it is implemented 

in a relaxed and weaker manner without fully sampled reference. This generic framework 

forms an undersampling-to-undersampling training strategy that closely resembles an early 

work using noise-to-noise training for imaging denoising in computer vision (7). It has 

been proven feasible in reconstructing undersampled MR images and was found to achieve 

reconstruction performance that is similar to standard supervised learning (9,12). It can also 

be adapted for special training designs for further improved reconstruction performance. 

For example, a more recent work (11) further employs a training strategy by splitting 
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undersampled k-space into two parts, such that yu = yui + yuj. During network training, yui 

can be used as the CNN input while yuj can be employed for calculating the training loss.

RELAX: Quantitative Deep Learning Reconstruction with Model-Based Self-Supervised 
Learning

In addition to standard imaging encoding, other models can also be further incorporated 

into deep learning reconstruction. For example, quantitative MRI typically replies on an MR 

signal model to generate quantitative parameters based on the following equation:

Δ = arg min
Δ

M(Δ) − d 2 [4]

where M represents a quantitative signal model (e.g., a T1 relaxation or T2 decaying 

model for MR relaxometry) to fit a series of multi-contrast images d into corresponding 

quantitative parameters, denoted as Δ here. Please note that throughout this paper, “multi-

contrast” is specifically referred to as multiple k-space/images acquired with different 

imaging parameters (e.g., different echo times or different flip angles) to fit quantitative 

MR parameters. This quantitative signal model can be embedded into deep learning 

reconstruction to enforce a model constraint. Meanwhile, the use of a quantitative 

signal model also enables direct estimation of corresponding quantitative parameters from 

undersampled k-space in a synergistic reconstruction scheme formulated as:

θ = arg min
θ

λloss1Edu P (du) EM(C(du θ)) − yu K

+ λloss2Edu P (du) C(du θ) − Δ K
[5]

Here, yu becomes multi-contrast undersampled k-space since quantitative imaging normally 

involves acquisitions of multiple images at different contrast. M transforms quantitative 

MR parameter maps to a series of synthetic images, which can be further transformed to 

corresponding undersampled multi-contrast k-space with E. Different from Eq.[2], the CNN 

function in Eq.[5] C du |θ :du Δ aims to directly translate undersampled multi-contrast 

images into corresponding quantitative parameters, so that the learned network enables 

direct estimation of quantitative parameters from undersampled multi-contrast k-space. 

Building on Eq.[5], several early works have demonstrated rapid and efficient T1 or T2 

mapping with improved performance compared to conventional methods (18,25,26).

In line with Eq.[3] for reconstructing static MR images with self-supervised learning. 

Model-based self-supervised learning of quantitative MRI reconstruction can be realized 

after eliminating the training reference in Eq. [5]:

θ = arg min
θ

Edu P (du) EM(C(du θ)) − yu K [6]

Here, network training is based on two MR physical models simultaneously, including a 

quantitative signal model plus the MR imaging encoding, which results in a more definite 

constraint to guide network training compared to that in Eq.[3]. Additional regularizations 
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that do not rely on references, as implemented in conventional constrained reconstruction, 

can be further added to improve the training performance:

θ = arg min
θ

Edu P (du) EM(C(du θ)) − yu K + λEdu P (du)R(C(du θ)) [7]

Here, R represents a regularization (e.g., spatial total variation (TV) regularization) that is 

directly enforced on the to-be-reconstructed MR parameters. Similar to that in conventional 

constrained reconstruction, more than one regularization (e.g., wavelet + TV constraints) 

can be implemented jointly in Eq.[7]. The network training for Eq.[7] can be implemented 

using a cyclic loss as schematically described in the flow chart of Figure 1. Specifically, 

the CNN module translates undersampled multi-contrast k-space directly into a latent image 

space, which encloses the estimated parameter domain given the MR physical models are in 

place to enforce the data and model consistency. It should be noted that Eq.[7] essentially 

represents a general framework that can be implemented for different applications involving 

MRI physical models. In these general cases, the construction of CNN just needs to be 

adapted with corresponding physical models without loss of generality.

METHODS

Quantitative MR Models

The RELAX framework was evaluated for reconstructing T1 and T2 maps from 

undersampled k-space data. T1 mapping was performed based on variable flip angle (VFA) 

imaging with a spoiled gradient echo sequence (27,28). The MR signal model for VFA 

imaging has an analytical solution at steady-state as follows (29):

M = Sj I0, T1 = I0 ⋅ (1 − e−TR/T1)sinαj

1 − e−TR/T1cosαj
[8]

where I0 (proton density image) and T1 are to-be-estimated MR image/parameter and αj 

denotes the jth flip angle for acquiring MRI images Sj. T2 mapping was performed based on 

multi-echo spin-echo imaging (30), and corresponding MR signal model is given by:

M = Sj I0, T2 = I0 ⋅ e−TEj/T2 [9]

where I0 and T2 are to-be-estimated MR image/parameter and TEj denotes the jth echo 

time. While a more complex form of models for T1/T2 mapping using these two sequences 

has been described by accounting for system imperfections such as field inhomogeneity, 

stimulated echo, slice excitation profile, partial volume contamination etc.(31–33), the 

simple forms are used in this study for demonstrating the initial feasibility of RELAX.

Image Datasets

Simulated Brain Datasets—Simulation studies were first performed to validate the 

RELAX framework. The BrainWeb (https://brainweb.bic.mni.mcgill.ca/) brain phantoms 

(34), made from 20 healthy adults with inter-subject anatomical variabilities, were used 

to simulate synthetic MRI datasets. Each brain phantom represents a 3D discrete tissue 
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mask covering the whole brain for a total of eleven tissue types, including gray/white 

matter, cerebrospinal fluid, and connective tissues etc. These phantoms provided realistic 

brain structural features that were ideal for generating image datasets with brain anatomical 

information. The tissue relaxation parameters, including T1, T2 and I0, were assigned to 

each voxel based on tissue type from previous literature (35,36). A realistic MR simulation 

system MRiLab (37) previously developed in our group was used to simulate MR signal 

acquisitions. MRiLab (https://leoliuf.github.io/MRiLab/) is an open-source MRI simulation 

system, which can simulate various pulse sequences given radiofrequency pulses, gradient 

waveforms, and acquisition schemes building on a discrete-time solution of the Bloch-

equation by mean of rotation and exponential scaling matrices throughout the prescribed 

sequence (37–39). The simulated signal from all voxels in each phantom was then collected 

to fill an image matrix that forms ground truth k-space. It should be noted that our 

simulation directly generated fully sampled multi-contrast k-space by emulating a given 

MRI sequence. A schematic description of the simulation workflow is shown in Supporting 

Information Figure S1.

Fully sampled multi-contrast MRI k-space data were simulated using both the VFA spoiled 

gradient echo sequence and multi-echo spin-echo sequence. For VFA-based T1 mapping, the 

imaging parameters were: repetition time/echo times (TR/TE) = 8.5/3.9 ms, 8 flip angles 

= [3, 4, 5, 6, 7, 9, 13, 18]°, bandwidth = 326Hz/pixel, slice thickness = 3mm, number of 

slices = 40, field of view (FOV) = 22×22cm2, and acquired image matrix = 256×256. For 

multi-echo spin-echo-based T2 mapping, the imaging parameters were: TR = 2500ms, 16 

linear spacing TEs = [10, 20, 30, …, 160] ms, flip angle = 90°, bandwidth = 488Hz/pixel, 

slice thickness = 3mm, number of slices = 40, field of view (FOV) = 22×22cm2, and 

acquired image matrix = 256×256. There was a total of 800 simulated image slices for all 

brain phantoms.

In-Vivo Knee Datasets—RELAX was further evaluated in in-vivo knee image datasets. 

This retrospective study was approved by the Institutional Review Board with a waiver 

of written informed consent. Data were acquired using the T1 mapping or T2 mapping 

sequences described above. For VFA T1 mapping, images of the knee were acquired in the 

sagittal plane for 50 symptomatic patients using a 3T GE scanner (MR 750, GE Healthcare, 

Waukesha, Wisconsin) and with an eight-channel phased-array knee coil (InVivo, Orlando, 

Florida). Relevant imaging parameters included: TR/TE = 4.6/2.2 ms, 8 flip angle = [3, 4, 5, 

6, 7, 9, 13, 18]°, slice thickness = 3mm, pixel bandwidth = 122Hz/pixel, number of slices = 

32, field of view = 16×16cm2, and acquired image matrix = 256×256. No parallel imaging 

was used. The images were reconstructed on the MR scanner and were saved as DICOM 

files after coil combination. There was a total of 1600 image slices for all subjects. For 

multi-echo spin-echo T2 mapping, images were acquired in the sagittal plane for another 

110 symptomatic patients using a 3T GE scanner (Signa Excite Hdx, GE Healthcare) and 

the same knee coil. Relevant imaging parameters included: 8 TEs/TR = [7, 16, 25, 34, 43, 

52, 62, 71]/1500 ms, flip angle = 90°, slice thickness = 3–3.2mm, pixel bandwidth = 122Hz/

pixel, number of slices = 18–20, field of view = 16×16cm2, and acquired image matrix = 

320×256. No parallel imaging was used. The images were reconstructed on the MR scanner 
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and were saved as DICOM files after coil combination. There was a total of 2107 image 

slices for all subjects.

Experiment Design: Suppression of Noises and Undersampling Artifacts

The performance of RELAX was evaluated for suppressing image noises and/or aliasing 

artifacts induced by retrospectively undersampling MR k-space. Specifically, three 

experimental conditions were tested on the simulated brain T1 and T2 mapping datasets. 

The first experiment was designed to investigate the reconstruction accuracy and robustness 

of RELAX at various noise levels. The fully sampled k-space data were first normalized to 

a scale of 0–1. Complex Gaussian noise with an intensity of 0.025, 0.05, and 0.1 was then 

added into the simulated noise-free k-space to emulate noise contamination at different noise 

levels (2.5%, 5%, 10%). The noise was added to each frame of the multi-contrast images to 

ensure different noise characteristics across the multi-contrast parameter dimension.

The second experiment was designed to investigate the reconstruction performance of 

RELAX in accelerated images. Retrospective undersampling was performed to generate 

undersampled images by multiplying the fully sampled k-space data with undersampling 

masks followed by zero-filling reconstruction. The undersampling masks were generated 

based on a one-dimensional (phase-encoding dimension only) variable-density Cartesian 

random sampling pattern (40) to achieve an undersampling factor (R) of 5, and it had a 

fully sampled k-space center (5% of the total samples). The sampling pattern varied along 

the multi-contrast parameter dimension to create temporal incoherence as implemented in 

standard sparse image reconstruction. The third experiment was designed to investigate the 

reconstruction performance of RELAX in the condition of both noise and undersampling 

artifacts contaminations. For this, both complex Gaussian noise (noise level=5%) and 1D 

Cartesian undersampling (R=5) were applied to the simulated noise-free fully sampled 

k-space data to generate noisy images with undersampling artifacts.

In addition, to test its performance in different anatomy and validate its applicability in real 

MRI data, RELAX was also evaluated on fully sampled in-vivo knee T1 and T2 image 

datasets. Experiments were carried out to test the reconstruction performance of RELAX for 

rapid T1 and T2 mapping using retrospective undersampling, which was performed using 

the abovementioned one-dimensional variable-density sampling scheme at R=5.

To validate the reconstruction accuracy of RELAX, reference T1 and T2 maps were 

generated by fitting the fully-sampled simulated and in-vivo-acquired images using 

corresponding quantitative signal models described in Eq.[8] and Eq.[9] on a pixel-wise 

basis. The fitting was performed with a standard nonlinear least-squares (NLLS) algorithm. 

It should be noted that the reference images/parameter maps were not included in the 

training of RELAX.

Implementation and Training of Neural Network

Inspired by many deep learning studies for end-to-end image reconstruction (5,20,41) and 

our previous studies for rapid quantitative MRI (18,25,26), a customized residual U-Net 

(42) structure was selected to perform the mapping function to translate noisy and/or 

undersampled input images into desired parameter maps. The U-Net structure consisted 
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of a paired encoder and decoder system, where the encoder aims to identify essential image 

features, remove uncorrelated structure and noise, and compress image information, while 

the decoder takes the output from encoder to form a targeted image contrast through a 

multi-level convolutional and combinational process. Symmetric shortcut connections were 

also created to directly transfer image features from the encoder to the decoder to augment 

the mapping efficiency. A modification of the U-Net is a residual learning design where an 

image by averaging all input images was directly subtracted from the estimated parameter 

maps. This residual learning has proven to be effective in several recent deep learning-based 

image reconstruction and synthesis studies (5,20,41). The detailed CNN structure is shown 

in Supporting Information Figure S2.

The image datasets were randomly split into 70%, 10% and 20% for training, validation 

and testing purposes, respectively. During the training step, a series of undersampled images 

for one slice were concatenated together and treated as a multi-channel 2D image input 

(analogous to the RGB channels in natural images) for the residual U-Net. The network 

parameters were initialized using the strategy described in (43). A standard mini-batch 

training was performed with each batch consisting of 3 slices for one iteration. The 

network parameters were updated using an adaptive gradient descent optimization (ADAM) 

algorithm (44) with a fixed learning rate of 0.0002 for total iteration steps corresponding 

to 200 epochs to ensure training convergence. The best model was selected as the one that 

provided the lowest loss value in the validation datasets. The training loss curves are shown 

in Supporting Information Figure S3. Following Eq.[7], a spatial TV regularization was 

applied to the estimated parameter maps and K was set to use ℓ2 norm. A default weight 

factor λ in Eq.[7] was empirically optimized and set to be 0.01. The effect of λ on the 

reconstructed parameter maps was also evaluated by varying the value of λ from 0 to 0.1 

and by comparing with the reference parameter maps. The deep learning algorithm was 

coded using the Python language and Keras (45) deep learning package with Tensorflow 

(46) computing backend. All training and evaluation were conducted on a personal computer 

hosting a Linux system and one NVIDIA GeForce RTX 2080Ti graphics card, which has 

4352 CUDA cores and 11GB GDDR6 GPU RAM.

Comparison of Reconstruction Methods

The reconstruction performance of RELAX was compared with the other two reconstruction 

methods. One method is a constrained reconstruction technique using a combination of 

low-rank and spatial-temporal smoothness constraint, k-t SLR, representing the state-of-

the-art conventional iterative reconstruction approach (47). This method was performed 

using the source code with its default parameter settings from the original developers in 

https://research.engineering.uiowa.edu/cbig/content/matlab-codes-k-t-slr. Another method is 

a supervised deep learning method, MANTIS (Model-Augmented Neural neTwork with 

Incoherent k-space Sampling), recently proposed to reconstruct undersampled MR images 

for rapid quantitative MRI (18). This method uses an end-to-end supervised learning 

strategy by comparing the directly estimated parameter maps from undersampled images 

with the reference parameter maps. It enforces a pixel-wise loss between the generated 

parameter map and reference parameter map. Quantitative metrics, including the normalized 

Root Mean Squared Error (nRMSE), the Structural SIMilarity index (SSIM) between the 
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reconstructed quantitative maps and the reference maps were used to assess the difference of 

reconstruction errors among methods. The relative reduction of Tenengrad measure (48,49) 

between the reconstructed quantitative maps and the reference maps were used to assess 

the image sharpness. The Wilcoxon signed-rank test was used to demonstrate the method 

difference at a statistical significance level defined as a p-value smaller than 0.05.

RESULTS

Figure 2 shows representative T1 maps estimated using RELAX in one simulated brain 

dataset at three different experiment conditions, respectively. On the T1 maps generated 

by using the standard NLLS fitting, there is notable noise contamination caused by 

the added Gaussian noise at 5% noise level (NL) and aliasing artifacts caused by the 

k-space undersampling at R=5 with simple zero-filling reconstruction. RELAX successfully 

suppressed the noises and removed the undersampling artifacts through self-supervised deep 

learning reconstruction, providing image quality that is comparable to the noise/artifact-free 

ground truth (G.T.) T1 map. In the case with both noise contamination and undersampling 

artifacts, RELAX still managed to reconstruct the T1 map without observable residual 

artifact and noise amplification. These results demonstrated the ability of RELAX to model 

T1 mapping based on a VFA with a spoiled gradient echo sequence at imaging acceleration, 

increased noise or both.

Figure 3 shows representative T2 maps estimated using RELAX in another simulated brain 

dataset at three different experiment conditions, respectively. Similar to the T1 mapping 

experiments in Figure 2. RELAX enabled suppression of image noises and undersampling 

artifacts and reconstructed T2 maps that are comparable to the noise/artifact-free ground 

truth T2 maps. Figures 2 and 3 demonstrate the generality of RELAX to model different 

quantitative imaging process by incorporating corresponding signal models based on self-

supervised learning.

The influence of the weighting parameter λ (for spatial TV constraint in this work) on 

reconstructed parameter maps is shown in Figure 4. While the self-supervised learning 

in RELAX has captured correct image features and contrast for gray/white matter after 

adequate training, certain noise appearance remains in images with self-supervision only 

(λ = 0). The inclusion of a spatial TV constraint further helped remove the residual noise 

and resulted in a cleaner tissue appearance at λ = 0.01. However, a stronger TV constraint 

(e.g., λ = 0.1) can lead to over smoothness on the parameter map and cause notable image 

blurring. As a result, proper selection of the weight for the additional regularization in 

RELAX has an apparent effect on the reconstructed quantitative maps.

Figure 5 shows the performance of RELAX in different noise levels. Generally, RELAX 

generated acceptable T1 or T2 parameters at different noise conditions due to the inherent 

noise suppression in CNN training and the additional spatial TV constraint. An accurate T1 

and T2 maps can be achieved at a low (NL=2.5%) and intermediate (NL=5%) noise level. 

At a high noise level (NL=10%) where the standard NLLS failed to provide reliable tissue 

differentiation, RELAX still managed to remove most of the noise and restore the essential 

image contrast between the grey matter, white matter, and cerebrospinal fluid in both T1 and 
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T2 maps. In this example, the signal-to-noise ratio (SNR) was approximately 44, 26 and 14 

in the circled white matter region on the 7° VFA image (for T1 mapping) at the noise level 

of 2.5%, 5% and 10%, respectively. The SNR was approximately 46, 23, 12 in the circled 

white matter region on the first echo image (for T2 mapping) at the noise level of 2.5%, 5% 

and 10%, respectively.

Figure 6 shows two representative slices of T1 maps estimated from different reconstruction 

methods for a testing knee dataset at R=5. Although k-t SLR was able to restore some image 

details by removing undersampling artifacts and sharpened the appearance, residual artifacts 

are noticed in T1 maps, particularly in the bone and muscle. The deep learning-based 

methods, including both MANTIS and RELAX, removed most of the artifacts and showed a 

similar reconstruction performance, although the MANTIS might have a closer appearance 

to the reference T1 maps due to its implementation of supervised learning. The RELAX 

reconstruction generated T1 maps with image quality that is comparable to the reference 

T1 maps obtained from fully sampled images. RELAX successfully removed almost all 

the image artifacts caused by k-space undersampling and provided a well-preserved image 

contrast, clarity, and tissue boundaries between cartilage, meniscus, and muscle highlighted 

in the zoom-in areas. There was also noticeable noise suppression in bone and muscle in the 

RELAX T1 maps. In this example, the SNR was approximately 48 in the cartilage region on 

the fully sampled 7° VFA image.

Figure 7 compares T1 maps generated from different reconstruction methods for another 

testing knee dataset at R=5. The absolute error map for each reconstructed T1 map was 

shown in the bottom, which also indicates better reconstruction accuracy for both MANTIS 

and RELAX methods in comparison to conventional constrained reconstruction.

Figure 8 shows two representative slices of T2 maps estimated from different reconstruction 

methods for a testing knee dataset at R=5. Similar to that in T1 mapping, both MANTIS 

and RELAX provided nearly artifact-free T2 maps and presented similar reconstruction 

performance. RELAX generated T2 maps with successful suppression of image artifacts and 

noise compared to the reference T2 maps obtained from fully sampled images. RELAX 

also provided well-preserved image contrast and tissue details highlighted in the zoom-in 

areas. There was also noticeable noise suppression but slight image blurring in the bone and 

muscle in the T2 maps generated from RELAX, in contrast to the MANTIS result and the 

reference T2 map. In this example, the SNR was approximately 79 in the cartilage region on 

the fully sampled first echo image.

Figure 9 compares T2 maps generated from different reconstruction methods for another 

testing knee dataset at R=5. The absolute error map for each reconstructed T2 map indicated 

better reconstruction accuracy for both MANTIS and RELAX in comparison to k-t SLR in 

terms of artifact removal and image contrast preservation.

Finally, qualitative comparison was further validated by quantitative metrics. As shown 

in Table 1, both RELAX and MANTIS achieved significantly better reconstruction 

performance (all p<0.001) than k-t SLR in terms of reconstruction errors and image 

sharpness and texture preservation for both T1 and T2 mapping. The results between 
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RELAX and MANTIS were comparable, while the supervised learning method MANTIS 

yielded better image sharpness as indicated by the lower Tenengrad measures (p=0.019 for 

T1 and for p<0.001 T2) and better overall image feature preservation as indicated by the 

higher SSIM measures (p<0.001 for T1 and for p<0.001 T2). RELAX achieved better noise 

suppression than MANTIS as indicated by the lower nRMSE measures (p=0.001 for T1 and 

for p=0.02 for T2). In addition, quantitative comparison of the mean T1 and T2 values from 

the cartilage between RELAX and the references was also assessed using the Bland-Altman 

analysis (50) in Supporting Information Figure S5. A comparison between the performance 

of RELAX using residual U-Net and that using the standard U-Net without residual learning 

was provided in Supporting Information Table S1.

DISCUSSION

This work proposed a model-guided self-supervised deep learning reconstruction technique 

towards rapid quantitative MR parameter mapping. We have demonstrated that by enforcing 

MRI physical model constraints, deep learning-based MRI reconstruction may be performed 

without fully sampled training references. The initial feasibility of using RELAX for 

accelerated T1 or T2 mapping was tested in both simulated MRI data where noise/artifact-

free ground truth images are available and actually-acquired MRI data where fully sampled 

references are available. Our initial results have supported that RELAX can generate T1 or 

T2 maps that are comparable to T1/T2 maps from standard supervised learning and superior 

to T1/T2 maps from conventional constrained reconstruction.

There has been an explosive growth of deep learning-based MRI reconstruction works in 

the past few years, which have shown great potentials in overcoming several challenges 

that are presented in conventional constrained reconstruction, such as slow reconstruction 

speed and compromised reconstruction performance due to generic constraints (1–3,5,19–

24). However, to date, most of these works have been focusing on supervised learning in 

which reference training datasets must be provided to guide network learning. While many 

deep learning architectures have shown the ability to learn sophisticated image features 

and patterns that are useful to represent essential image content in MRI reconstruction 

(2,4,6), it is observed that this purely data-driven approach could be compromised with 

limited training datasets, or in the presence of data discrepancy between training and testing 

datasets (5,18,51). In addition, ideal fully sampled MR images can often be challenging to 

acquire, for example, due to subject motion in dynamic MRI, contrast variation in contrast-

enhanced MRI, or high noise contamination in low field MRI. Several prior works have 

shown that MR imaging model (e.g., Fourier encoding and coil encoding) can be embedded 

in network training to improve training performance (1,3,5,22–24). The incorporation of 

MR physics further regularizes the learning process and is proven to lead to efficient and 

robust reconstruction at a lower requirement for training datasets. Recent works have also 

proposed the new concept of self-supervised learning for MRI reconstruction (10,11). An 

early study has shown a denoising deep learning network can be successfully trained using 

pairs of noisy images (7). Self-supervised learning relies on a hypothesis that image noise 

and artifacts are typically incoherent in training data pairs, thus minimizing a loss between 

them readily regularizes the learning to capture coherent image content. A direct benefit of 

self-supervised learning is training without fully sampled reference, which can potentially 
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facilitate image applications where ideal high-quality reference images are unavailable. 

Building on this theoretical foundation and the recent success of model-based and self-

supervised learning, we proposed and evaluated RELAX by leveraging a combination 

of MR imaging model and a quantitative model to regularize network training with self-

supervised learning. These physical models have been proven to jointly guide deep neural 

networks to generate accurate MR parameter maps while removing undersampling-induced 

artifacts and noises (18).

In addition, we also showed that additional sparsity constraints could be optionally 

added in RELAX framework to impose prior knowledge into the learning process. For 

example, we have demonstrated that a spatial TV constraint can be directly enforced on 

the MR parameter maps to be reconstructed to help improve reconstruction quality by 

suppressing residual noise/artifacts. The spatial TV constraint also proves to promote the 

smoothness of the generated parameter maps in deep learning, similar to that in conventional 

constrained reconstruction (52). However, it should be noted that an appropriate selection 

of corresponding regularization parameter, as shown in Eq.[7] is critical. Higher weighting 

for the spatial TV constraint tends to generate over-smoothness for parameter maps, as 

shown in Figure 4, as previously observed in conventional constrained reconstruction. 

Depending on the assumption for the to-be-reconstructed parameter maps, other prior 

knowledge-based constraints can also be imposed during the deep learning training 

process. For example, a combination of wavelet and spatial TV constraints, as used in 

compressed sensing reconstruction (40), can be applied to RELAX to improve regularization 

performance. Moreover, more advanced constraints, such as the total generalized variation 

(TGV) constraint (53) or low-rankness subspace modeling (54), can also be further 

considered to overcome the problem of simple TV constraint and to improve reconstruction 

performance. The incorporation of these physical constraints into deep learning opens a 

new approach to integrate physics-informed features into the learning process. However, 

similar to conventional constrained reconstruction, the regularization parameters are likely 

to influence the final reconstruction performance, and thus, they are subject to careful 

optimization. Future research for developing the strategy of comprehensive regularization 

parameter optimization is needed to validate the optimized performance of the network and 

the sensitivity of reconstruction results to these parameters. Adaptive and dataset-specific 

optimization of these parameters would also be a future research direction to create more 

generalizable deep learning models.

In this work, we have demonstrated the performance of RELAX for accelerated T1 or T2 

mapping, respectively, based two different acquisition schemes. The VFA imaging using a 

spoiled gradient echo sequence is commonly used for rapid T1 mapping. While the Eq. [8] 

has an analytical description for MR signal at steady-state given different excitation flip 

angles, the T1 mapping can sometimes be more complicated due to B1 field inhomogeneity, 

imperfect slice profile, or transient state-steady (29). For example, an inversion recovery 

spoiled gradient echo acquisition can be added into the VFA to help correct the B1 effect 

(31). Likewise, T2 mapping using a multi-echo spin-echo sequence can be affected by 

several confounding factors, including B1 field inhomogeneity, excitation pulse profile, and 

stimulated echoes (33). While quantitative T1/T2 models using classic MR signal equations 

were used to prove the feasibility of RELAX in our study, it is anticipated that RELAX 
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can be further improved with more comprehensive signal modeling in using advanced MR 

sequences and modeling. One recent study has shown that additional B1 field estimation 

can improve T1 mapping using a deep learning approach (55). Another study has also 

shown a joint estimation of T1 in the rotating frame (T1ρ) and T2 maps from undersampled 

images at a T1ρ and T2 preparation sequence is feasible using deep learning end-to-end 

mapping (56). Moreover, RELAX could also use a Bloch simulation-based signal model 

instead of an analytical model to capture more complex MR signal evolution, similar to 

that implemented in MR Fingerprinting (MRF) (57). The recent advance of deep learning-

based MRF has laid a promising foundation to build a more efficient dictionary (58), to 

better capture spatiotemporal image features (59), and to generate MR signals much faster 

using a fully connected network than the standard dictionary matching (60). Finally, the 

RELAX framework is expected to be generalizable to other quantitative MRI applications by 

replacing the T1/T2 models with other quantitative models. Examples of these applications 

include diffusion MRI or quantitative susceptibility mapping (QSM), which may both 

benefit from the RELAX framework.

This study has several limitations that require further improvement. First, the performance 

of RELAX was only demonstrated on simulated and coil-combined real MRI datasets. The 

extension of RELAX to multiple coil acquisitions is expected to be straightforward by 

incorporating pre-estimated coil sensitivity maps. This extension may also impose a more 

definite model constraint by including Fourier encoding, coil encoding, and a quantitative 

imaging model for further improving reconstruction performance. It would be ideal to 

train the model using true multi-coil k-space data directly saved from MR scanner. The 

extension of RELAX to use raw multi-coil data is entirely possible and warranted given that 

appropriate and adequate multi-coil training dataset, better GPU architecture, and increased 

GPU memory are made available. Moreover, RELAX could also be combined with non-

Cartesian sampling schemes, so that, for example, it can be applied for imaging moving 

organs to take advantage of the motion robustness provide by radial sampling(61,62). 

Second, we used a simple T1 and T2 model for demonstration purposes by considering 

only T1 relaxation and exponential T2 decaying. In practice, quantitative signal evolution 

is often contaminated by system imperfections that need to be accounted for in the future. 

These may be further incorporated into the training process as long as the unwanted issues 

associated with these system imperfections can be modeled. Third, the current study used 

a residual U-Net structure and did not compare the U-Net type with other end-to-end 

CNN mapping structures. It would be interesting to compare the U-Net with other newly 

developed deep learning networks to evaluate their performance in the RELAX framework. 

Finally, this current study has a relatively small number of subjects for training and testing. 

Further investigation for the performance of RELAX in a large scale clinical database 

and comprehensive radiologist evaluation is warranted to fully evaluate the sensitivity, 

repeatability, and robustness of our technique towards various pathologies.

CONCLUSIONS

This work has demonstrated the initial feasibility of RELAX for rapid quantitative MR 

parameter mapping based on self-supervised deep learning. This new technique may be 

particularly useful in quantitative MRI applications where fully sampled reference images 
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are challenging to acquire. It holds great potential to improve imaging speed in quantitative 

MRI and to help the clinical translation of quantitative imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The schematic demonstration of the CNN framework implementing RELAX. A cyclic 

workflow was constructed to enforce self-supervised learning. The physics models and 

additional constraints can be incorporated into the framework to guide the learning of CNN 

mapping function to extract the latent image parameter maps from undersampled images. 

The labels follow the description in the main text.
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Figure 2: 
Representative T1 maps estimated using RELAX in one simulated brain dataset at three 

different experiment conditions, respectively. RELAX successfully suppressed the noises 

at 5% noise level (NL) and removed the undersampling artifacts at R=5 through self-

supervised deep learning reconstruction, providing image quality that is comparable to 

the noise/artifact-free ground truth (G.T.) T1 map. The NLLS was applied to zero-filling 

reconstructed images at R=5.
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Figure 3: 
Representative T2 maps estimated using RELAX in one simulated brain dataset at three 

different experiment conditions, respectively. RELAX successfully suppressed the noises 

at 5% noise level (NL) and removed the undersampling artifacts at R=5 through self-

supervised deep learning reconstruction, providing image quality that is comparable to 

the noise/artifact-free ground truth (G.T.) T2 map. The NLLS was applied to zero-filling 

reconstructed images at R=5.
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Figure 4: 
Examples showing the influence of the weighting parameter (for spatial TV constraint) on 

reconstructed parameter maps.
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Figure 5: 
Examples showing the performance of RELAX in different noise levels. RELAX generated 

acceptable T1 or T2 parameters at different noise conditions due to the inherent noise 

suppression in CNN training and the additional spatial TV constraint.
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Figure 6: 
Two representative slices of T1 maps estimated from different reconstruction methods for 

a testing knee dataset at R=5. The RELAX reconstruction generated T1 maps with image 

quality that is comparable to the reference T1 maps obtained from fully sampled images.
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Figure 7: 
Comparison of T1 maps generated from different reconstruction methods for another testing 

knee dataset at R=5. The deep learning-based methods, including both MANTIS and 

RELAX, removed most of the artifacts and showed a similar reconstruction performance, 

which outperformed conventional constrained reconstruction k-t SLR. The absolute error 

maps were amplified by five times for display purposes to show the method difference.
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Figure 8: 
Two representative slices of T2 maps estimated from different reconstruction methods for 

a testing knee dataset at R=5. RELAX generated T2 maps with successful suppression of 

image artifacts and noise compared to the reference T2 maps obtained from fully sampled 

images. There was noticeable noise suppression but a slight image blurring in the bone 

and muscle in the T2 maps generated from RELAX. To better highlight cartilage contrast, 

the same example with an adjusted color window was also provided in the Supporting 

Information Figure S4.

Liu et al. Page 26

Magn Reson Med. Author manuscript; available in PMC 2022 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
Comparison of T2 maps generated from different reconstruction methods for another 

testing knee dataset at R=5. Both MANTIS and RELAX provided nearly artifact-free 

T2 maps and presented similar reconstruction performance. The absolute error map for 

each reconstructed T2 map indicated better reconstruction accuracy for both MANTIS and 

RELAX in comparison to k-t SLR. The absolute error maps were amplified by five times for 

display purposes to show the method difference.
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Table 1:

nRMSE, SSIM, and Tenengrad measures between the reference quantitative maps estimated from the fully 

sampled images and the reconstructed quantitative maps estimated using different methods at an acceleration 

rate R=5. Results were shown as the mean and standard deviation (SD) values over the testing datasets 

for knee images for VFA T1 mapping and multi-echo spin-echo T2 mapping, respectively. MANTIS and 

RELAX achieved better reconstruction performance than the k-t SLR method. MANTIS had the highest image 

sharpness (i.e., lowest Tenengrad measures) and best texture preservation (i.e., highest SSIM measures) in 

comparison with all other methods. RELAX achieved the greatest noise suppression (i.e., lowest nRMSE 

measures).

Methods

Mean ± SD for T1 maps Mean ± SD for T2 maps

nRMSE (%) SSIM (%) Tenengrad (%) nRMSE (%) SSIM (%) Tenengrad (%)

Zero-fill 13.3 ± 4.1 53.2 ± 8.3 37.4 ± 5.8 18.7 ± 3.4 48.2 ± 7.1 49.7 ± 9.7

k-t SLR 7.1 ± 2.7 76.4 ± 3.1 16.6 ± 5.3 10.9 ± 2.1 72.8 ± 5.8 18.3 ± 2.4

MANTIS 5.2 ± 2.1 87.3 ± 1.4 11.6 ± 2.1 6.4 ± 1.6 85.1 ± 2.2 9.9 ± 2.9

RELAX 5.0 ± 1.7 84.6 ± 2.5 13.2 ± 2.3 6.3 ± 1.3 82.4 ± 2.7 11.9 ± 2.5
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